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Maximum Likelihood Technique
I The method of maximum likelihood is an extremely important

technique used in frequentist statistics
I There is no mystery to it. Here is the connection to the Bayesian

view: given parameters x and data D, Bayes’ Theorem tells us that

p(x|D, I) ∝ p(D|x, I) p(x|I)

where we ignore the marginal evidence p(D|I)
I Suppose p(x|I) = constant for all x. Then

p(x|D, I) ∝ p(D|x, I)

and the best estimator x̂ is simply the value that maximizes the
likelihood p(D|x, I)

I So the method of maximum likelihood for a frequentist is
equivalent to maximizing the posterior p(x|D, I) with uniform
priors on the {xi}.
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Frequentist Notation
Maximum Likelihood Estimators

I Just to avoid confusion: in Cowan’s book, the likelihood is written
using the notation

L(x|θ)
where x are the data and θ are the parameters

I Don’t get thrown off. This is still equivalent to a Bayesian
likelihood:

p(θ|x, I) =
L(x|θ) p(θ)∫

dθ′ L(x|θ′) p(θ′)

I I don’t love the notation because it obscures the fact that L is a
PDF, which we use to get best estimators with the tricks
introduced in earlier classes. When needed, we’ll denote it as L
because L is used in Sivia for the logarithm of the posterior PDF

I In everyday applications, you will maximize lnL, or minimize
− lnL
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ML Estimator: Exponential PDF

Example
Consider N data points distributed according to the exponential PDF
p(t|τ) = e−t/τ/τ. The log-likelihood function is

ln p(Di|τ) = lnL = −
N

∑
i=1

(
ln τ +

ti

τ

)
Maximizing with respect to τ gives

∂ lnL
∂τ

∣∣∣∣
τ̂

= 0 =⇒ τ̂ =
1
N

N

∑
i=1

ti

It’s also easy to show that

E (τ̂) = τ =⇒ τ̂ is unbiased
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Properties of ML Estimators
I ML estimators are usually consistent (θ̂ → θ)
I ML estimators are usually biased (b = E (θ̂)− θ 6= 0)
I ML estimators are invariant under parameter transformations:

f̂ (θ) = f (θ̂)

Example
Working with λ = 1/τ in the exponential distribution, it’s easy to
show that λ̂ = 1/τ̂ [1].

I Due to sum of terms in lnL, it tends toward a Gaussian by the
Central Limit Theorem, so

σ2
θ̂
=

(
−∂2 lnL

∂θ2

∣∣∣∣
θ̂

)−1
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Minimum Variance Bound
Rao-Cramér-Frechet Inequality

Given L you can also put a lower bound on the variance of a ML
estimator:

var (θ̂) ≥
(

1 +
∂b
∂θ

)2
/

E
[
−∂2 lnL

∂θ2

]

Example
For the exponential distribution,

∂2L
∂τ2

∣∣∣∣
τ̂

=
N
τ2

(
1− 2τ̂

τ

)
, b = 0,

and so we can prove that τ̂ is efficient (variance is at the lower bound):

var (τ̂) ≥ E
(
−N

τ2 (1− 2τ̂/τ)

)−1

=

(
−N

τ2 (1− 2 E (τ̂)/τ)

)−1

=
τ2

N
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Variance of ML Estimators

I We can express the variance of ML estimators using the same
tricks we applied to the posterior PDF: expand lnL in a Taylor
series about θ̂:

lnL(θ) ≈ lnLmax −
(θ − θ̂)2

2σ2
θ̂

∴ lnL(θ̂ ± σθ̂) = lnLmax −
1
2

I In other words, a change in θ by one standard deviation from θ̂
leads to a decrease in lnL by 1/2 from its maximum value

I The definition ∆ lnL = 1/2 is often taken as the definition of
statistical uncertainty on a parameter

I Strictly speaking this is only correct in the Gaussian limit, but it
can often be a nice, reasonably accurate shortcut
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Variance of ML Estimators
Realization of Exponential Data

Example

Generating 50 {ti} according to an exponential distribution with τ = 1:
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ln
L(
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τ̂τ̂ − ∆τ̂lo τ̂ + ∆τ̂up

∆ lnL = 0.5

Using the criterion ∆ lnL = 0.5 we find τ̂ = 0.96+0.15
−0.12
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Variance of ML Estimators
More Data

Adding more data narrows the distribution of L, as you would expect
for any PDF
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The distribution also becomes more symmetric, which you would
expect from the Central Limit Theorem
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Asymmetric Uncertainties
I Because lnL becomes increasingly parabolic with N due to the

Central Limit Theorem, we can define rules of thumb for
estimating variances on parameters:

lnL(θ) ≈ lnLmax −
(θ − θ̂)2

2σ2
θ̂

.

Range ∆ lnL
1σ 1/2 · (1)2 = 0.5
2σ 1/2 · (2)2 = 2
3σ 1/2 · (3)2 = 4.5

I This is done even when the likelihood isn’t parabolic, producing
asymmetric error bars (as we saw)

I Justification: you can reparameterize θ such that lnL is parabolic,
which is OK because of the invariance of the ML estimator under
transformations
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Other Approaches to Calculate Variance
I You could use L to estimate a central confidence interval on θ̂:

find the 16th and 84th percentiles
I Monte Carlo Method: generate many random realizations of the

data, maximize lnL for each, and study the distribution of θ̂:
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I From 10,000 realizations of the exponential data set, the
distribution of ML estimators τ̂ gives τ̂ = 0.99+0.15

−0.13. Not bad...
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ML Technique with > 1 Parameter
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I For > 1 parameter:

cov (xi, xj) =(
−∂2 lnL

∂xi∂xj

∣∣∣∣
x̂i,x̂j

)−1

I Use the ∆ lnL trick
to get contours for
1σ, 2σ, etc.

I Project ellipse onto
each axis (i.e.,
marginalize) to get
uncertainties in
each parameter
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ML Technique: Joint Confidence Intervals

Usually we want to calculate a joint likelihood on several parameters
but only produce confidence intervals for individual parameters.
However, if we want confidence ellipses in several parameters jointly,
we need to change the ∆ lnL rule a bit:

joint parameters
Range p 1 2 3 4 5 6
1σ 68.3% 0.50 1.15 1.76 2.36 2.95 3.52
2σ 95.4% 2.00 3.09 4.01 4.85 5.65 6.4
3σ 99.7% 4.50 5.90 7.10 8.15 9.10 10.05

It’s not very common to calculate things this way; usually we are
interested in the marginal distributions of individual parameters. For
more details on this, see [2].

Segev BenZvi (UR) PHY 403 14 / 32



Table of Contents

1 Maximum Likelihood
Properties of ML Estimators
Variances and the Minimum Variance Bound
The ∆ lnL = 1/2 Rule
Maximum Likelihood in Several Dimensions

2 χ2 and the Method of Least Squares
Gaussian and Poisson Cases
Fitting a Line to Data
Generalization to Correlated Uncertainties
Nonlinear Least Squares
Goodness of Fit

Segev BenZvi (UR) PHY 403 15 / 32



Connection to χ2

I Suppose our data D are identical independent measurements with
Gaussian uncertainties. Then the likelihood is

p(Di|x, I) =
1√

2πσi
exp

[
− (Fi −Di)

2

2σ2
i

]
, p(D|x, I) =

N

∏
i=1

p(Di|x, I),

where we defined the functional relationship between x and the
ideal (noiseless) data F as

Fi = f (x, i)

I If we define χ2 as the sum of the squares of the normalized
residuals (Fi −Di)/σi, then

χ2 =
N

∑
i=1

(Fi −Di)
2

σ2
i

=⇒ p(D|x, I) ∝ exp
(
−χ2

2

)
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Maximum Likelihood and Least Squares

I With a uniform prior on x, the logarithm of the posterior PDF is

L = ln p(x|D, I) = ln p(D|x, I) = constant− χ2

2

I The maximum of the posterior (and likelihood) will occur when
χ2 is a minimum. Hence, the optimal solution x̂ is called the least
squares estimate

I Least squares/maximum likelihood is used all the time in data
analysis, but...

I Note: there is nothing mysterious or even fundamental about this;
least squares is what Bayes’ Theorem reduces to if:

1. Your prior on your parameters is uniform
2. The uncertainties on your data are Gaussian
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Maximum Likelihood: Poisson Case
I Suppose that our data aren’t Gaussian, but a set of Poisson counts

n with expectation values ν. E.g., we are dealing with binned data
in a histogram. Then the likelihood becomes

p(n|ν, I) =
N

∏
i=1

νni
i e−νi

ni!

I In the limit N → large, this becomes

p(ni|νi, I) ∝ exp

[
−

N

∑
i=1

(ni − νi)
2

2νi

]

I The corresponding χ2 statistic is given by

χ2 =
N

∑
i=1

(ni − νi)
2

νi
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Pearson’s χ2 Test

I The quantity

χ2 =
N

∑
i=1

(ni − νi)
2

νi

is also known as Pearson’s χ2 statistic
I Pearson’s χ2 test is a standard frequentist method for comparing

histogrammed counts {ni} against a theoretical expectation {νi}
I Convenient property: this test statistic will be asymptotically

distributed like χ2
N regardless of the actual distribution that

generates the relative counts {ni}. It is distribution free
I In practice, we can use Pearson’s χ2 to calculate a p-value

p(χ2
Pearson ≥ χ2|N)

I Caveat: the counts in each bin must not be too small; ni ≥ 5 for all
i is a reasonable rule of thumb
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Modified Least Squares
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I Sometimes you will encounter a χ2

statistic for binned data defined like
this:

χ2 =
N

∑
i=1

(ni − fi)2

ni

I The variance is no longer the
expected counts (as expected in a
Poisson distribution) but the
observed counts ni. This is called
modified least squares

I You don’t really want this, unless you
made mistakes counting ni

I But, statistics packages may use this
statistic when fitting functions to
binned data
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Robustness of Least Squares Algorithm

I Our definition of χ2 as the quadrature sum (or l2-norm) of the
residuals makes a lot of calculations easy, but it isn’t particularly
robust. I.e., it can be affected by outliers

I Note: the l1-norm

l1-norm =
N

∑
i=1

∣∣∣∣Fi −Di

σi

∣∣∣∣
is much more robust against outliers in the data

I This isn’t used too often but if your function f (x) is linear in the
parameters it’s not hard to calculate

I See chapter 15 of Numerical Recipes in C for an implementation
[2]

I In Python there should be an implementation in the statsmodels
package [3]
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Application: Fitting a Straight Line to Data

Example
Suppose we have N measurements yi with Gaussian uncertainties σi
measured at positions xi.

Given the straight line model yi = mxi + b, what are the best
estimators of the parameters m and b?
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Minimize the χ2

Letting Fi = mxi + b and Di = yi, the χ2 is

χ2 =
N

∑
i=1

(mxi + b− yi)2
σ2

i

Minimizing χ2 as a function of the parameters gives

∂χ2

∂m
=

N

∑
i=1

2(mxi + b− yi)xi

σ2
i

and
∂χ2

∂b
=

N

∑
i=1

2(mxi + b− yi)

σ2
i

Defining wi = 2/σ2
i and rewriting this as a matrix equation,

∇χ2 =

(
A C
C B

)(
m
b

)
−
(

p
q

)
= 0

A = ∑ x2
i wi, B = ∑ wi, C = ∑ xiwi, p = ∑ xiyiwi, q = ∑ yiwi
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Best Estimators of a Linear Function

I Inverting the matrix, we find that

m̂ =
Bp− Cq
AB− C2 and b̂ =

Aq− Cp
AB− C2

I The covariance matrix is found by evaluating [2∇∇χ2]−1:(
σ2

m σ2
mb

σ2
mb σ2

b

)
= 2

(
A C
C B

)−1

=
2

AB− C2

(
B −C
−C A

)
I We note that even though the data {yi} are independent, the

parameters m̂ and b̂ end up anticorrelated due to the off-diagonal
terms in the covariance matrix

I This makes a lot of sense, actually; wiggling the slope of the line m
clearly changes the y-intercept b
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LS Uncertainties
Example LS fit: best estimators m̂ = 2.66± 0.10, b̂ = 2.05± 0.51,
cov (m, b) = −0.10 =⇒ ρ = −0.94, quite anti-correlated

We calculated the covariance matrix analytically, but note that we
could have used a fitter with a quadratic approximation, or noted that

∆χ2 = −2∆ lnL
∴ ∆χ2 = 1 from minimum =⇒ 1σ contour
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Generalization: Correlated Uncertainties in Data
I So far we have been focusing on the case where uncertainties in

our measurements are completely uncorrelated
I If this is not the case, then we can generalize χ2 to

χ2 =
(
y− ŷ

)>
σ−1 (y− ŷ

)
where σ is the covariance matrix of the data

I If the fit function depends linearly on the parameters,

y(x) =
m

∑
i=1

aifi(x), ŷ = A · a, Aij = fj(xi)

then

χ2 =
(
y− ŷ

)>
σ−1 (y− ŷ

)
=
(
y−A · a

)>
σ−1 (y−A · a

)
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Exact Solution to Linear Least Squares

I This is the case of linear least squares; the LS estimators of the {ai}
are unbiased, efficient, and can be solved analytically

I The general solution:

χ2 =
(
y−A · a

)>
σ−1 (y−A · a

)
a = (A>σ−1A)−1A>σ−1 · y

cov (âi, âj) = (A>σ−1A)−1

I In practice one still minimizes numerically, because the matrix
inversions in the analytical solution can be computationally
expensive and numerically unstable

I Nice property: if uncertainties are Gaussian and the fit function is
linear in the m parameters, then χ2 ∼ χ2

N−m. But often these
assumptions are broken, e.g., when using binned data with low
counts

Segev BenZvi (UR) PHY 403 27 / 32



Nonlinear Least Squares

I If y(x) is nonlinear in the parameters, we
can try to approximate χ2 as quadratic
and use Newton’s Method:

an+1 = an − [H(an)]
−1∇χ2(an)

I But, this could be a poor approximation
to the function, so we could also try to
use steepest descent:

an+1 = an − γn∇χ2(an)

I Levenberg-Marquardt Algorithm: use
steepest descent far from the minimum,
then switch to using the Hessian [2].
Basis of scipy.optimize.curve_fit
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χ2 and Goodness of Fit

I Because χ2 ∼ χ2
N−m if several conditions are satisfied, it can be

used to estimate the goodness of fit
I Basic idea: the outcome of Linear Least Squares is the value χ2

min.
Goodness of fit comes from calculating the p-value

p(χ2 ≥ χ2
min|N, m)

I This tail probability tells us how unlikely it is to have observed
our data given the model and its best fit parameters

I Recall the warning about p-values: they are biased against the null
hypothesis that the model is correct, and can lead you to
spuriously reject a model

I The 5σ rule applies, because we’re not dealing with a proper
posterior PDF
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ML and Goodness of Fit

I The ML technique does not provide a similar goodness of fit
parameter because there is no standard reference distribution to
compare to

I Suggested approach: estimate paramaters with ML, but calculate
goodness of fit by binning the data and using χ2

I Note: be careful about assuming that your χ2 statistic actually
follows a χ2 distribution. Remember that this is true only for
linear models with Gaussian uncertainties

I This isn’t the 1920s. Use simulation to model the distribution of
your χ2 statistic and calculate p-values from that distribution
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Summary

I The maximum likelihood (ML) method and the least squares (LS)
method are very popular techniques for parameter estimation and
are easy to implement

I Generally it’s better to use the ML technique if you have the PDFs
of the measurements. Your estimators will be biased though it’s
not an issue in the large N limit

I If your problem is linear in the parameters and you have Gaussian
uncertainties, you can use LS. Advantage: closed form solutions
and a measure of the goodness of fit

I Uncertainties on estimators:

Error ∆ lnL ∆χ2

1σ 0.5 1
2σ 2 4
3σ 4.5 9
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