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Maximum Likelihood Technique
» The method of maximum likelihood is an extremely important
technique used in frequentist statistics

» There is no mystery to it. Here is the connection to the Bayesian
view: given parameters x and data D, Bayes’ Theorem tells us that

p(x|D,I) < p(Dlx, 1) p(x|I)

where we ignore the marginal evidence p(D|I)
» Suppose p(x|I) = constant for all x. Then

p(*D,I) e p(Dlx,I)
and the best estimator % is simply the value that maximizes the
likelihood p(Dl|x,I)
» So the method of maximum likelihood for a frequentist is

equivalent to maximizing the posterior p(x|D,I) with uniform
priors on the {x;}.
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Frequentist Notation

Maximum Likelihood Estimators

» Just to avoid confusion: in Cowan’s book, the likelihood is written

using the notation
L(x]6)

where x are the data and 0 are the parameters

» Don’t get thrown off. This is still equivalent to a Bayesian
likelihood:
L(x6) p(6)

PO = Tdor cxlo) p(o)

» I don’t love the notation because it obscures the fact that £ is a
PDF, which we use to get best estimators with the tricks
introduced in earlier classes. When needed, we’ll denote it as £
because L is used in Sivia for the logarithm of the posterior PDF

» In everyday applications, you will maximize In £, or minimize
—Inl

Segev BenZvi (UR)

4/32



ML Estimator: Exponential PDF

Example

Consider N data points distributed according to the exponential PDF
p(t|t) = e7/T /7. The log-likelihood function is

N .
Inp(Di|t) =InL =-)_ (1nT—|— f—;)

i=1

Maximizing with respect to T gives
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It’s also easy to show that

E(f) =t = 1 isunbiased
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Properties of ML Estimators

» ML estimators are usually consistent @ —0)
» ML estimators are usually biased (b = E (8) — 8 # 0)
» ML estimators are invariant under parameter transformations:

£(6) = £(6)
Example

Working with A = 1/7 in the exponential distribution, it’s easy to
show that A = 1/7 [1].

» Due to sum of terms in In £, it tends toward a Gaussian by the
Central Limit Theorem, so
-1
)

> 9?In L
o=\
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Minimum Variance Bound
Rao-Cramér-Frechet Inequality

Given £ you can also put a lower bound on the variance of a ML

estimator: X
A ob ZInL
> — N
Var(G)_(l—FaG) /E[ 52 ]

For the exponential distribution,

N (1-2), b=
+ T T

and so we can prove that 7 is efficient (variance is at the lower bound):

Example

vr
oT2

var (1) > E (—g(l —2%/'())_1 = (_%(1 _2E(f)/T))_1 _ Tﬁz

v
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Variance of ML Estimators

» We can express the variance of ML estimators using the same
tricks we applied to the posterior PDF: expand In £ in a Taylor
series about 0:

(6 - 0)?
2(73
S InL(O£0y) =In Lonax — 1

InL£(0) ~ In Lax —

» In other words, a change in 6 by one standard deviation from 8
leads to a decrease in In £ by 1/2 from its maximum value

» The definition AIn £ = 1/2 is often taken as the definition of
statistical uncertainty on a parameter

» Strictly speaking this is only correct in the Gaussian limit, but it
can often be a nice, reasonably accurate shortcut

Segev BenZvi (UR) 8/32



Variance of ML Estimators
Realization of Exponential Data

Example

Generating 50 {t;} according to an exponential distribution with 7 = 1:

—47
_48] T=B0%o 4 Aty
= AlnL =05
-
=49
U
5
—501
51— : ‘ : ‘
3.0 06 0.8 1.0 1.2 14

Using the criterion Aln £ = 0.5 we find ¥ = 0.967) ]
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Variance of ML Estimators
More Data

Adding more data narrows the distribution of £, as you would expect
for any PDF

— N=50
0.0 — N =100

0.8 0.9 1.0 1.1
T

The distribution also becomes more symmetric, which you would
expect from the Central Limit Theorem
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Asymmetric Uncertainties

» Because In £ becomes increasingly parabolic with N due to the
Central Limit Theorem, we can define rules of thumb for
estimating variances on parameters:

(0—9)°

InL£(0) ~ In Lax — 2(75

Range AInL
lo  1/2-(1)>=05
20 1/2-(2)2=2
3¢ 1/2-(3)>=45

» This is done even when the likelihood isn’t parabolic, producing
asymmetric error bars (as we saw)

» Justification: you can reparameterize 6 such that In £ is parabolic,
which is OK because of the invariance of the ML estimator under
transformations
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Other Approaches to Calculate Variance

» You could use £ to estimate a central confidence interval on 6:
find the 16" and 84" percentiles

» Monte Carlo Method: generate many random realizations of the
data, maximize In £ for each, and study the distribution of 0:

600

count

0.6 0.8 1.0 1.2 14 1.6
t

» From 10,000 realizations of the exponential data set, the
distribution of ML estimators T gives T = 0.99f81%g. Not bad...
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ML Technique with > 1 Parameter

» For > 1 parameter:

i 0.10 /\
B cov (x;,x;) =
= 005 / 1
= 5 _
0.00 5 10 15 20 25 30 — %
30.0 i Xi0X; Rk
27.5
250 »s » Use the Aln L trick
25 to get contours for
P m——— &
& 200 S s S 10, 20, etc.
——
17.5 o . .
0 5 » Project ellipse onto
s each axis (i.e.,
10'05 10 15 20 25 30 1000 0.2 0.4 0.6 marglnallze) to gEt
A T opBENLD uncertainties in

each parameter
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ML Technique: Joint Confidence Intervals

Usually we want to calculate a joint likelihood on several parameters
but only produce confidence intervals for individual parameters.
However, if we want confidence ellipses in several parameters jointly,
we need to change the Aln £ rule a bit:

joint parameters

Range p 1 2 3 4 5 6
lo 68.3% | 050 1.15 1.76 236 295 3.52
20 95.4% | 2.00 3.09 4.01 485 5.65 6.4
30 99.7% | 450 590 7.10 8.15 9.10 10.05

It’s not very common to calculate things this way; usually we are
interested in the marginal distributions of individual parameters. For
more details on this, see [2].
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Connection to x?

» Suppose our data D are identical independent measurements with
Gaussian uncertainties. Then the likelihood is
N

, p(DIx 1) =] [p(Dilx, 1),

i=1

1 (Fi — Dy)?
D;x,I) = exp | ————
p(Dilx, T) Vo &P [ 2072
where we defined the functional relationship between x and the
ideal (noiseless) data F as

Fi :f(x, l)

» If we define x? as the sum of the squares of the normalized
residuals (F; — D;)/0;, then
N (F. — D;)? 2
X = Z m = p(D|x,I) < exp (_);>
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Maximum Likelihood and Least Squares

v

With a uniform prior on x, the logarithm of the posterior PDF is

2

L =1Inp(x|D,I) = Inp(D|x,I) = constant — %

v

The maximum of the posterior (and likelihood) will occur when
X% is a minimum. Hence, the optimal solution % is called the least
squares estimate

v

Least squares/maximum likelihood is used all the time in data
analysis, but...

v

Note: there is nothing mysterious or even fundamental about this;
least squares is what Bayes” Theorem reduces to if:

1. Your prior on your parameters is uniform
2. The uncertainties on your data are Gaussian
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Maximum Likelihood: Poisson Case

» Suppose that our data aren’t Gaussian, but a set of Poisson counts
n with expectation values v. E.g., we are dealing with binned data
in a histogram. Then the likelihood becomes

nj

—y
1/1- e !

N
p(nlv,D) =TT

-1 il
> In the limit N — large, this becomes
p(ni|v;, I) o< exp [— i —(niz_ Ui)Z]
=1 <V
» The corresponding x? statistic is given by
(7’11' — Vi )2

Vi

X =

o

Il
—_

1
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Pearson’s x? Test

» The quantity
)2

i=1 Vi
is also known as Pearson’s x statistic

» Pearson’s x test is a standard frequentist method for comparing
histogrammed counts {7;} against a theoretical expectation {v;}

» Convenient property: this test statistic will be asymptotically
distributed like x% regardless of the actual distribution that
generates the relative counts {;}. It is distribution free

» In practice, we can use Pearson’s x? to calculate a p-value
p(XPearson Z X ’N)

» Caveat: the counts in each bin must not be too small; n; > 5 for all
iis a reasonable rule of thumb
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Modified Least Squares

» Sometimes you will encounter a x?
statistic for binned data defined like
this:

X2 = % (ni — fi)?

i1 M

» The variance is no longer the
expected counts (as expected in a
Poisson distribution) but the
observed counts #;. This is called

modified least squares

count

» You don’t really want this, unless you
made mistakes counting n;

» But, statistics packages may use this
statistic when fitting functions to
x binned data
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Robustness of Least Squares Algorithm

» Our definition of x? as the quadrature sum (or /-norm) of the
residuals makes a lot of calculations easy, but it isn’t particularly
robust. Le., it can be affected by outliers

\4

Note: the /{-norm

F,—D;
0-1

li-norm = Z

i=1

is much more robust against outliers in the data

v

This isn’t used too often but if your function f(x) is linear in the
parameters it’s not hard to calculate

v

See chapter 15 of Numerical Recipes in C for an implementation
2]

In Python there should be an implementation in the statsmodels
package [3]

v
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Application: Fitting a Straight Line to Data

Example

Suppose we have N measurements y; with Gaussian uncertainties o;
measured at positions x;.

y=ma+c

Given the straight line model y; = mx; 4+ b, what are the best
estimators of the parameters m and b?
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Minimize the x>

Letting F; = mx; + b and D; = y;, the x? is

) N (mx; +b—y;)2
X = - 2
i—1 oj

Minimizing x? as a function of the parameters gives

a_)ﬁ_%z(mxi—kb—yi)xi and B_)CZZ%Z(mxi—Fb—yi)

= 2
om 7i L i

Defining w; = 2/ O'iz and rewriting this as a matrix equation,
> (A C\ (m _(r) _
VXK= (c 5)\v) \g) ="
A=Y xtw, B=Y w;, C=Y xwi, p=Y xywi, =Y yw;
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Best Estimators of a Linear Function

» Inverting the matrix, we find that

7Bp—Cq and B_L—Cp

M= AB_C2 T AB_C2

» The covariance matrix is found by evaluating 2V V x2] 1

% o\ _, (A Cy__ 2 B —C
o2, of C B AB—-C2\-C A
» We note that even though the data {y;} are independent, the

parameters 7z and b end up anticorrelated due to the off-diagonal
terms in the covariance matrix

» This makes a lot of sense, actually; wiggling the slope of the line m
clearly changes the y-intercept b
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LS Uncertainties
Example LS fit: best estimators /i1 = 2.66 £ 0.10, bh=205+ 0.51,
cov (m,b) = —0.10 = p = —0.94, quite anti-correlated

30 5 .
+ |
25+ 4 :
i
20} + 1 |
3 \
= 15¢ § {1 =
| AP
104
i
1 i
5r 1
0 0 ‘
.
0 2 4 6 8 10 0 1 2 3 4 5

T m

We calculated the covariance matrix analytically, but note that we
could have used a fitter with a quadratic approximation, or noted that

Ax*> = —2AInL

. Ax* =1 from minimum = 1o contour
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Generalization: Correlated Uncertainties in Data

» So far we have been focusing on the case where uncertainties in
our measurements are completely uncorrelated

» If this is not the case, then we can generalize x? to

AN T ~
X=w-9) o' (y—9)
where ¢ is the covariance matrix of the data
» If the fit function depends linearly on the parameters,

m

y(x) =) afi(x), g=A-a, Aj=fix)

i=1

then
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Exact Solution to Linear Least Squares

» This is the case of linear least squares; the LS estimators of the {a;}
are unbiased, efficient, and can be solved analytically

» The general solution:

T _
X=(y-A-a) o (y—A-a)
a=ATecA) ATy
cov (Ezl,ﬁ]) = (ATo'ilA)il
» In practice one still minimizes numerically, because the matrix

inversions in the analytical solution can be computationally
expensive and numerically unstable

» Nice property: if uncertainties are Gaussian and the fit function is
linear in the m parameters, then x* ~ x3%,_,,- But often these
assumptions are broken, e.g., when using binned data with low
counts
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Nonlinear Least Squares

» If y(x) is nonlinear in the parameters, we
can try to approximate x? as quadratic
and use Newton’s Method:

Apy1 = An — [H(an)]_lvxz(an)

» But, this could be a poor approximation
to the function, so we could also try to
use steepest descent:

Apt1 = Ay — 'YnVXZ(un)

» Levenberg-Marquardt Algorithm: use
steepest descent far from the minimum,
then switch to using the Hessian [2].
Basis of scipy.optimize.curve_fit
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x? and Goodness of Fit

» Because 2 ~ X%\,_m if several conditions are satisfied, it can be
used to estimate the goodness of fit

» Basic idea: the outcome of Linear Least Squares is the value x2 . .
Goodness of fit comes from calculating the p-value

P(X* = XhinlN, m)

v

This tail probability tells us how unlikely it is to have observed
our data given the model and its best fit parameters

\4

Recall the warning about p-values: they are biased against the null
hypothesis that the model is correct, and can lead you to
spuriously reject a model

v

The 50 rule applies, because we’re not dealing with a proper
posterior PDF
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ML and Goodness of Fit

v

The ML technique does not provide a similar goodness of fit
parameter because there is no standard reference distribution to
compare to

v

Suggested approach: estimate paramaters with ML, but calculate
goodness of fit by binning the data and using x>

v

Note: be careful about assuming that your x? statistic actually
follows a x? distribution. Remember that this is true only for
linear models with Gaussian uncertainties

This isn’t the 1920s. Use simulation to model the distribution of
your x? statistic and calculate p-values from that distribution

v
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Summary

» The maximum likelihood (ML) method and the least squares (LS)
method are very popular techniques for parameter estimation and
are easy to implement

» Generally it’s better to use the ML technique if you have the PDFs
of the measurements. Your estimators will be biased though it’s
not an issue in the large N limit

» If your problem is linear in the parameters and you have Gaussian
uncertainties, you can use LS. Advantage: closed form solutions
and a measure of the goodness of fit

» Uncertainties on estimators:

Error | AInL  Ax?
1o 0.5 1
20 2 4
30 4.5 9
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