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Statistical Uncertainties

Frequentist: how much would a result fluctuate upon repetition of the
measurement? Implies some knowledge/assumptions about PDFs...

Example
We count photons→ Poisson distribution. For N = 150,
N±
√

N ≈ 150± 12. Note: we assumed N̂ = N.

Example
Time from a digital clock→ Uniform distribution. E.g., t = 23 s with
1 s resolution, var (t) = (b− a)2/12 = 1/12, so t = 23± 0.3 s

Example
Efficiency of a detector→ Binomial distribution. Record 45 out of 60
particles: ε̂ = 45/60 = 0.75, var (ε̂) = ε(1− ε)/N, so ε = 0.75± 0.06
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Statistical vs. Systematic Uncertainties

So what is a systematic uncertainty?
I “Systematic error: reproducible inaccuracy introduced by faulty

equipment, calibration, or technique.” [1]
I Who agrees with this?

I A neglected effect is a mistake, not an uncertainty [2]
I Some confusion is caused by the term systematic error, because an

“error” in common language means a mistake (implying fault or
incompetence), while we mean an uncertainty

Systematic effects is a general category which includes effects such
as background, selection bias, scanning efficiency, energy
resolution, angle resolution, variation of counter efficiency with
beam position and energy, dead time, etc. [3]

Usually expressed in form like this A = 10.2± 1.2 (stat)± 2.3 (sys)
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Estimating Systematics using Data

Lengths measured by two metal
rulers at different temperatures [4]

I It’s common to think of a
systematic as something that
affects all of your data equally, but
this need not be the case

I Recall the example of two
thermally expanding rulers from
Cowan [4]:

yi = Li + ci(T− T0)

I The intersection of two lines from
the data indicate a systematic
offset in temperature ∆T

I This offset will affect different
parts of the data in different ways
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Parameter and “Theory” Uncertainties

I When we repeat a
measurement with a
systematic we expect to get the
same result each time

I If the uncertainty is due to
measured parameters or
theory, then try to improve
those measurements and
calculations

I Example: Higgs partial widths
and % errors due to αs, mb, mc,
mt, theoretical uncertainties [5]

I Improve by going to higher
order in perturbative QCD,
reduce spacing in lattice QCD
simulations, etc.
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The Bayesian Viewpoint
In the Bayesian framework, since uncertainties reflect degree of belief
rather than just the spread of repeat measurements, it’s
straightforward to incorporate a “parameter uncertainty”:

Example
Calculate distance to a galaxy given recession velocity v, with
uncertainties in H0. Must select a prior on H0 (uniform, Gaussian, . . .):
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Systematic Uncertainties and Bias

We defined bias earlier in the course and
equated it with systematic uncertainty. This is
true in the case where we know there is a bias
but its exact size is unknown. But there are
other possibilities:

1. Bias is known, with known size; so we
correct for it. Not a systematic

2. Bias is known, but exact size is
unknown. This is a systematic
uncertainty

3. Bias is unknown and unsuspected.
Nothing to be done.

E.g., have measured lengths from an
expanding steel ruler but don’t know T when
data were taken.

“Known knowns, known
unknowns, and un-
known unknowns. . .”
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Handling the Unknown Unknowns

What makes systematic uncertainties scary:
I If you are unaware of a systematic effect

in your data, you can get internally
consistent results with an impressive χ2

goodness-of-fit and still be completely
wrong

I Barlow on systematics: “You never know
whether you have got them and can
never be sure that you have not – like an
insidious disease.” [6]

I The best scientists seem to have a sixth
sense for picking out systematic effects
and estimating their importance. There is
an element of black magic to it...
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Identifying Systematic Effects

If you’re not a wizard, don’t despair! Here are some things people do
to try to catch systematic effects [2]:

I Split the data into subsets and analyze them separately
I Vary cuts, bin sizes, etc. and explore the effect on the results
I Change parameterizations or fit techniques
I Perform independent analyses and check differences in outcomes

With experience you can learn how to identify and reduce systematic
effects using these techniques

Remember, this is not a recipe. We must account for systematics if we
want to publish believable deviations from expectations... but your
time and resources are finite, so it’s also important to understand
when to cut your losses
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Redundancy in Analysis
If you can afford it, build two independent experiments
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Systematics-Dominated Measurements
Test of the weak equivalence principle using a torsion balance [7]

Also able to test for scaler or vector charge Yukawa couplings of the
form

V(r) ∝ α̃
q̃iq̃A

r
exp−r/λ
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Consider a Variety of Systematic Effects
I The error budget of a torsion balance experiment [7]:

I Careful planning to eliminate sidereal (daily) modulations due to
Earth’s rotation, temperature and pressure cycles, etc.

I Measured effect of magnetic gradients on the device by attaching
a permanent magnet onto the outside of the balance vacuum
vessel

I Measured effect of 15 K m−1 temperature gradients by placing
heated and cooled copper plates next to the balance

I Estimated effect of gravity gradients due to the sun, Galactic
Center, Galactic dark matter halo, etc.
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Finding an Anomaly

The Holmdel Horn Antenna was built by Bell Labs for Project Echo, a
passive radio communications project in the early 1960s

A. Penzias and R. Wilson decided in 1963 to use the horn as an
astronomical receiver and they began to observe Cas A, a radio-bright
Galactic supernova remnant
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Source of Excess Antenna Temperature
Problem: antenna temperature (noise) was 6.7 K, or 3.5 K higher than
expected. After waiting months for the problem to go away [8], Wilson
and Penzias begin investigating systematic effects:

I Pigeon poop: Nesting pigeons “removed” from the horn
I Seams in telescope assembly could change its characteristics;

sealed with aluminum tape and conducting glue
I Ambient noise. Pointed telescope at New York City, no major

change in radio background
I Atmosphere: 2.3± 0.3 K from atmospheric absorption (expected)
I Instrumental: 0.9± 0.4 K due to ohmic losses and backlobe

response
I Nuclear fallout. Radiation from a 1962 high-altitude nuclear test

was considered, but noise should have decreased over time

Ultimate conclusion: unpolarized, isotropic, steady-state 3.5± 1.0 K
astrophysical noise floor [9] connected to the Big Bang [10]
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Techniques for Dealing with Systematic Effects
These cases illustrate some best practices in the design and conduct of
experiments:

I Try to anticipate systematic effects on a measurement before
taking data and design the experiment to minimize them

Example
If you know that there is a temperature-dependent component to your
measurement (e.g., measuring length with a steel ruler), calibrate the
ruler and record T for each measurement of length

I When taking data, evaluate the effects of cuts, binning, and other
choices in the analysis. Vary your conditions.

Example
Was radio background from New York City interfering with the
Holmdel antenna? Checked by taking data “on source” and “off
source.”

Segev BenZvi (UR) PHY 403 15 / 24



Techniques for Dealing with Systematic Effects
Suppose you design a check and it fails, whatever that means. What
do you do? From Barlow [2] (verbatim):

1. Check the test. A mistake may lie there. Find it and fix it.
2. If that doesn’t work, check the analysis for mistakes.
3. Worry. Maybe with hindsight an effect is reasonable. (Why are the

results of my ruler measurements different after lunch? Oh right,
it’s warmer in the afternoon.) This check now becomes an
evaluation.

4. Worry. This discrepancy is only the tip of the iceberg. Ask
colleagues, look at what other experiments did.

5. As a last resort, incorporate the discrepancy into a systematic
uncertainty.

Note how the quantification of an uncertainty is the last resort. What
you don’t want to do is just slap a huge error bar on the result in the
name of being “conservative.” Why not?
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Case Study: Fitting an Inappropriate Function
Example
Suppose you have a calorimeter that gives you a signal s, which is
related to energy by E = s + 0.3s2 [2].

0.0 0.2 0.4 0.6 0.8 1.0
s

0.00

0.25

0.50

0.75

1.00

1.25
E

a = −0.06± 0.03
b = 1.29± 0.02

You take data and fit a straight line E = a + b · s, and use the values â
and b̂ in your analysis.
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Case Study: Fitting an Inappropriate Function
I You find that χ2 = 29.08 with 8 degrees of freedom, which is large

but not unreasonable. (What is the approximate p-value?)
I So you stick with the linear fit, but as a check you calibrate (i.e.,

fit) the subranges 0 ≤ s ≤ 0.5 and 0.5 < s ≤ 1 separately:

0.0 0.2 0.4 0.6 0.8 1.0
s

0.00

0.25

0.50

0.75

1.00

1.25

E

linear fit
linear fit (s ≤ 0.5)
linear fit (s > 0.5)

I Result: the slopes are 1.15± 0.03 and 1.56± 0.06, definitely not
agreeing within statistical uncertainties.
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Case Study: Fitting an Inappropriate Function

I You follow the procedure for dealing with systematic effects
(check, re-check, worry) but fail to spot that the linear calibration
is itself inadequate.

I Result: you incorporate a systematic uncertainty of 1.56− 1.29
and 1.29− 1.15 into the slope b, reporting

b = 1.29± 0.02+0.27
−0.14.

Is this reasonable?

I In the region 0 ≤ s ≤ 1 this systematic uncertainty seriously
overstates the error.

I Look again at the fit. The slope 1.29 is a pretty reasonable
description of the data
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Case Study: Fitting an Inappropriate Function
I What happens if the “calibration” of E(s) is extrapolated to s = 5?

0 1 2 3 4 5
s

0
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8
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14

E

linear fit
linear fit (s ≤ 0.5)
linear fit (s > 0.5)

I The linear extrapolation is clearly no good, and the systematic
uncertainty is worthless for describing the calibration offset

I Lesson: there is no correct procedure for incorporating a check
that fails, but folding it into the systematics is probably wrong and
should be avoided unless there is no alternative
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An Example of “No Alternative”
The error budget for energy scale in an atmospheric calorimeter [11]:

Source Uncertainty
Fluor. Yield Y 14%
p, T, e Effects on Y 7%
Calibration 9.5%
Atmosphere 4%
Reconstruction 10%
Invisible Energy 4%
Total 22%

Reconstruction: differences
between two reconstruction
methods that couldn’t be
reconciled at the time of
publication. Note quadrature sum
of uncertainties.
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Summary
I Systematic uncertainties are a frequentist concept; for a Bayesian,

there is no distinction and all such uncertainties can be dealt with
using marginalization

I Still, it’s useful to break out uncertainties into statistical and
systematic components, as this (usually) makes clear which part
of the error bar depends on how much data we took

I When conducting an experiment, one tries to identify systematic
effects before, during, and after data-taking.

I There is no recipe for doing this right but there are some “best
practices” that good researchers try to follow

I After all efforts have been made to eliminate systematic effects,
the remaining uncertainties become systematic uncertainties.

I It is important not to inflate systematics, but in the real world,
sometimes you do have to cut your losses and go with a
reasonable uncertainty
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