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Posterior Odds Ratio

I In model selection, we choose between two models or hypotheses
using the ratio of posterior PDFs

posterior ratio = OAB =
p(A|D, I)
p(B|D, I)

=
P(D|A, I)
P(D|B, I)

× P(A|I)
P(B|I)

I Criteria for making a decision about which model to favor, due to
Jeffreys [1]

OAB Strength of Evidence
< 1 : 1 negative (supports B)

1 : 1 to 3 : 1 barely worth mentioning
3 : 1 to 10 : 1 substantial support for A

10 : 1 to 30 : 1 strong support for A
30 : 1 to 100 : 1 very strong support for A

> 100 : 1 decisive evidence for A
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Comments

I It is common to set P(A|I) = P(B|I) and evaluate OAB using the
Bayes Factor only

I OAB can be thought of as the ratio of the likelihoods, averaged
over the parameter space allowed by the models.

I There should be a cost to averaging over a larger parameter space
(Ockham factor) due to the “look elsewhere”/“many outcomes”
effect.

I A nonintuitive result: if the width of one likelihood is larger than
another, with all other things equal, the broader/less peaky
likelihood is favored in model selection

I Interpretation: more parameter values are consistent with the
hypothesis for the broader likelihood

I Note that this is the opposite of what we are used to in parameter
estimation, where a narrow likelihood is “better”
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Hypothesis Testing in Classical Statistics
Type I Errors
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I Construct a test statistic t and
use its value to decide whether
to accept or reject a hypothesis

I The statistic t is basically a
summary of the data given the
hypothesis we want to test

I Define a cut value tcut and use
that to accept or reject the
hypothesis H0 depending on
the value of t measured in data

I Type I Error: reject H0 even
though it is true with tail
probability α (shown in gray)
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Hypothesis Testing in Classical Statistics
Type II Errors
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I You can also specify an
alternative hypothesis H1 and
use t to test if it’s true

I Type II Error: accept H0 even
though it is false and H1 is
true. This tail probability β is
shown in pink

α =
∫ ∞

tcut

p(t|H0) dt

β =
∫ tcut

−∞
p(t|H1) dt
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Statistical Significance and Power

I As you can see there is some tension between α and β. Increasing
tcut will increase β and reduce α, and vice-versa

I Significance: α gives the significance of a test. When α is small we
disfavor H0, known as the null hypothesis

I Power: 1− β is called the power of a test. A powerful test has a
small chance of wrongly accepting H0

Example
It’s useful to think of the null hypothesis H0 as a less interesting
default/status quo result (your data contain only background) and H1
as a potential discovery (your data contain signal). A good test will
have high significance and high power, since this means a low chance
of incorrectly claiming a discovery and a low chance of missing an
important discovery.
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The Neyman-Pearson Lemma

The Neyman-Pearson Lemma is used to balance signifance and power.
It states that the acceptance region giving the highest power (and
hence the highest signal “purity”) for a given significance level α (or
selection efficiency 1− α) is the region of t-space such that

Λ(t) =
p(t|H0)

p(t|H1)
> c

Here Λ(t) is the likelihood ratio of the test statistic t under the two
hypotheses H0 and H1. The constant c is determined by α. Note that t
can be multidimensional.

In practice, one often estimates the distribution of Λ(t) using Monte
Carlo by generating t according to H0 and H1. Then use the
distribution to determine the cut c that will give you the desired
significance α.
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Hypothesis Testing in Classical Statistics: χ2 p-Value
I We have already seen a bit of model selection when discussing the

goodness of fit provided by the χ2 statistic
I If a model is correct, and the data are subject to Gaussian noise,

then we expect χ2 ≈ N. Deviations from the expectation by more
than a few times

√
2N would be surprising

I So, should we reject a hypothesis if χ2 is too “extreme?”
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Guidelines for Using a χ2 Test Statistic

Recall that for a set of measurements yi(xi), our test statistic

χ2 =
N

∑
i=1

(yi − f (xi))
2

σ2
i

is asymptotically distributed like χ2
N. When comparing our test

statistic with its expected value, there are three possibilities:

1. χ2 � N (or χ2/N � 1): probably the σi are overestimated, i.e.,
you’re using the wrong PDF for your measurements

2. χ2 ≈ N (or χ2/N ≈ 1): model f (x) is reasonable
3. χ2 � N (or χ2/N � 1): data are unlikely to be a fluctuation of the

model f (x), or, the σi are underestimated
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Shape of the χ2 Distribution
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Hypothesis Testing in Classical Statistics

I When we calculate a χ2 probability, we are calculating a one-sided
p-value: ∫ ∞

χ2
obs

p(χ2|N, H0, I) dχ2

I There is an assumption baked into this p-value; it assumes that H0
is true by definition

I To test a theory, we need the posterior probability p(H0|D, I), not
p(D|H0, I). So we are missing p(H0|I) and p(D|I)

I While rejecting H0 on the basis of a small p-value can be done, it’s
risky because we are only testing the probability that the data
fluctuated away from the predictions of the model H0, not the
probability that H0 is correct given the data

I Consquence: using a p-value can overstate the evidence against
H0, leading to a Type-I error – the rejection of H0 when it is true
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Guidelines about Using p-Values
I A decent rule of thumb: if you calculate a p-value, the

corresponding posterior probability p(H0|D, I) of the hypothesis
H0 is 10 times larger

I A p-value of 1% does not mean that in 1% of your experiments
you will see a fluctuation at least that large unless the hypothesis
H0 is true

I p-values can be approximately calibrated to provide a reliable
Type I error rate [2]

α(p) =
1

1 + (−e p ln p)−1

I This weakness of p-values is part of the reason that we have
developed the 5σ discovery rule in physics

I The other reason is “hidden trials,” an insidious form of the
look-elsewhere effect that is difficult to avoid. We will discuss this
later in the course
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Comparing Two Simple Hypotheses (NP Test)
I A “simple” model is one in which the model parameter θ is fixed

to some value; i.e., there are no unknown parameters to estimate
I In comparing two simple models, the null and alternative

hypotheses can be written

H0 : θ = θ0

H1 : θ = θ1

I The likelihood ratio is

Λ(t) =
p(t|θ0)

p(t|θ1)
,

and the decision rule for the test is at significance level α is

Λ > c : do not reject H0

Λ < c : reject H0

Λ = c : reject H0 with probability q,
where α = q · p(Λ = c|H0) + p(Λ < c|H0)
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Comparing Two Composite Hypotheses (NP Test)

I A “composite” hypothesis is one in which the parameter θ is part
of a subset Θ0 of a larger parameter space Θ:

H0 : θ ∈ Θ0

H1 : θ ∈ Θ

I The likelihood ratio is

Λ(t) =
sup {p(t|θ) : θ ∈ Θ0}
sup {p(t|θ) : θ ∈ Θ} ,

where sup refers to the supremum function, also known as the
least upper bound. The numerator is the max likelihood under
H0, and the denominator is the max likelihood under H1

I The Neyman-Pearson lemma states that this likelihood ratio test is
the most powerful of all tests of level α for rejecting H0
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Wilks’ Theorem

I If H0 is true and is a subspace of the larger parameter space
represented by H1, then as N → ∞, the statistic

−2 ln Λ

will be distributed as a χ2 with the number of degrees of freedom
equal to the difference in dimensionality of Θ0 and Θ [3]

I This is what we call a nested model, and it shows up all the time

Example
Nested model of constant and line:

H0 : the data are described y = a
H1 : the data are described by y = a + bx
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Likelihood Ratio Test: Example
Example
You flip a coin N = 1000 times and get heads n = 550 times. Is it fair?

H0 : p = 0.5
H1 : p ∈ [0, 1]

Λ =
L(n, N|p, H0)

L(n, N|p, H1)

lnL = n ln p + (N− n) ln (1− p)

Under H1 the maximum likelihood estimate is p̂ = 0.55, so

−2 ln Λ = −2(lnL0 − lnL1)

= −2(550 ln 0.5 + 450 ln 0.5− 550 ln 0.55− 450 ln 0.55)
= 10.02

∴ p(χ2 > 10.02|N = 1) = 0.17%
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∆χ2 and the Likelihood Ratio Test
If you have χ2 from nested model fits, you can use ∆χ2 instead of
−2∆ lnL as long as the conditions of Wilks’ Theorem apply.
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Example: simulated linear data with linear and quadratic fits. The
distribution ∆χ2 has a mean of ∼ 1 and a variance of ∼ 2, as expected.
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Extraterrestrial Neutrino Spectra

Sources of neutrinos at
Earth [4]:

I Cosmic ν
background

I Solar neutrinos
I Atmospheric ν’s
I Astrophysical ν’s

Most analyses can’t tell
apart one kind of ν from
another, but the energy
spectra differ. So on a
statistical basis we can
discriminate
populations
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“Traditional” Neutrino Detection

I Muons from cosmic rays are a large source of background in
IceCube

I Put detectors underground/ice/sea to reduce muon counts
I Look in the Northern Hemisphere, where cosmic rays are blocked

(but atmospheric ν’s from air showers are not)
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All-Sky Searches for ν Point Sources in IceCube

I Compare the ratio of likelihoods for observing ns signal events to
observing background only (ns = 0) as a function of position x on
the sky:

pi(xj, ns) =
ns

N
Si(xj) +

N− ns

N
Bi(xj)

I The likelihood function is the product of all events

L(ns) = ∏ pi(xj, ns)

I The test statistic is the log-likelihood ratio

2 ln Λ = 2 ln
L(n̂s)

L(ns = 0)

Ignore the trivial sign flip; it’s still the usual definition
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IceCube Signal and Background PDFs
Si(xj) and Bi(xj) depend on the energy and sky position of the ith

neutrino:

Si =
1

2πσ2
i

e−r2
i /2σ2

i p(Ei|α), Bi = Bzen patm(Ei)

The index α of the source spectrum E−α is a nuisance parameter
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IceCube Skymap
The all-sky search calculates the likelihood ratio at each position on the
sky. (For this analysis, only data from the Northern Hemisphere were
used.)

The goal is to look for hotspots, or areas of the sky where the signal
PDFs from many ν candidates appear to produce a significant excess
in ln Λ

In this particular map, the maximum value of ln Λ = 13.4, which
corresponds to a 4.8σ excess above background
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Correction for Look-Elsewhere Effects
There is a big look-elsewhere effect in the significance because the
analysis included a scan for hotspots over the full sky

Correction: simulate 104 background-only skymaps and count the
number with ln Λmax > 13.4. Result: p = 1.3%, or 2.2σ
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Major Improvement: Contained Event Search

I Define the outer shell of the detector to
be an atmospheric µ veto layer

I Effective detection volume reduced, but
atmospheric ν’s strongly suppressed
above Eν = 100 TeV [5]
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Skymap of Astrophysical Neutrino Sources

Skymap of astrophysical ν arrival directions shows some “hotspots”

For now, the value of −2 ln Λ is consistent with random clustering [5]
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Summary

I Wilks’ Theorem: if H0 is a subset of H1, the log-likelihood ratio

−2 ln Λ(t) = −2 ln
L(t|H0)

L(t|H1)

is distributed like a χ2 with the number of degrees of freedom
equal to the difference in the dimensionality between H0 and H1

I The conditions under which Wilks’ Theorem hold may not apply
to your data. In this case, just produce Monte Carlo to determine
the distribution of −2 ln Λ

I Consider a Bayesian analysis, especially if you want to
incorporate prior information

I Lesson from IceCube: analysis techniques are nice for background
suppression, but nothing beats a good experimental design that
eliminates sources of background from the start
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