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Motivation

I One of the most common tasks
in physics is the publication of
spectra, by which we mean a
binned histogram showing the
distribution of events in some
observable quantity

I Example: diphoton mass
spectrum mγγ from CMS [1]
showing the Higgs resonance

I Problem: spectra are often
smeared and distorted by the
finite resolution and
thresholds of your instruments

I Unfolding is used to fix these
distortions
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Example: A Bin-Dependent Instrumental Response
Suppose we have a “true” spectrum given by the histogram on the left
[2]

The center plot shows instrument efficiency as a function of bin. E.g.,
the instrumental efficiency decreases as a function of the parameter y

The right plot shows the measured spectrum (dashed) and expectation
from Monte Carlo (solid) showing distortion in the counts
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Unfolding in 2D
I Note that this problem also applies to 2D data such as binned

images

I We can try to deconvolve smearing and blur from an image [3]
I What’s required is some model of the smearing effect. By

“smearing” we refer to an effect that results in an event being
classified or reconstructed in the wrong bin
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Forward Folding and Unfolding

Smeared data can be analyzed in a couple of ways:

1. Forward Folding: take a theoretical spectrum, smear it, and then
compare the result to the data. The best fit gives you the true
spectrum

2. Unfolding: take an observation which has smearing and other
detector effects and try to deconvolve those effects

Forward folding is considerably easier than unfolding, so when
possible it’s best to do that. This is most appropriate when you just
want to compare data from one experiment to a theoretical prediction

However, sometimes it is necessary to unfold your data. For example,
if you want to compare spectra across several experiments, you need
to remove the instrument response function to make unambiguous
comparisons
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Unfolding Formalism
Define the following terms (following the notation of [4]):

I Truth: a “truth” spectrum T = (T1, T2, . . . , TNt) represents the
binned counts that would be observed without smearing

I Truth spectra are usually estimated with Monte Carlo. Let the true
counts be T̂ and the Monte Carlo truth be T̃. Ideally, T̃ = T̂

I Reco: a “reco” spectrum R = (R1, R2, . . . , RNr) is the number of
events expected to be reconstructed in a bin

I Data: a “data” spectrum D = (D1, D2, . . . , DNd) is the number of
events observed in a bin after smearing. We expect D to follow a
Poisson distribution with mean R

I Migration matrix: a matrixMtr defined by the joint PDF p(t, r) of
an event being produced in true bin t and reconstructed in bin r

I Response matrix: a matrix Ptr defined by the conditional
probability p(r|t)
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The Unfolding Problem
I Fundamentally, the unfolding problem requires us to calculate

p(T|D,M) ∝ L (D|T,M) π(T,M)

I If the data follow a Poisson distribution, then

L (D|T,M) =
Nr

∏
r=1

RDr
r

Dr!
e−Rr

where the reconstructed counts are related to the true counts by

Rr =
Nt

∑
t=1

Tt · p(r|t)

I Recalling that p(r|t) is the probability of reconstructing an event in
bin r given that is should have been in bin t before smearing, we
have

p(r|t) = p(t, r)
p(t)

=
Mtr

ε−1
t ∑Nr

k=1Mtk
, εt =

∑Nr
r=1Mtr

p(t)
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Accounting for the Presence of Background
I It is typical for the data to be contaminated by sources of

background
I Example: in gamma-ray experiments, the cosmic-ray background

reduction efficiency is typically 99.9%, but since the cosmic-ray
flux is 1000× larger than the gamma-ray flux, the resulting
signal/noise ratio is 1:1

I We can account for background by adding it to the expectation of
the reconstructed counts:

Rr = Br +
Nt

∑
t=1

Tt · p(r|t)

where Br is the number of background events in bin r. In matrix
notation this is written

R = B + P>T
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The Noise Amplification Problem

I Unfolding involves inverting
the migration matrix to go
from observed counts D to
true counts T

I Unfortunately this procedure
tends to amplify noise in the
data

I Right: 3-10% random scatter
in the data is amplified to
> 20% errors in unfolded
counts (from Oser)

I The off-diagonal terms in
P>D may be large, causing
oscillations (zig-zagging) in
the unfolding
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Regularization
I The maximum likelihood estimator (MLE) of T is P>D
I The MLE is the unbiased estimator with the smallest possible

variance. Unfortunately the variance is still huge!
I Solution: introduce a bias into the estimator. The fit is now worse

(w.r.t. the likelihood) but is smoothed by an amount that we
specify

I Introduce a regularization parameter S(T) that increases as T
oscillates, and maximize

L̃(T) = L (D|T) · e−α·S(T)

I Essentially we are defining the prior on T as

π(T) = e−α·S(T)

If the prior is constant then p(T|D) may be too wide, so different
T’s are equally likely. So we penalize certain solutions with S(T)
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Tikhonov Regularization

I There is freedom to define α and the regularization function,
which determines the smoothness of the unfolded counts

I Tikhonov regularization is a common approach for defining
smoothing functions. We define

S(f ) = −
∫

dx
(

dkf
dxk

)2

where k represents the kth-order derivative of f and f is the
deconvolved distribution

I Common approach: set k = 2, which penalizes curvature in f
(nonzero second derivatives)

I If we don’t want to just favor linear functions of f we can use
higher-order derivatives, or some linear combination of derivaties
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Tikhonov Regularization
I In a binned spectrum, if we want to penalize the curvature

between bins, we would write

S(T) =
Nt−1

∑
t=2

(∆t+1,t − ∆t,t−1)
2

where
∆t1,t2 = Tt1 − Tt2

I One can also try to penalize variations in the first derivative and
account for varying bin sizes:

S(T) =
Nt−1

∑
t=2

|δt+1,t − δt,t−1|
|δt+1,t + δt,t−1|

where δt1,t2 is related to the bin width wt and bin center ct by

δt1,t2 =
Tt1 /wt1 − Tt2 /wt2

ct1 − ct2

, wt = mt −mt−1, ct = (mt + mt−1)/2
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Maximum Entropy Regularization
I Without any prior knowledge about the distribution of T in the

bins, a reasonable choice for S is the maximum entropy

S(T) = −
Nt

∑
t=1

Tt

∑ Tt
ln

Tt

∑ Tt

I The maximum entropy distribution is the one that favors the most
“even” spread of counts between the bins, i.e., a flat distribution,
since entropy tends to be maximized when the bin counts are
relatively equal

I If you don’t want a flat distribution, you can try cross-entropy

S(T) = −
Nt

∑
t=1

Tt

∑ Tt
ln

Tt

qt ∑ Tt

where q contains any prior knowledge you may have about the
true distribution. If qi = 1/Nt this reduces back to the entropy
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Regularization using Monte Carlo

I If you really trust your Monte Carlo T̃ you could set your prior to
[4]

π(T) =
Nt

∏
t=1

exp
[
− (Tt − T̃t)2

2(T̃t/α)2

]
I Here the prior is proportional to a multivariate Gaussian with no

correlations between bins
I The effect of the prior is to disfavor T far from T̃
I The free parameter α adjusts the width of the Gaussian. Larger

values of α imply a stricter constraint, forcing the unfolded counts
to match the result of the Monte Carlo
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Choosing a Regularization Parameter
There is no recipe for choosing a regularization parameter, but you can
pick one of several criteria [2, 5]:

1. Minimize the mean squared error (MSE):

MSE =
1

Nt

Nt

∑
t=1

var (Tt) + b̂2
t , b̂t = E (Tt)− Tt

2. Tune α and S so that for each bin

2∆ lnL = 2(lnLmax − lnL) = Nt

3. Tune α and S so that the biases and variances are balanced:

χ2
b =

Nt

∑
t=1

b̂2
t

var (b̂t)
≈ Nt

There is a trade-off between bias and variance that you have to choose
for your application
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Example: Unfolding with Tikhonov Regularization
Unfolded distributions using Tikhonov regularization [2]

The parameter α was tuned using the MSE and χ2
b = Nt
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Example: Unfolding with Maximum Entropy
Regularization
Unfolded distributions using MaxEnt regularization [2]

The parameter α was tuned using the MSE and χ2
b = Nt
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Example: Steeply Falling Spectrum with a Bump
A steeply falling spectrum with a bump, from [4]

The true spectrum has a bump. The Monte Carlo truth does not. The
data are smeared by the bin-to-bin migration matrix shown at right
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MCMC Sampling

The procedure for unfolding is as follows:

I Choose a prior for T
I Sample the Nt-dimensional hypercube using MCMC
I For each bin, find the mode (maximum) of the posterior p(T|D)

It’s good practice to try different smoothing penalties S(T) and
smoothing factors α

Usual caveats about MCMC: only use data after burn-in, and plot the
marginal distributions of T to see if they are unimodal
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Unfolding with a MaxEnt Penalty

The unfolded spectrum is reconstructed using maximum entropy
regularization

S(T) = −
Nt

∑
t=1

Tt

∑ Tt
ln

Tt

∑ Tt

Left: no penalty (α = 0). Middle: α = 103. Right: α = 3× 103.
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Unfolding with a Curvature Penalty

The unfolded spectrum is reconstructed using the curvature penalty

S(T) =
Nt−1

∑
t=2

(∆t+1,t − ∆t,t−1)
2

Left: no penalty (α = 0). Middle: α = 3× 10−4. Right: α = 6× 10−4.
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Unfolding Accounting for Nonuniform Bins

The unfolded spectrum is reconstructed using the penalty

S(T) =
Nt−1

∑
t=2

|δt+1,t − δt,t−1|
|δt+1,t + δt,t−1|

Left: no penalty (α = 0). Middle: α = 10. Right: α = 20.
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Unfolding with Gaussian Regularization

The unfolded spectrum is reconstructed using the prior

π(T) =
Nt

∏
t=1

exp
[
− (Tt − T̃t)2

2(T̃t/α)2

]

Left: no penalty (α = 0). Middle: α = 1. Right: α = 10.
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Example: Steeply Falling Spectrum with an Expected
Bump
A steeply falling spectrum with a bump, from [4]

This time, the bump is expected and included in the MC truth. Is there
any difference in the unfolding?
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Unfolding with a Curvature Penalty
The unfolded spectrum is reconstructed using the curvature penalty

S(T) =
Nt−1

∑
t=2

(∆t+1,t − ∆t,t−1)
2

No real improvement in appearance of the bump w.r.t. case where T̃
did not contain a bump
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Summary

I Unfolding is a technique used to remove instrumental smearing
and efficiency artifacts from a binned spectrum

I After unfolding, the unbiased maximum likelihood estimator
tends to have big variances which show up as zig-zagging
between neighboring bins

I The fix for oscillations is to apply a smoothing function that
penalizes zig-zagging. There is a lot of freedom in how to do this

I There is a trade off between the bias in the estimator and the
variance. You have to decide what is appropriate; there is no
recipe

I Best approach: run a data challenge to see if the kind of effect you
are looking for is washed out by how you unfold

I Cowan suggests several figures of merit for balancing variance
and bias [2, 5] that are good starting points for this kind of analysis
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