
Physics 403
Markov Chain Monte Carlo

Segev BenZvi

Department of Physics and Astronomy
University of Rochester

Reading

I D. MacKey, Information Theory, Inference, and Learning
Algorithms (Cambridge UP, 2003), Ch. 29.
Available as an online PDF

I P. Gregory, Bayesian Logical Data Analysis (Cambridge UP, 2005),
Ch. 12.
Available in POA

Segev BenZvi (UR) PHY 403 2 / 35

Table of Contents

1 Sampling from PDFs in Many Dimensions
Markov Chain Monte Carlo
The Metropolis-Hastings Algorithm

2 Case Study: Sampling from a 1D Distribution
Burn-In
Autocorrelation
Efficiency and Detailed Balance

3 Sampling from a Joint Distribution
Parallel Tempering

Segev BenZvi (UR) PHY 403 3 / 35

Bayesian Calculations in Many Dimensions

I Imagine that we have a probability distribution for a set of
parameters θ given by p(θ|D, I)

I Often we have to marginalize over nuisance parameters ν, where
the {ν} are uninteresting but necessary to complete the
calculation:

p(θ|D, I) =
∫

dν p(θ, ν|D, I)

I If the set {ν} is large this integral can become very expensive
I Recall: we can integrate numerically using Monte Carlo

sampling, but we waste time in regions of low probability

Example

If we spend a fraction 10−1 of our time in a region of high probability
for nuisance parameter, then for m parameters the fraction falls to 10−m

Segev BenZvi (UR) PHY 403 4 / 35

Markov Chain Monte Carlo
I The goal of Markov Chain Monte Carlo (MCMC) algorithms is to

draw samples from the PDF

p(θ, ν|D, I) =
1
Z

p(D|θ, ν, I) p(θ, ν|I)

where Z = p(D|I) is the marginal evidence
I Since Z is independent of θ and ν we usually don’t have to

calculate it... which is good because it’s expensive
I Once the samples produced by MCMC are available, the

expectation value of a function of the model parameters f (x) is

〈f (θ)〉 =
∫

p(θ|D, I) f (θ) dθ ≈ 1
N

N

∑
i=1

f (xi)

I In MCMC, we randomly walk over positions x in the parameter
space and draw samples x(ti) = [θi, νi] from the distribution

Segev BenZvi (UR) PHY 403 5 / 35

Metropolis-Hastings Algorithm

At each point in a Markov chain, x(ti)depends only on the previous
step x(ti−1) according to the transition probability q(x(t + 1)|x(t))

The simplest MCMC algorithm is the Metropolis-Hastings method [1],
which proceeds in two steps:

1. Given x(t) sample a proposal position y from q(y|x(t))
2. Accept this proposal with probability

α(x(t), y) = min (1, r) = min
(

1,
p(y|D, I)

p(x(t)|D, I)
q(x(t)|y)
q(y|x(t))

)
In practice, what you do is:

1. Initialize x(0), set t = 0
2. Sample y from q(y|x(t)) and u ∼ Uniform(0, 1)
3. If u ≤ r then x(t + 1)→ y; otherwise, x(t + 1)→ x(t)

Segev BenZvi (UR) PHY 403 6 / 35

Properties Required of the Markov Chain

The Metropolis-Hastings algorithm samples x with a probability
density that converges to p(x|D, I), called the stationary distribution of
the Markov Chain. For this to occur, the Markov chain must have
these properties:

1. Irreducibility: from all starting points, the Markov Chain must be
able to jump to all states in the target distribution with positive
probability.

2. Aperiodicity: the chain does not oscillate between different states
in a regular, periodic way.

3. Positive Recurrence: if an initial value x0 is sampled from
p(x|D, I), then all subsequent iterates will be distributed according
to p(x|D, I).

Segev BenZvi (UR) PHY 403 7 / 35

Table of Contents

1 Sampling from PDFs in Many Dimensions
Markov Chain Monte Carlo
The Metropolis-Hastings Algorithm

2 Case Study: Sampling from a 1D Distribution
Burn-In
Autocorrelation
Efficiency and Detailed Balance

3 Sampling from a Joint Distribution
Parallel Tempering

Segev BenZvi (UR) PHY 403 8 / 35

Sampling from a Poisson Distribution

Example

Suppose we want to sample from the 1D PDF p(x|D, I) = λxe−λ/x!.
Let’s choose q(y|xt) to be a simple random walk defined by the
uniform distribution [2].

1. Given xt, pick a random number u1 ∼ Uniform(0, 1)
2. If u1 > 0.5:

propose y = xt + 1
otherwise, y = xt − 1

3. Compute the ratio r = p(y|D, I)/p(xt|D, I) = λy−xx!/y!
4. Generate a second random number u2 ∼ Uniform(0, 1).

If u2 ≤ r:
accept xt+1 = y
otherwise, xt+1 = xt

Segev BenZvi (UR) PHY 403 9 / 35

MCMC for a Poisson Distribution
Results from MCMC simulation starting at x0 = 25:

This shows a sequence of the first 1000 samples {xt} from the MCMC
(left) and a histogram of the xt for t > 100. We cut out the first 100
samples to allow the MCMC to “burn in”

Segev BenZvi (UR) PHY 403 10 / 35

The Burn-In Period
The MCMC requires a burn-in period before the transition probability
becomes independent of t. The length of the burn-in depends on the
starting values and proposal distribution

Segev BenZvi (UR) PHY 403 11 / 35

The Autocorrelation Function

I An optimized MCMC should give you a small autocorrelation in
{xt}

I The cross correlation of two time series {xt} and {yt} is

ρxy(h) = E
[
(xt − µx)(yt+h − µy)

]
/(σxt σyt+h)

where h is a lag or shift between the series. The expectation is
calculated in the overlap between the series

I Autocorrelation is the lagged correlation of a series with itself:

ρxx(h) = E [(xt − µx)(xt+h − µx)]/(σxt σxt+h)

=
∑overlap [(xt − x̄)(xt+h − x̄)]√

∑overlap(xt − x̄)2
√

∑overlap(xt+h − x̄)2

Segev BenZvi (UR) PHY 403 12 / 35

The Autocorrelation Function
ACF from the Poisson MCMC
Autocorrelation tells you how much each step in the time series
depends on the value of previous steps:

Segev BenZvi (UR) PHY 403 13 / 35

Autocorrelation Time Constant

I If the transition probability is independent of t then the ACF
should fluctuate around zero. This is what happens after the
burn-in

I During the burn-in, the ACF is roughly exponential in shape,

ρxx(h) ∼ exp
{
− h

τ

}
where τ is called the time constant

I Larger τ means that the MCMC takes longer to converge, so the
goal is to choose a proposal distribution that minimizes τ

I Empirically, you can estimate τ from the data and start using the
data when t is several multiples of τ

I For our Poisson example, τ ≈ 23 samples, so to be safe we’ve
started using the data at t = 4τ ≈ 100

Segev BenZvi (UR) PHY 403 14 / 35

A Note on Implementation
When implementing a calculation, it is always better to use logarithms
rather than actual values to avoid hitting numeric limits:

def poisson(lmda, x):
logp = x*np.log(lmda) - lmda - gammaln(x+1.)
return np.exp(logp)

def mhRatio(lmda, x, y):
logr = (y-x)*np.log(lmda) + gammaln(x+1.) -
gammaln(y+1.)
return np.exp(logr)

If the actual PDF is needed we exponentiate at the end of the
calculation. Note that we used the definition n! = Γ(n + 1) and called
the function scipy.special.gammaln instead of using Stirling’s
approximation ln n! ≈ n ln n− n

Segev BenZvi (UR) PHY 403 15 / 35

Detailed Balance

The Metropolis-Hastings algorithm works because it reaches an
equilibrium state after the burn-in. In particular, the transition
probabilities obey the detailed balance equation, which characterizes a
Markov Chain:

p(xt, xt+1|D, I) = p(xt|D, I) p(xt+1|xt)

= p(xt|D, I) q(xt+1|xt) α(xt, xt+1)

= p(xt|D, I) q(xt+1|xt) min
(

1,
p(xt+1|D, I)
p(xt|D, I)

q(xt|xt+1)

q(xt+1|xt)

)
= min (p(xt|D, I) q(xt+1|xt), p(xt+1|D, I) q(xt|xt+1))

= p(xt+1|D, I) q(xt|xt+1) α(xt+1, xt)

= p(xt+1|D, I) p(xt|xt+1)

Therefore, p(xt+1|xt) p(xt|D, I) = p(xt|xt+1) p(xt+1|D, I); the rate of
transitions xt → xt+1 is the same as the rate of transitions xt+1 → xt

Segev BenZvi (UR) PHY 403 16 / 35

MCMC Efficiency

A number of issues have to be decided when running an MCMC:

1. What is the length of the burn-in period? I.e., when can we start
trusting the data?

2. When do we stop the Markov Chain? I.e., how do we know if
we’ve sufficiently sampled the parameter space?

3. How do we choose a suitable proposal distribution that gives a
reasonable acceptance rate for transitions xt → xt+1?

There is a large literature about optimizing Markov Chain Monte
Carlo, as you might imagine [3]. An MCMC that takes forever to
burn-in or which accepts few transitions isn’t worth much

Current state of the art: affine-invariant samplers [4], which are
implemented in the Python package emcee [5]

Segev BenZvi (UR) PHY 403 17 / 35

MCMC Parallelization

I There are various tricks to speed up
MCMC and ensure that it explores as
much of the parameter space as
possible

I One common approach is to define
multiple chains (or “walkers”) that
have different starting points and
proceed independently

I If the sampled PDF is very peaked or
multimodal, this might still not be
enough to push explore all parts of
the parameter space. We’ll discuss
how to deal with that after the next
example

Segev BenZvi (UR) PHY 403 18 / 35

Table of Contents

1 Sampling from PDFs in Many Dimensions
Markov Chain Monte Carlo
The Metropolis-Hastings Algorithm

2 Case Study: Sampling from a 1D Distribution
Burn-In
Autocorrelation
Efficiency and Detailed Balance

3 Sampling from a Joint Distribution
Parallel Tempering

Segev BenZvi (UR) PHY 403 19 / 35

Sampling from a Joint Posterior
Example

Now consider sampling from a joint distribution p(x1, x2|D, I) in two
parameters x1 and x2. The PDF is the sum of two 2D Gaussians and
has a double-peaked structure [2]:

p(x1, x2|D, I) =
1
2
[N (µ1, Σ1) +N (µ2, Σ2)]

where µ1 = (0, 0), µ2 = (4, 3), and

Σ1 =

(
1 0
0 1

)
Σ2 =

(
2 0.8

0.8 2

)
For the proposal density function q, use a unimodal 2D Gaussian:

q(y|x) = N (µ = x, Σq), Σq =

(
σ2 0
0 σ2

)
Segev BenZvi (UR) PHY 403 20 / 35

Sampling Distribution with σ = 0.1
Start at x0 = (−4.5, 8) with the width of the proposal PDF set to
σ = 0.1.

Notice the long autocorrelation time. Acceptance probability is ∼ 95%

Segev BenZvi (UR) PHY 403 21 / 35

Sampling Distribution with σ = 1

Start at x0 = (−4.5, 8) with the width of the proposal PDF set to σ = 1.

Faster convergence, with acceptance probability ∼ 60%

Segev BenZvi (UR) PHY 403 22 / 35

Sampling Distribution with σ = 10
Start at x0 = (−4.5, 8) with the width of the proposal PDF set to
σ = 10.

Fast convergence, but acceptance probability is now ∼ 5%

Segev BenZvi (UR) PHY 403 23 / 35

Dealing with Multimodal Distributions

I The double-peaked Gaussian example showed that the MCMC
can become stuck in a local mode

I Recall: this is similar to the situation in parameter estimation
when a minimizer gets stuck in a local minimum

I The solution is to create a series of progressively “flatter”
distributions using a temperature parameter T (or β = 1/T). As
T → ∞ and β→ 0, the distribution will flatten and more of the
paramter space can be explored

I Given a posterior

p(x|D, I) ∝ p(x|I) p(D|x, I)

we can construct a flattened distribution using β ∈ [0, 1]:

π(x|D, β, I) = p(x|I) p(D|x, I)β = p(x|I) exp (β ln [p(D|x, I)])

Segev BenZvi (UR) PHY 403 24 / 35

Parallel Tempering

I With π(x|D, β, I), we can use a set of discrete values
β = {1, β2, . . . , βm} in parallel

I Parallel Tempering: multiple copies of the MCMC are run in
parallel, each with a different temperature βi

I As the simulations run, pairs of adjacent simulations on the
temperature ladder are allowed to swap their parameter states
with probability

r = min
{

1,
π(xt,i+1|D, βi, I) π(xt,i|D, βi+1, I)
π(xt,i|D, βi, I) π(xt,i+1|D, βi+1, I)

}
I Algorithm:

1. Propose a swap every ns iterations, and proceed with the swap if
u1 ∼ Uniform(0, 1) ≤ 1/ns

2. Randomly pick simulation i to swap its state with simulation i + 1
3. Accept the swap if u2 ∼ Uniform(0, 1) ≤ r

Segev BenZvi (UR) PHY 403 25 / 35

Bump Finding

Example
We have a 64-channel spectrum from a radio spectrometer with an
instrumental resolution of 2 channels and Gaussian noise of 1 mK per
channel [2]. Is there a peak in the spectrum and what is its amplitude?

Segev BenZvi (UR) PHY 403 26 / 35

Bump Finding: Problem Setup

I If there is a bump in channel ν0 with amplitude A, we want to
calculate

p(A, ν0|D, I) ∝ p(D|A, ν0, I) p(A, ν0|I)
I A is a scale parameter and ν0 a location parameter, so it seems

reasonable to choose

p(A, ν0|I) = p(A|I)× p(ν0|I) =
1

A ln (Amax/Amin)
× 1

νmax − νmin

I Meanwhile, the likelihood is given by a product of Gaussians:

p(D|A, ν0, I) =
N

∏
i=1

1√
2πσ

exp
{
− (di −Afi)2

2σ2

}
, σ = 1 mK

fi = exp
{
− (νi − ν0)

2

2σ2
L

}
, σL = 2

Segev BenZvi (UR) PHY 403 27 / 35

Results: Simple MCMC

I Putting it all together, we
draw random samples from
p(A, ν0|D, I) using the emcee
package [5]

I Simulation parameters:
1. 2 free parameters A, ν0
2. 20 MCMC “walkers”
3. 1000 samples

I The posterior PDF is shown at
left with the marginal
distributions of A and ν0

I Note that the first 100 samples
from each walker were treated
as burn-in data and ignored

Segev BenZvi (UR) PHY 403 28 / 35

Bump Finding: Burn-In
The time series of A and ν0 indicate burn in after 100 samples

The distribution of ν0 shows some multimodality; several walkers do
not converge to ν0 = 37. We can explore this more with parallel
tempering

Segev BenZvi (UR) PHY 403 29 / 35

Parallel Tempering: T = 1, T = 7
Let’s try the same simulation with 4 parallel simulations, with T
increasing in powers of 7 between each simulation

Notice how p(A|D, I) loses its bump as T increases!

Segev BenZvi (UR) PHY 403 30 / 35

Parallel Tempering: T = 49, T = 343
As T goes up, the features in the PDF are getting washed out

The sampling distribution is becoming increasingly flat and the
MCMC is exploring the full parameter space

Segev BenZvi (UR) PHY 403 31 / 35

Parallel Tempering: Final Results
The combination of the four simulations shows multimodal behavior
in the PDF

Compare the final results (left) to our original MCMC (right)

Segev BenZvi (UR) PHY 403 32 / 35

Bump Finding: Best Fit
Plugging in Â ≈ 1.5 and ν̂0 ≈ 37 we get:

Next time: model comparison. We would like to estimate a Bayes
factor comparing the bump model to a null hypothesis where there is
no bump

Segev BenZvi (UR) PHY 403 33 / 35

Summary
I MCMC is a general technique for generating parameter samples

from high-dimensional PDFs p(θ|D, I)
I Issues that affect MCMC calculations:

1. Estimating the length of the burn-in period
2. Deciding when to stop the Markov chain
3. Choosing a suitable proposal distribution

I For a given problem these issues are usually addressed by trial
and error. You tune q(y|xt) to get an acceptance rate of
25%− 50%, play with the starting values x0, look at the results to
assess burn-in, etc.

I There are also nice tricks like the use of walkers and parallel
tempering that help ensure your MCMC explores the full
parameter space

I Coding up a Metropolis-Hastings problem is not hard, but be
aware of existing packages like emcee that make running MCMC
much less of a grind [5]

Segev BenZvi (UR) PHY 403 34 / 35

References I

[1] N. Metropolis et al. “Equation of State Calculations by Fast
Computing Machines”. In: J. Chem. Phys. 21 (1953), p. 1087.

[2] P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences.
New York: Cambridge University Press, 2005.

[3] D. MacKey. Information Theory, Inference, and Learning Algorithms.
New York: Cambridge University Press, 2003.

[4] J. Goodman and J. Weare. “Ensemble Samplers with Affine
Invariance”. In: Comm. Appl. Math. Comp. Sci. 5 (2010), 65–80.

[5] D. Foreman-Mackey et al. emcee: The MCMC Hammer. 2013. URL:
http://dan.iel.fm/emcee/current/.

Segev BenZvi (UR) PHY 403 35 / 35

http://dan.iel.fm/emcee/current/

	Sampling from PDFs in Many Dimensions
	Markov Chain Monte Carlo
	The Metropolis-Hastings Algorithm

	Case Study: Sampling from a 1D Distribution
	Burn-In
	Autocorrelation
	Efficiency and Detailed Balance

	Sampling from a Joint Distribution
	Parallel Tempering

