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Aim

The main objectives of the project are:

• To express potentials associated with polar and toroidal components of magnetic
field of sun as spherical harmonics.

• To study magnetic field line structure due to each spherical harmonic component.

• To verify pole structure generated by higher harmonics.

• To determine coefficients of harmonics needed to generate sun spots.

• To ultimately try and generate a close representation of the observed magnetic field
of the sun.

Theoretical framework

2.1 Toroidal and polar magnetic fields

The solar magnetic field can be decomposed into toroidal (BT ) and polar (BP ) components
(see [1]). The components are given by:

BT = ∇× (Tr) BP = ∇×∇× (Sr) (2.1)

Where T and S are scalar fields. In our project we assume T → 0 and S → 0 as distance
from the center r → ∞. Besides, we assume that T and S can be written as (both are
like potentials)

T (r) =
∑
i

Ci
1

|r− ai|
S(r) =

∑
i

C ′i
1

|r− bi| (2.2)

On doing multipole expansion (Laplace expansion) of 1
|r−ai|

, we get

1

|r− ai|
=
∞∑
l=0

l∑
m=−l

αlm
Y m
l (θ, φ)

rl+1
(2.3)

Where α’s are constants. Hence this expansion gives us:

T (r) =
∞∑
l=0

l∑
m=−l

τlm
Y m
l (θ, φ)

rl+1
S(r) =

∞∑
l=0

l∑
m=−l

σlm
Y m
l (θ, φ)

rl+1
(2.4)
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In our project we first show what is the field structure due to each individual component.

Now for l = 0, we get
Ym
l (θ,φ)

rl+1 r = constant × r̂. Which has a curl zero. Thus l = 0 does
not contribute at all in generating magnetic fields. So, we can write (2.4) as:

T (r) =
∞∑
l=1

l∑
m=−l

τlm
Y m
l (θ, φ)

rl+1
S(r) =

∞∑
l=1

l∑
m=−l

σlm
Y m
l (θ, φ)

rl+1
(2.5)

2.2 Equations and method used in program

In our program, we symbolically calculate BT and BP by calculating the curls of the
spherical harmonics. Only the first three harmonics were used for ease of calculation.

Y m
l (θ, φ) are calculated recursively using the formulation:

Y m−1
l (θ, φ) =

1√
(l +m)(l −m+ 1)

e−iφ
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
Y m
l (θ, φ) (2.6)

Now, Y l
l (θ, φ) is given by:

Y l
l (θ, φ) =

[
(−1)l

2ll!

]√
[(2l + 1)(2l)!]

4π
eilφ sinl θ (2.7)

The curl was then calculated in radial polar coordinates using (for a vector F):

(∇× F)r̂ =
1

r sin θ

[
∂θ(Fφ sin θ)− ∂φ(Fθ)

]
(∇× F)θ̂ =

1

r

[ 1

sin θ
∂φFr − ∂r(rFφ)

]
(∇× F)φ̂ =

1

r

[
∂r(rFθ)− ∂θFr

] (2.8)

All calculations were done using symbolic python, for accuracy. The plots were then gen-
erated using Mayavi. To view the behaviour of the field well, without multiple confusing
field lines, we plotted an effective map to a 2D surface (sphere). For this, the magnitude
of vector field at any position was multiplied by sign of radial component of magnetic
field (in plots where only BT is shown, sign of φ component was used to represent the
toroidal field well) and then plotted on the surface of sun.
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Results

• Verification of method: Plots for dipole (Y 0
1 ), quadrupole (Y 0

2 ) and octapole (Y 0
3 )

(a) toroidal Y 0
1 (b) polar Y 0

1

Figure 3.1: Y 0
1 field-vectors

(a) toroidal Y 0
2 (b) polar Y 0

2

Figure 3.2: Y 0
2 field-vectors
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(a) toroidal Y 0
3 (b) polar Y 0

3

Figure 3.3: Y 0
3 field-vectors

(a) Polar Y 0
1 (b) Polar Y 0

3

Figure 3.4: Dipole and octapole flow lines

As we can see, the all three of the Y 0
l plot sets give the required results. Also, combining

the dipole and octapole fields seems to suggest we could obtain small sun spots, as the
larger components could effectively cancel each other out.
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• Plots for individual spherical harmonics Y m
l (showing only positive m’s due to sym-

metry)

(a) Y 0
1 (b) Y 1

1 (c) Y 0
2

(d) Y 1
2 (e) Y 2

2 (f) Y 0
3

(g) Y 1
3 (h) Y 2

3 (i) Y 3
3

Figure 3.5: BP for all spherical harmonics
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(a) Y 0
1 (b) Y 1

1 (c) Y 0
2

(d) Y 1
2 (e) Y 2

2 (f) Y 0
3

(g) Y 1
3 (h) Y 2

3 (i) Y 3
3

Figure 3.6: BT for all spherical harmonics

Note that in the case of BT , Tr only has the radial component. Hence by (2.1), the
(scalar) r dependence of T does not change anything in the plot.

Also, note how the toroidal (BT ) and polar (BP ) fields of Y 2
3 and Y 2

2 seem to give pairs
of blue (negative, inward field lines) and red/yellow (positive, outward field lines) spots.
This is exactly how sun spots would appear in such a plot representation. Hence this led
us to believe that we could recreate the observed sun spot structures using combinations
of these harmonics.
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• The final plots using appropriate coefficients:

(a) Field-lines (b) Spot-structure

Figure 3.7: An initial guess that gave spots

In our initial guess, we randomly played around with coefficients to see if we could
generate spots. We got our result, but realised we had to take into account the imaginary
components of the harmonics too (using complex coefficients).

(a) Field-lines (b) Spot-structure

Figure 3.8: Better approximation for sun spots

We could also see that Y 2
3 seemed to be giving interesting spots that we could use.

Hence in our next (better) try, we simulated spots using this component, while providing
the natural magnetic field through Y 0

1 and Y 0
3 .
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(a) (b)

(c) (d)

Figure 3.9: The final result

After varying the coefficients further, we came up with a plot that gave reasonable
sun spots. As we can see, the spots appear near the equator as small bands, while the
pole structure remains intact.

The coefficients used for this final plot were:

field Y −11 Y 0
1 Y 1

1 Y −22 Y −12 Y 0
2 Y 1

2 Y 2
2

BT 0 0 0 0 -2.6 * (1 - ι) 3 2.6 * (1 + ι) 0
BP 0 1.8 0 0 0 0 0 0

field Y −33 Y −23 Y −13 Y 0
3 Y 1

3 Y 2
3 Y 3

3

BT 0 0 1 1.1 -1 0 0
BP 0 -1 -1.2 1.5 1.2 1 0
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Conclusions and Future Prospects

We conclude that the multipole expansion of the toroidal and polar fields indeed does
seem to generate a close approximation to the sun’s field. Surprisingly, with components
up to just the third harmonic, we can already produce field lines that strongly resemble
the structure of the sun’s spots. We believe hence that our project was successful, and
can be used in the future to generate the magnetic field of any object, given the coefficients.

This project can be extended in multiple ways. The primary aim of the project was of
course, to realise the sun’s magnetic field in terms of the spherical harmonics. Currently,
our combined plot is generated by randomly guessed coefficients for the components.
However if data of sun’s magnetic field is available, then one can calculate these coefficients
more precisely. This can help us understand the nature and reason of the spot structure
and it’s change in the sun. We can also try going to higher harmonics to more accurately
represent the phenomena we see in the sun. Generating these coefficients as a function of
time will even allow us to possibly view phenomena like the pole reversal or solar storms.
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