Most Dangerous Equation

nnce of how sample size affects statistical variation
wated havoc for nearly a millennium

4 rd Wainer

boat constitutes a dangerous equation?  hind which lies terrible peril. The obvious win-
There are twO obvious interpretations: —ner in this is Einstein’s iconic equation e = mc?,
| oquations are dangerous if you know  for it provides a measure of the enormous
| and others are dangerous if you do not. ~ energy hidden within ordinary matter. Its
st category may pose danger because destructive capability was recognized by Leo
berets within its bounds open doors be- Szilard, who then instigated the sequence of

”

] © The Goldsmiths’ Company. Photograph: ImageWise
éure 1. Trial of the pyx has been performed since 1150 A.D. In the trial, a sample of minted coins, say 100 at a time, is compared with a stan-
ﬁ'd Limits are set on the amount that the sample can be over- or underweight. In 1150, that amount was set at 1/400. Nearly 600 years later, in
;30: aFrench mathematician, Abraham de Moivre, showed that the standard deviation does not increase in proportion to the sample. Instead,
Is proportional to the square root of the sample size. Ignorance of de Moivre’s equation has persisted to the present, as the author relates in
fe examples. This ignorance has proved costly enough that the author nominates de Moivre’s formula as the most dangerous equation.
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atomic bombs. priate set, our interpretationg
Supporting ignorance is not, however, the di- It is dangerous, ironically, be
rection I wish to pursue—indeed it is quite the  most useful model for the
antithesis of my message. Instead I am inter- data when wielded with cautj,
ested in equations that unleash their dangernot much interaction between th
when we know about them, but rather when computer program.
we do not. Kept close at hand, these equations Yet, as dangerous as Kelley’:
allow us to understand things clearly, but their the common regression equa
absence leaves us dangerously ignorant. de Moivre’s equation more pe
There are many plausible candidates, and rived at this conclusion becaus
I have identified three prime examples: Kel-  length of time over which ign
ley’s equation, which indicates that the truth caused confusion, the variety
is estimated best when its observed value is have gone astray and the seriot
regressed toward the mean of the group that consequences that such ignorangi
it came from; the standard linear regression In the balance of this essay I
equation; and the equation that provides us five very different situations in
with the standard deviation of the sampling  rance of de Moivre’s equation h
distribution of the mean—what might be lions of dollars of loss over centy
called de Moivre’s equation: untold hardship. These are but ;
S0/ pling; there are many more.

where 0. is the standard error of the mean, 6 The Trial of the Pyx
is the standard deviation of the sample and  In 1150, a century after the Battle o
n is the size of the sample. (Note the Square  was recognized that the King of

root symbol, which will be a key to at leastone  not just mint money and assign it
of the misunderstandings of variation.) De- value he chose. Instead the coin
Moivre’s equation was derived by the French needed to be intrinsic, based on th
mathematician Abraham de Moivre, who de- precious materials in its make-up.
scribed it in his 1730 exploration of the bino- dards were set for the weight of go.
mial distribution, Miscellanea Analytica. a guinea, for example, should wei
Ignorance of Kelley’s equation has proved  (there are 360 grains in an ounce).

to be very dangerous indeed, especially to  the pyx—the pyx is actually the
economists who have interpreted regression  that contains the standard coins—sa3
toward the mean as having economic causes measured and compared with the s
rather than merely reflecting the uncertainty It was recognized, even then, th:
of prediction. Horace Secrist’s The Triumph of methods were too imprecise to insi
Mediocrity in Business is but one example listed  coins be exactly equal in weight, so i1
in the bibliography. Other examples of failure  king and the barons who supplied th
to understand Kelley’s equation exist in the Mint (an independent organization)
sports world, where the expression “sopho- insisted that coins when tested in
more slump” merely describes the likelihood gate (say 100 at a time) conform to
of an average season following an especially lated size plus or minus some allo
good one. variability. They chose 1/400th of th
The familiar linear regression equation  which for one guinea would be 0.28
contains many pitfalls to trap the unwary.  and so for the aggregate, 28 grains. Ob
The correlation coefficient that emerges from they assumed that variability increas
regression tells us about the strength of the portionally to the number of coins anc
linear relation between the dependent and  its square root, as de Moivre's equation
independent variables. But alas it encourages later indicate. This deeper understand
fallacious attributions of cause and effect. It almost 600 years in the future.
even encourages fallacious interpretation by The costs of making errors are of tw
those who think they are being careful. (“I If the average of all the coins was too Li
may not be able to believe the exact value of barons were being cheated, for there w
the coefficient, but surely I can use its sign  extra gold left over after minting the
to tell whether increasing the variable will number of coins. This kind of error is
increase or decrease the answer.”) The linear detected, and, if found, the director of th
regression equation is also badly non-robust, would suffer grievous punishment. But i
but its weaknesses are rarely diagnosed ap- allowable variability was larger than n
propriately, so many models are misleading.  sary, there would be an excessive number 0,
When regression is applied to observational heavy coins. The mint could thus stay within
data (as it almost always is), it is difficult to bounds specified and still provide the opp
know whether an appropriate set of predictors  nity for someone at the mint to collect
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igure 2. A cursory glance at the distribution of the U.S. counties with the lowest rates of kidney cancer (teal) might lead one to conclude that
omething about the rural lifestyle reduces the risk of that cancer. After all, the counties with the lowest 10 percent of risk are mainly Midwest-
Southern and Western counties. When one examines the distribution of counties with the highest rates of kidney cancer (red), however,
tbecomes clear that some other factor is at play. Knowledge of de Moivre’s equation leads to the conclusion that what the counties with the

Loverweight coins, melt them down and recast
em at the correct lower weight. This would
leave the balance of gold as an excess payment
o the mint. The fact that this error continued for
almost 600 years provides strong support for de
{Moivre’s equation to be considered a candidate
L for the title of most dangerous equation.

Life in the Country: Haven or Threat?

igure 2 is a map of the locations of of counties
ith unusual kidney-cancer rates. The coun-
ties colored teal are those that are in the lowest
tenth of the cancer distribution. We note that
tese healthful counties tend to be very rural,
iMidwestern, Southern or Western. It is both
“3y and tempting to infer that this outcome is
directly due to the clean living of the rural life-
tLylegno air pollution, no water pollution, ac-
Cess to fresh food without additives and so on.

| The counties colored in red, however, belie
at inference. Although they have much the
Same distribution as the teal counties—in fact,
they're often adjacent—they are those that
£°r¢ in the highest decile of the cancer distribu-
£on. We note that these unhealthful counties
tend to be very rural, Midwestern, Southern
£0r Western. It would be easy to infer that this
 Outcome might be directly due to the poverty
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of the rural lifestyle—no access to good medi-
cal care, a high-fat diet, and too much alcohol
and tobacco.

What is going on? We are seeing de Moivre’s
equation in action. The variation of the mean
is inversely proportional to the sample size, so
small counties display much greater variation
than large counties. A county with, say, 100
inhabitants that has no cancer deaths would
be in the lowest category. But if it has 1 cancer
death it would be among the highest. Counties
like Los Angeles, Cook or Miami-Dade with
millions of inhabitants do not bounce around
like that.

When we plot the age-adjusted cancer rates
against county population, this result becomes
clearer still (see Figure 3). We see the typical
triangle-shaped bivariate distribution: When
the population is small (left side of the graph)
there is wide variation in cancer rates, from 20
per 100,000 to 0; when county populations are
large (right side of graph) there is very little
variation, with all counties at about 5 cases per
100,000 of population.

The Small-Schools Movement
The urbanization that characterized the 20th
century led to the abandonment of the rural

owest and highest kidney-cancer rates have in common is low population—and therefore high variation in kidney-cancer rates.
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Figure 3. When age-adjusted kidney-cancer rates in U.S. counties are
plotted against the log of county population, the reduction of varia-
tion with population becomes obvious. This is the typical triangle-
shaped bivariate distribution. =

lifestyle and, with it, an increase in the size
of schools. The era of one-room schoolhouses
was replaced by one with large schools—often
with more than a thousand students, dozens
of teachers of many specialties and facilities
that would not have been practical without the
enormous increase in scale. Yet during the last
quarter of the 20th century, there were the be-
ginnings of dissatisfaction with large schools
and the suggestion that smaller schools could
provide a better education. In the late 1990s
the Bill and Melinda Gates Foundation began
supporting small schools on a broad-ranging,
intensive, national basis. By 2001, the Foun-
dation had given grants to education proj-
ects totaling approximately $1.7 billion. They
have since been joined in support for smaller
schools by the Annenberg Foundation, the
Carnegie Corporation, the Center for Col-
laborative Education, the Center for School
Change, Harvard’s Change Leadership Group,
the Open Society Institute, Pew Charitable
Trusts and the U.S. Department of Education’s
Smaller Learning Communities Program. The
availability of such large amounts of money
to implement a smaller-schools policy yielded
a concomitant increase in the pressure to do
so, with programs to splinter large schools
into smaller ones being proposed and imple-
mented broadly (New York City, Los Angeles,
Chicago and Seattle are just some examples).
What is the evidence in support of such a
change? There are many claims made about the
advantages of smaller schools, but I will focus
here on just one—that when schools are smaller,
student achievement improves. The supporting
evidence for this is that among high-performing
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schools, there is an unrep
proportion of smaller schog|

In an effort to see the rel
schools and achievement,
I looked at the performan
of Pennsylvania’s public sch
of school size. As a measure
mance we used the Pennsy
gram (PSSA), which is very
scores in a variety of subjects
tire range of precollegiate schg
we examined the mean score
separate schools that provide
ing scores, we found that of
50 schools (the top 3 percent) s;
the smallest 3 percent of the
an over-representation by a fa
size of school was unrelated t
we would expect 3 percent to be
group, yet we found 12 percent
ate distribution of enrollment an
shown in Figure 4.

We also identified the 50 lo
schools. Nine of these (18 percent)
the 50 smallest schools. This resul
ly consonant with what is expe
Moivre’s equation—smaller schools
ed to have higher variance and hen
over-represented at both extremes. Ni
regression line shown on the left grap
4 is essentially flat, indicating that oy
is no apparent relation between scho
performance. But this is not always t

The right graph in Figure 4 depis
grade scores in the PSSA. We fin
over-representation of small schools
tremes, but this time the regression
a significant positive slope; overall
at bigger schools do better. This too is
expected, since very small high sch
not provide as broad a curriculum or-

highly specialized teachers as can large
A July 20, 2005, article in the Seattle We
scribed the conversion of Mountlake
High School in Seattle from a large s
school with an enrollment of 1,800 s
into five smaller schools, greased with
Foundation grant of almost a million
Although class sizes remained the same
of the five schools had fewer teachers. S
complained, “There’s just one English
and one math teacher ... teachers end
teaching things they don’t really know.
haps this anecdote suggests an explanatiol
the regression line in Figure 4.

Not long afterward, the small-schools
ment took notice. On October 26, 2005,
attle Times reported: ‘

[t]he Gates Foundation announced la
week it is moving.away from its emphs
sis on converting large high schools in
smaller ones and instead giving gran
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| Figure 4. In the 1990s, it became popular to champion reductions in the size of schools. Numerous philanthropic organizations and govern-
. ment agencies funded the division of larger school based on the fact that students at small schools are over-represented in groups with high
E  testscores. Shown here at left are math test scores from 1,662 Pennsylvania 5th-grade schools. The 50 highest-performing schools are shown in
. blue and the 50 lowest in green. Note how the highest- and lowest-performing schools tend to group at low enrollment—just what de Moivre’s
| equation predicts. The regression line is nearly flat, though, showing that school size makes no overall difference to 5th-grade mean scores.
. Math scores for 11th-grade schools were also calculated (right). Once again, variation was greater at smaller schools. In this case, however, the
-~ regression line has a significant positive slope, indicating that the mean score improved with school size. This stands to reason, since larger
schools are able to offer a wider range of classes with teachers who can focus on fewer subjects.

to specially selected school districts with
a track record of academic improvement
and effective leadership. Education lead-
ers at the Foundation said they concluded
that improving classroom instruction and
mobilizing the resources of an entire dis-
trict were more important first steps to
improving high schools than breaking
down the size.

i This point of view was amplified in a study
i presented at a Brookings Institution Conference
by Barbara Schneider, Adam E. Wyse and Ve-
| nessa Keesler of Michigan State University. An
| atticle in Education Week that reported on the
| study quoted Schneider as saying, “I'm afraid
. Wehave done a terrible disservice to kids.”
Spending more than a billion dollars on
2 theory based on ignorance of de Moivre’s
| ®quation—in effect serving only to increase
| Variation—suggests just how dangerous that
. 1gnorance can be.

| The Safest Cities

Ir} the June 18, 2006, issue of the New York
| Times there was a short article that listed the
. tensafest United States. cities and the ten least
| Safe based on an Allstate Insurance Company
| Slatistic, “average number of years between
i Acidents.” The cities were drawn from the 200
1 !argest cities in the U.S. With an understand-
. Ing of de Moivre’s equation, it should come as
i o Surprise that a list of the ten safest cities, the
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ten most dangerous cities and the ten largest
cities have no overlap (see Figure 5).

Sex Differences in Performance

For many years it has been well established
that there is an over-abundance of males at the
high end of academic test-score distributions.
About twice as many males as females re-
ceived National Merit Scholarships and other
highly competitive awards. Historically, some
observers used such results to make inferences
about differences in intelligence between the
sexes. Over the past few decades, however,
most enlightened investigators have seen that
it is not necessarily a difference in level but a
difference in variance that separates the sexes.
Public observation of this fact has not always
been greeted gently, witness the recent outcry
when Harvard (now ex-) President Lawrence
Summers pointed this out. Among other com-
ments, he said:

It does appear that on many, many, dif-
ferent human attributes—height, weight,
propensity for criminality, overall 1Q,
mathematical ability, scientific ability—
there is relatively clear evidence that
whatever the difference in means—which
can be debated—there is a difference in
standard deviation/variability of a male
and female population. And it is true
with respect to attributes that are and are
not plausibly, culturally determined.
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Dallas
Detroit

Figure 5. Allstate Insurance Company ranked the ten safest and ten least-safe U.S.
cities based on the number of years drivers went between accidents. The New York
Times reported on this in 2006. By now the reader will not be surprised to find that
none of the ten largest cities are among either group.

The males’ score distributions are almost al-
ways characterized by greater variance than the
females’. Thus while there are more males at the
high end, there are also more at the low end.

An example, chosen from the National As-
sessment of Educational Progress (NAEP), is
shown in Figure 7 NAEP is a true survey, so
problems of self-selection (rife in college en-
trance exams, licensing exams and so on) are
substantially reduced. The data summarized
in the table are over 15 years and five sub-
jects. In all instances the standard deviation
of males is from 3 to 9 percent greater than
females. This is true both for subjects in which
males score higher on average (math, science,
geography) and lower (reading).

Both inferences, the incorrect one about dif-
ferences in level, and the correct one about
differences in variability, cry out for expla-
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nation. The old cry would
do boys score higher than
er one should be “why do
variability?” If one did not ]
Moivre’s result and only trie
first question, it would be a w
a search for an explanation for
that does not exist. But if we f
variability in males, we may
Obviously the answer to the
“why?” will have many parts
ization and differential expecta
major components—especially in
fore the realization grew that a s
compete effectively in a global e
only half of its workforce fully m
there is another component tha
especially related to the topic of t
In discussing Lawrence Summy
about sex differences in scientific
tiane Niisslein-Volhard, the 1995 N
ate in physiology and medicine,

O

He missed the point. In mathem
science, there is no difference in:
ligence of men and women.
ence in genes between men and
is simply the Y chromosome, w
nothing to do with intelligence. '

But perhaps it is Professor Niissle
who missed the point here. The Y chry
is not the only genetic difference bet
sexes, although it may be the most
Summers’s point was that when we |
ther extreme of an ability distribution.
see more of the group that has grea
tion. Mental traits conveyed on the
mosome will have larger variabili
males than females, for females ha
chromosomes, whereas males have an
Y. Thus, from de Moivre’s equation we.
expect, all other things being equal, al
percent more variability among malest
males. The fact that we see less than 107
greater variation in NAEP scores de
the existence of a deeper explanation. F
Moivre’s equation requires independe
the two X chromosomes, and with asso
mating this is not going to be true. Ad
ally, both X chromosomes are not exp:
in every cell. Moreover, there must be
causes of high-level performance that
carried on the X chromosome, and still of
that indeed are not genetic. But for somes
perhaps 10 percent of increased variabili
likely to have had its genesis on the X ;
some. This observation would be invisib
those, even those with Nobel prizes for ¥
in genetics, who are ignorant of de Moi
equation. :
It is well established that there is evolu
ary pressure toward greater variation w




within the constraints of genetic
This is evidenced by the dominance
{ over asexual reproduction among
_But this leaves us with a puzzle.
our genetic structure built to yield
yariation among males than females?
t just among humans, but virtually all
1ls. The pattern of mating suggests an
In most mammalian species that re-
e sexually, essentially all adult females
ce, whereas only a small proportion of
. do (modern humans excepted). Think
alpha-male lion surrounded by a pride
ales, with lesser males wandering aim-
and alone in the forest roaring in frustra-
One way to increase the likelihood of off-
g being selected to reproduce is to have
variance among them. Thus evolutionary
ure would reward larger variation for
relative to females.

lusion

no revelation that humans don’t fully
rehend the effect that variation, and es-
jally differential variation, has on what
observe. Daniel Kahneman’s 2002 Nobel
ze in economics was for his studies on in-
tive judgment (which occupies a middle
und “between the automatic operations
erception and the deliberate operations of
oning”). Kahneman showed that humans
‘tintuitively “know” that smaller hospitals
uld have greater variability in the propor-
of male to female births. But such inability
ot limited to humans making judgments in
eman’s psychology experiments.
outinely, small hospitals are singled out
or special accolades because of their exempla-
1y performance, only to slip toward average
n subsequent years. Explanations typically
abound that discuss how their notoriety has
overloaded their capacity. Similarly, small mu-
tual funds are recommended, after the fact, by
Wall Street analysts only to have their subse-
juent performance disappoint investors. The
list goes on and on adding evidence and sup-
ort to my nomination of de Moivre’s equa-
on as the most dangerous of them all. This
essay has been aimed at reducing the peril that
| accompanies ignorance of that equation.
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