
1-MJ, Wetted-Foam Target-Design Performance  
for the National Ignition Facility

Research Review
16 February 2007Tim Collins

n

n



A 1-MJ wetted-foam target will ignite on the NIF  
with baseline direct-drive laser smoothing

TC7445a

• A deuterium–tritium (DT)-saturated polymer foam, or “wetted-foam,” 
ablator provides better performance than the baseline direct-drive, 
all-DT design.

• Low implosion velocity is used to minimize the effects of laser 
imprint.

• A nonuniformity budget analysis shows that single-beam 
nonuniformity has the greatest effect on target performance.

• Simulations, including power imbalance, outer-surface and  
ice-surface roughness, and imprint show that with 2-D, 1-THz  
SSD smoothing this target ignites and produces a gain of 32.

• This design has been re-optimized using a downhill simplex 
method, achieving a 2-D gain of 60 with 2-D SSD and the same 
sources of nonuniformity

• A 1.5-MJ wetted-foam design achieves a gain of over 30 with 2-D 
SSD and fails with 1-D SSD.

Summary
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All-DT

Energy (MJ) 1.5

Target radius (nm) 1695

Absorption (%) 65

A/DR (%) 30

1-D gain 45

At 1.5 MJ, the all-DT design is projected  
to give a 1-D gain of 45

TC7447

• Stability is gauged by the ratio of 
the rms bubble amplitude to the 
shell thickness A/DR determined 
with a 1-D post-processor.*

n

n

P. W. McKenty et al., Phys. Plasmas 8, 2315 (2001).
*V. N. Goncharov et al., Phys. Plasmas 10, 1906 (2003).

〈a〉 = 4.2
a = P/PFermi



The 1.5-MJ all-DT design has been scaled to 1 MJ, 
resulting in lower gain and stability

TC7448
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All-DT Scaled
All-DT

Energy (MJ) 1.5 1.0

Target radius (nm) 1695 1480

Absorption (%) 65 59

A/DR (%) 30 33

1-D gain 45 40
〈a〉 = 4.2 〈a〉 = 3.5



Wetted foam provides higher laser absorption,  
allowing a thicker shell and greater stability  
than the all-DT baseline target at 1 MJ

TC7449

All-DT Scaled
All-DT

Wetted-
foam

Energy (MJ) 1.5 1.0 1.0

Target radius (nm) 1695 1480 1490

Absorption (%) 65 59 86

A/DR (%) 30 33 11

1-D gain 45 40 49

n

n

n
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• The foam density balances higher 
absorption with increased radiative preheat.

• The foam-layer thickness is chosen so the 
foam is entirely ablated.

Wetted-foam design

The 1-D, 1-MJ wetted-foam target gain is 49.

〈a〉 = 4.2 〈a〉 = 4.9



The shell stability can be increased by lowering the 
implosion velocity and raising the in-flight shell thickness 

TC7450

• The most-dangerous Rayleigh–Taylor modes feed through 
to the inner surface and have wavelengths comparable to 
the shell thickness, with wave numbers k ~ DR–1.

• The linear growth of these modes depends on the in-flight 
aspect ratio, IFAR:

 Number of e foldings = ~ ~ IFARt kgt
R

R2 0
/c

D
 

• The in-flight aspect ratio depends mainly on the implosion 
velocity and average adiabat:*

~ ,IFAR V
/3 5

2

a

where a = P/PFermi is the adiabat.

*J. Lindl, Inertial Confinement Fusion (1997).



The foam design has a thicker shell and lower implosion 
velocity than the scaled all-DT design

TC7451

• This improvement comes at the expense of margin,  
but with improved areal density.

• Margin = inward moving kinetic energy at ignition

• The wetted-foam design tolerates realistic ice roughness 
in 2-D simulations, indicating sufficient margin.

peak inward kinetic energy

V (nm/ns) DR (nm) IFAR A/DR (%)
Areal

density
tR(g cm–2)

Margin (%)

1-MJ All-DT 430 285 69 33 1.1 45

Wetted foam 372 323 28 11 1.4 30



Conventional ICF must operate within  
an IFAR window

TC7719

• If the IFAR is too high, ignition is quenched by hydrodynamic instabilities.

• If the IFAR is too low, the resulting low implosion velocity results  
in too low a hot-spot temperature:

• The minimum energy for ignition scales as E ~ (IFAR)–3*

*R. Betti, et al., Plas. Phys. and Cont. Fusion, 48 (2006).



Shell stability and compressibility  
depend on the adiabat

TC7452

• Minimum energy required for ignition:*,** Emin ~ a1.88

• Rayleigh–Taylor instability growth rate: , ~kg kV V/ /
RT RT a a

1 2 3 5= -c a b a^ h

n

Adiabat shaping is 
achieved using a 

decaying-shock picket†

 * M. Herrmann et al., Phys. Plasmas 8, 2296 (2001).
 ** R. Betti et al., Phys. Plasmas 9, 2277 (2000).



A direct-drive capsule must tolerate several sources  
of nonuniformity to ignite and burn

TC6610b

• Wetted-foam microstructure is a potential source of shock nonuniformity.

Implosion Nonuniformities



Foam microstructure is predicted to have 
minimal effect on target performance

TC7453

• High-resolution adaptive-mesh-refinement hydro simulations of the 
wetted-foam microstructure were used to investigate shock propagation.*

• After initial undercompression,** the flow variables asymptote to the 
Rankine–Hugoniot values within a few percent.

Nonuniformities: Microstructure

• The fluctuation decay scale length is K 2 nm.

nn

n

G
H

 * T. J. B. Collins et al., Phys. Plasmas, 12, 062705 (2005).
 ** G. Hazak et al., Phys. Plasmas, 5, 4357 (1998). 

Mix region

This allows simulation of wetted-foam layers as a homogeneous mixture. 



Power imbalance has little effect  
on target performance

TC7454

• The NIF beam-to-beam imbalance perturbation is 8% rms.

• Beam mistiming of the picket has been shown to have little effect  
on target performance.*

• The time-dependent illumination spectra taken from a series of 
power-imbalance histories** were simulated using modes , = 2 to 12.

• The average gain reduction due to these effects was ~6%.

Nonuniformities: Power Imbalance

 * R. Epstein et al., BAPS 50, 8114 (2005).
 ** O. S. Jones et al., in NIF Laser System Performance Ratings
  (SPIE, Bellingham, WA, 1998), Vol. 3492, pp. 49–54.
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The wetted-foam design can tolerate a 1.75-nm-rms 
initial ice roughness with little reduction in gain

TC7455

• The ice-roughness spectrum is given by A, = A0 ,–2, primarily in , < 50.

Nonuniformities: Ice Roughness

 * Craig Sangster, QT1.00001.

b-layered cryogenic all-DT target fabrication  
at LLE has achieved 1-nm ice roughness.*



i

Foam shells have been fabricated at General Atomics 
with outer-surface rms roughness as low as ~500 nm

TC7456

• This spectrum also shows an ,–2 dependence.

Nonuniformities: Surface Roughness

 *Jared Hund, Abbas Nikroo, private communication (2006).

Surface spectrum from the  
atomic-force microscope 

Spheremapper at General Atomics*

A 2-D simulation modeling this spectrum as ribbon 
modes showed negligible reduction in performance.



TC7457

• Given the same initial 
amplitude, ice modes with 
, > 10 are more effective at 
reducing the hot-spot size 
and quenching burn.*

• A weighted average of the 
spectrum has been shown 
to map to target gain:** 

.0 06 < >
2

10 9= +v v v, ,
2 2

The target performance is estimated 
using the sum in quadrature of v 
contributions from each source  
of nonuniformity.

A weighted average v of the ice nonuniformity at the end 
of acceleration is used to predict target performance

v n

 * R. Kishony and D. Shvarts, Phys. Plasmas, 8, 4925 (2001). 
**  P. W. McKenty et al., Phys. Plasmas, 8, 2315 (2001).



The parameter v increases rapidly  
as SSD smoothing is decreased

TC7458

• Multimode simulations incorporating imprint modes , = 2 to 100 were 
simulated in 2-D with different levels of SSD.

• Modes , > 100 do not feed through effectively, contributing negligibly 
to the ice roughness at the end of the acceleration phase.

Nonuniformities: Imprint

v values for 
imprint alone 

are shown
v n

n

v n

v n

n

n n

v n



2-D SSD appears to be required for target ignition

TC7459

n n

n

n n

Sources of nonuniformity included 1-nm ice roughness,  
power imbalance, surface roughness, and imprint

v (nm) Gain

2-D 
SSD

2 × 1 cc 0.94 21

1 × 1 cc 1.00 16

1-D
SSD

2 × 0 cc 2.0 0

I.D. SSD 7.3 0



A completed 2-D simulation with 2-D, 1-THz SSD 
produced a gain of 32

TC7659

• Integrated simulations include imprint, power imbalance, foam-surface 
nonuniformity (370-nm rms), and 0.75-nm initial ice roughness.

• Rhot spot = 40 nm, neutron-averaged fuel areal density = 1.31 g cm–2.

Near peak
compression

n

n

Integrated simulations



2-D SSD smoothing appears to be needed for ignition 
for the 1-MJ wetted-foam design

TC7645

Near peak
compression

End of
accelerationn

nn

nn
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2-D SSD smoothing appears to be needed for ignition 
for the 1-MJ wetted-foam design

TC7714

Acceleration phase

1-D 1-THz SSD 2-D 1-THz SSD





2-D SSD smoothing appears to be needed for ignition 
for the 1-MJ wetted-foam design

TC7715

Deceleration phase

1-D 1-THz SSD 2-D 1-THz SSD





The 1-MJ wetted-foam design has been optimized  
in 1-D with a simplex method

TC7716

Re-optimized 1-MJ design

• A simplex is a polyhedron in n dimensions 
with n + 1 vertices.

• The lowest point is reflected across the 
plane connecting the others.

• The points in the pulse shape (power, time) 
and target dimensions may be optimized.

• This design was optimized to maximize 
gain, requiring tR L 1.4 g cm–2 and  
vimp K 380 nm/s.

This method allows tuning of more variables than 
would be feasible by hand (in this case, seven).



• Picket power, foot length, foot power, drive-pulse power, layer 
thicknesses and target radius were varied.

• The result is robust to pulse-shape variations.

The re-optimized design has higher gain and 
implosion velocity, and comparable IFAR

V
(μm/ns)

Gain IFAR A/ΔR
(%)

ρR (g cm-2) Margin 
(%)

Before 372 45 28 11 1.4

1.4

30

After 380 60 30 6 40



The re-optimized design has comparable nonuniformity 
at the end of the acceleration phase

TC7718

• Power imbalance, imprint, surface and ice roughness are included.

v n

n n n

n

v n v n



A 1.5-MJ wetted-foam target ignites with 2-D SSD  
but not with 1-D SSD

TC7720

• A low-IFAR, wetted-foam design, based on the 1.5-MJ all-DT point 
design, was simulated with power imbalance, surface and ice 
roughness and imprint.

V (nm/ns) Gain IFAR A/DR (%) tR (g/cm2) Margin (%)

All-DT pt. design 450 45 60 30 1.2 40

1.5-MJ foam 409 44 33 5 1.4 40

v n v n v n

n n n

n

1.5-MJ Wetted-Foam Design



Foam targets are produced by General Atomics  
and filled and diagnosed at LLE

TC7461

• Ice roughness in cryogenic wetted-foam targets is currently 
diagnosed with limited sensitivity using optical shadowgraphy.

• With optical illumination it is difficult to distinguish the various 
interfaces and layers.

• X-ray phase-contrast imaging is being implemented at LLE, 
promising greater sensitivity.

n

n

*Bernard Kozioziemski, private communication (2006).

Future Experiments



Both planar and spherical wetted-foam experiments  
are being planned at LLE

TC7462

• VISAR has been used to diagnose shock speeds in planar experiments 
with foams wetted with liquid D2, driven by two 100-ps pulses.

• Planar cryogenic experiments will address shock timing  
and coupling efficiency.

• Progress with b-layering of cryogenic DT targets at LLE gives 
confidence in high-quality wetted-foam layering.

n



A D2-wetted-foam test implosion produced  
the highest cryogenic D2 yield to date

TC7460

• A high-adiabat pulse was used.

• The yield was Y1n = 1.7 × 1011, 16% greater than the 1-D yield.

• The target was not well characterized, contributing  
to computational uncertainty.

• There remains much scope for experimental exploration.

GMXI

Unfilled foam
capsule

Filled cryogenic
capsule

X-ray image of the 
imploded core



TC7463

Summary/Conclusions

A 1-MJ wetted-foam target will ignite on the NIF  
with baseline direct-drive laser smoothing

• A wetted-foam ablator provides greater laser coupling and better 
performance than the baseline direct-drive all-DT design.

• Low implosion velocity is used to minimize the effects of laser imprint.

• A nonuniformity budget analysis shows that the single-beam 
nonuniformity has the greatest effect on target performance.

• Simulations, including power imbalance, outer-surface and ice-surface 
roughness, and imprint show with 2-D, 1-THz SSD smoothing this target 
ignites and produces a gain of 32.

• This design has been re-optimized using a downhill simplex method, 
achieving a 2-D gain of 60 with 2-D SSD and the same sources of 
nonuniformity

• A 1.5-MJ wetted-foam design achieves a gain of over 30 with 2-D SSD 
and fails with 1-D SSD.

• Future plans include both planar and converging experiments  
with wetted foams on OMEGA.



This design is robust due to shock mistiming

TC7464

• Sensitivity to shock mistiming is determined in 1-D by varying 
the foot-pulse duration.

• This design can tolerate ±200 ps in shock-timing variation.



Modes , > 100 contribute negligibly to  
the ice roughness at the end of acceleration

TC7465

• Modes feed through to the inner surface, attenuated by exp(–kDR).

• The resulting ice spectrum at the end of acceleration is dominated 
by modes , < 100, with over 99% of the rms due to these modes.

n

*V. Goncharov et al., Phys. Plasmas 7, 2962 (2000).



1-D SSD asymptotes much sooner than 2-D SSD

TC7646

• SSD smoothes efficiently down to a mode number of 
 / ~R F 42 2min 0, = r iD] g , where F is the focal length and

 2
1
2 2

2= +i i iD D D  is the effective far-field divergence.

• 1-D SSD smoothes at the same rate, but asymptotes 
much earlier than 2-D SSD.

,

v

,

v



A completed 2-D simulation with 2-D, 1-THz SSD,  
and an ice power-law index of 1 produced a gain of 27

TC7660

• Integrated simulations include imprint, power imbalance, foam-surface 
nonuniformity (370-nm rms), and 1-nm initial ice roughness.

• An ice power-law index of b = 1 is used, determined experimentally 
from DT-ice layers at LLE.

• Rhot spot = ~35 nm, neutron-averaged fuel areal density = 1.32 g cm–2.

Near peak
compression

n

n



The pulse shape is within the limits  
of NIF pulse-shaping capabilities

TC7466

• Pulses on the NIF are decomposed into a series of Gaussian 
impulses and filtered with a 1-GHz, low-pass filter.



Beam-to-beam imbalance imposes long-wavelength 
perturbations on the target

TC7158a

• Beam port locations contribute a perturbation of ~1% in , = 6.

• Beam-to-beam imbalance is dominated by modes , = 2 to 12, 
with an amplitude of ~1%.

• Beam mistiming contributes ~5 to 15% in modes , = 1 to 3, 
primarily during the picket.

Nonuniformities: Power Imbalance




