7.1. Waiting times in a Poisson Process A Geiger counter emits a click each time a radioactive decay happens. If the average number of decays in unit time is λ, what is the probability distribution of the time interval between clicks?

The decay of a bulk quantity of radioactive material is one example of a Poisson process. For a Poisson process, we expect the number of events occurring in a unit time interval to follow the Poisson distribution,

$$p[k \text{ events in unit time}] = e^{-\lambda} \lambda^k / k!,$$

where λ is the expected number of events in the unit time interval. This must hold for any notion of a “unit time interval,” so we may interpret λ as the rate of events. The distribution of number of events occurring in an arbitrary time duration t is therefore Poisson, with parameter λt.

The probability of receiving exactly k events in a time interval t is therefore

$$p[N_t = k] = e^{-\lambda t} (\lambda t)^k / k!.$$

The condition of having a waiting time T until the first event is equivalent to having exactly zero events in time N_T followed by exactly one event in the following time dt. For a Poisson process, the probability of getting an event in an interval $[t, t + dt]$ is λdt. Consequently the probability distribution of waiting times is $p[N_t = 0] \lambda dt = e^{-\lambda t} (\lambda t)^0 / 0!$. Note that this integrates to unity over the range $t \in (0, \infty)$.

We may also solve for the probability density of waiting times by writing and then solving an integral relation. Let $p(t) dt$ be the probability that the waiting time is in $[t, t + dt]$. Then $\int_0^t p(t') dt'$ is the probability that the waiting time is less than t. Subtract this from unity to get the probability that the waiting time is at least t, $1 - \int_0^t p(t') dt'$. Consider the probability that the waiting time is at least t and an event happens in the following time interval dt; these are independent events, so we may just multiply by the probability λdt of an event occurring in a duration dt. We’ve recovered an expression for the probability that the waiting time is between t and $t + dt$, giving us the integral relation:

$$\left(1 - \int_0^t p(t') dt'\right) \lambda dt = p(t) dt$$

We can begin to solve this by taking the derivative with respect to t. Note that $\int_0^t f(t') dt' = F(t) - F(0)$, where $F'(t) = f(t)$, so $(d/dt) \int_0^t f(t') dt' = f(t)$. We get:

$$p'(t) = \frac{d}{dt} \left(1 - \int_0^t p(t') dt'\right) \lambda = -\lambda p(t)$$

This has the well-known solution

$$p(t) = Ce^{-\lambda t}$$

where C is some constant. The normalization requirement $\int_0^\infty p(t) dt = 1$ gives us

$$p(t) = \lambda e^{-\lambda t}$$

which agrees with what we found earlier.

7.2. Nearest neighbor distances between randomly spaced points Assume that homes in the prairie are distributed uniformly with an average density of n per square mile. What is the probability distribution of the distance to the nearest neighbor from a given home? What is the average distance between nearest neighbors?
This question is similar to 7.1 above; instead of a “waiting time” until the next event after some arbitrary
starting time, we’re interested in the “waiting distance” as we travel radially outward from a given point
until we encounter another house.

Approaching this using the integral relation technique, we may write
\[
\left(1 - \int_0^r p(r')dr'\right)2\pi r dr = p(r) dr
\]
where the density \(n \) fills the role of \(\lambda \) in the one-dimensional case.

Requiring that \(p(0) = 0 \) and \(\int_0^\infty p(r) dr = 1 \) (note the lower limit of integration; the probability of a
negative waiting time is zero), we find
\[
p(r) = 2\pi nr \exp\{-n\pi r^2\}
\]
The average nearest-neighbor distance is given by
\[
\langle r_{\text{nearest neighbor}} \rangle = \int_0^\infty r p(r) dr = \frac{1}{2\sqrt{n}}
\]

8. Transformation of Random Variables

There is a nice explanation of this in *Numerical Recipes in C*, chapter 7.2. The text is available freely at
http://www.library.cornell.edu/nr/bookcpdf/c7-2.pdf.

We employ conservation of probability: \(|p_y(y)dy| = |p_x(x)dx| \). We are given that the probability density
of \(x \) is uniform, i.e. \(p_x(x) = 1 \), and we are given several desired probability densities \(p_y \). The procedure is
to solve for the derivative \(dx/dy \), obtain \(x \) in terms of \(y \) by integrating, and then invert the relation to get
\(y \) in terms of \(x \).

\[
|p_y(y)dy| = |p_x(x)dx| \\
\frac{dx}{dy} = \pm p_y(y) \\
x = \int\frac{dx}{dy}dy = \pm \int p_y(y)dy
\]
The following Mathematica code performs this procedure for \(p_y(y) = -e^{-y} \):
\[
py[y_] := -\text{Exp}[-y] \\
\text{Solve}[x==\text{Integrate}[\text{py}[y],y],y]
\]
We find that \(y_1(x) = -\log(x) \), \(y_2(x) = \text{erf}^{-1}(2x - 1) \), and \(y_3(x) = \tan(\pi x) \).

9. Multiplicative Random Walk Consider the following simple model for the size of a colony of bacteria.
We start with a number \(n_0 \); in each generation the number can be either multiplied by a factor \(u \) with
probability 1/2 or divided by the same number with the same probability. What is the probability distribution
of the number of bacteria after a large number \(N \) of steps? The number \(u \) is near unity.

If \(\eta \) is the random variable giving the population of the colony after many steps, then we may write \(\eta \) as
a product over many random variables \(\eta_i \) each of which may attain the values \(u \) and \(1/u \), describing how
the size of the colony changes in the \(i \)th step:
\[
\eta = \eta_1\eta_2\eta_3\cdots\eta_N
\]
If we take the logarithm, then the product is converted into a sum:
\[
\log \eta = \log \eta_1 + \log \eta_2 + \log \eta_3 + \cdots + \log \eta_N
\]

The central limit theorem tells us that the sum of many independent random variables will have a normal (Gaussian) distribution. If the logarithm of \(\eta \) follows the normal distribution, then \(\eta \) itself follows the so-called log-normal distribution (see http://en.wikipedia.org/wiki/Log_normal).

One may also write the final size of the colony as \(y = n_0 u^x (1/u)^{N-k} = n_0 u^{2x-N} \), where \(x \) is the random variable giving the number of successes in \(N \) Bernoulli trials; \(k \) will in general follow the binomial distribution with mean \(\mu = Np = N/2 \) and variance \(\sigma^2 = npq = N/4 \), but for large \(N \) this converges to the normal distribution with the same mean and variance.

Use the conservation of probability formula:

\[
|p(y)dy| = |p(x)dx|
\]

to get:

\[
p(y) = \frac{dx}{dy} p(x)
\]

Solve the expression \(y = n_0 u^{2x-N} \) for \(x \):

\[
x = \frac{\log (y/n_0)}{2 \log u} + \frac{N}{2}
\]

Take the derivative:

\[
\frac{dx}{dy} = \frac{1}{2y \log u}
\]

We know that \(p(x) \) is the probability density of the normal distribution with mean \(\mu = N/2 \) and variance \(\sigma^2 = N/4 \):

\[
p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ \frac{-(x-\mu)^2}{2\sigma^2} \right\} = \sqrt{\frac{2}{\pi N}} \exp \left\{ \frac{-(N-2x)^2}{2N} \right\} = \sqrt{\frac{2}{\pi N}} \exp \left\{ -\frac{\left(\log \frac{y}{n_0} \right)^2}{2N(\log u)^2} \right\}
\]

So we have \(p(y) = \frac{dx}{dy} p(x) \), which becomes, with everything plugged in:

\[
p(y) = \frac{1}{y(\log u) \sqrt{2\pi N}} \exp \left\{ -\frac{\left(\log \frac{y}{n_0} \right)^2}{2N(\log u)^2} \right\}
\]

Note that this is the probability density function of the log-normal distribution with mean \(\mu = \log(n_0) \) and variance \(\sigma^2 = N(\log u)^2 \).