1 Production runs on Stampede2

1.1 AstroBEAR code versions

1.1.1 J20

File name astrobear_20200724_1008. Three tracers tracking feedback, envelope, and ambient materials.

1.1.2 M21

File name astrobear_march2021update_20210402_1008. Mass of the companion particle m_2 reduces at the same rate as the jet adding material to the grids, $-dm_2/dt = \dot{M}_j$.

1.1.3 A21

File name astrobear_april2021update_20210423_1008. Turn on accretion onto the companion particle.

- KRUMHOLZ_ACCRETION.
- Added a new parameter Fraction_MaxAccretionRate $(f_{\text{max,acc}})$ in ParticleData of problem.data.
- Jet_masslossrate (\dot{M}_i) is specified in JetData of problem.data.
- Particle%Feedback%MassLossRate is set to $\dot{M}_{\rm j}$ in problem.f90
- $\dot{M}_{\text{max,acc}} = f_{\text{max,acc}} \cdot \dot{M}_{j}$
- $\dot{M}_{\rm acc} = \min\left(\dot{M}_{\rm BHL}, \dot{M}_{\rm max,acc}\right)$
- The jet has fixed mass loss rate during the entire simulation. If the accretion alone cannot supply the jet $(\dot{M}_{\rm acc} < \dot{M}_{\rm j})$, then additional mass is taken from the companion particle m_2 , that is: $dm_2/dt = \dot{M}_{\rm j} \dot{M}_{\rm acc}$.
- Default $f_{\text{max,acc}} = 10$. Since we chose the fiducial value of $\dot{M}_{j} = \dot{M}_{\text{Edd}}$, the max accretion rate is then 10 times the Eddington rate.
- See Fig. 1

An alternative way to power the jet is to supply it by accretion alone. The jet will gradually build up to its full power $\dot{M}_{\rm j}$ at the beginning of the simulation when $\dot{M}_{\rm acc} \leq \dot{M}_{\rm j}$:

- Do not specify Particle%Feedback%MassLossRate in problem.f90
- Instead, set Particle%Feedback%Efficiency $(f_{\rm jet,eff})$ in problem.f90
- Default $f_{\text{jet,eff}} = 1/f_{\text{max,acc}} = 0.1$, so that
- When $\dot{M}_{\rm acc} \leq 10 \times \dot{M}_{\rm Edd}, \, \dot{M}_{\rm j}(t) = 0.1 \times \dot{M}_{\rm acc} \leq \dot{M}_{\rm Edd}$

Figure 1: Test astrobear_april2021update with accretion turned on

$L_{\rm box}$	$8 \times 10^{13} \mathrm{cm}$	$1.15 \times 10^3 \mathrm{R}_{\odot}$	
l_{base}	$1.562 \times 10^{11} \mathrm{cm}$	$2.246\mathrm{R}_\odot$	
l_0	$9.766 imes 10^9 { m cm}$	$0.1404\mathrm{R}_\odot$	level 4 cell
$r_{\rm soft}$	$1.676 imes10^{11}\mathrm{cm}$	$2.409\mathrm{R}_\odot$	17.16 cells
R_1	$3.350 imes10^{12}\mathrm{cm}$	$48.15\mathrm{R}_\odot$	
a_0	$3.409\times10^{12}\mathrm{cm}$	$49\mathrm{R}_\odot$	
m_1	$7.298 imes 10^{32} { m g}$	$0.367{ m M}_{\odot}$	
m_2	$1.945 imes 10^{33} { m g}$	$0.978{ m M}_{\odot}$	
$r_{\rm j}$	$1.562 \times 10^{11} \mathrm{cm}$	$2.246\mathrm{R}_{\odot}$	16 cells
$\hat{ heta_{ m h}}$	$\pi/12$	15°	
$T_{\rm j}$	$1 \times 10^4 {\rm K}$		Tempscale = 1.53948e-8
$\dot{M_{i}}$	$1.261 \times 10^{23} \mathrm{g s^{-1}}$	$2 \times 10^{-3} \mathrm{M_{\odot} \ yr^{-1}}$	
$v_{\rm j}$	$8.64 \times 10^7 {\rm cm s^{-1}}$	$864\mathrm{kms^{-1}}$	

Table 1: Parameters for the new jet models J1 (Run016) and J3 (Run015), with conversions between cgs units and common units.

Run#	Code	Model	Type	$M_2(t=0)$	$r_{ m j}$	$\dot{M}_{ m j}$	$\dot{M}_{\rm acc}$	\dot{M}_2	$v_{ m j}$	$ heta_{ m h}$	$\dot{M}_{ m j}/\dot{M}_{ m Edd}$	R_2	Q	$Q_{ m eff}$
				$[0.978\mathrm{M}_\odot]$	$[\delta_0]$	$[10^{-3}{ m M}_{\odot}{ m yr}^{-1}]$	(1)		$[\mathrm{kms^{-1}}]$	[°]		$[{ m R}_{\odot}]$		
016	M21	J1	MS	1	1	2	0	$-\dot{M}_{ m j}$	864	15	~ 1	1	2	2
011	J20	NJ1		1										
019	M21	J2	MS	0.5	1	2	0	$-\dot{M}_{ m j}$	864	15	~ 2	0.5	≈ 2.24	2
013	J20	NJ2		0.5										
015	M21	J3	MS	1	1	2	0	0	864	15	~ 1	1	2	2
021	A21	J4	MS	1	1	2	Υ	$\dot{M}_{ m acc}-\dot{M}_{ m j}$	864	15	~ 1	1	2	2
020	A21	J5	MS	1	1	20	Υ	$\dot{M}_{ m acc}-\dot{M}_{ m j}$	864	15	~ 10	1	2	2
017	M21	J6	MS	1	1	2	0	$-\dot{M}_{ m j}$	1728	15	~ 1	1	4	4
018	M21	J7	MS	1	1	2	0	$-\dot{M}_{ m j}$	864	30	~ 1	1	2	2
	A21	J8	WD	1	1	0.02	Υ	$\dot{M}_{ m acc}-\dot{M}_{ m j}$	8640	15	~ 1	0.01	≈ 2.45	2
	A21	$\mathbf{J9}$	NS	1	1	0.32	Υ	$\dot{M}_{ m acc}-\dot{M}_{ m j}$	3×10^4	15	$\sim 10^4$	$1.6 imes 10^{-5}$	≈ 1.44	pprox 0.278
	A21	J10	NS	1	1	32	Y	$\dot{M}_{ m acc} - \dot{M}_{ m j}$	$3 imes 10^4$	15	$\sim 10^{6}$	$1.6 imes 10^{-5}$	≈ 1.44	pprox 0.278

Table 2: Models labeled with 'J' refer to runs with a jet, and those labeled with 'NJ' refer to runs without a jet. For all runs, $r_{\rm soft} = 2.41 \,\mathrm{R}_{\odot}$ and $T = 10^4 \,\mathrm{K}$. The base resolution $\delta_0 = 2.25 \,\mathrm{R}_{\odot}$. Model J8 with $R_2 = 0.01 \,\mathrm{R}_{\odot}$ is the WD model. Model J9 with $R_2 = 1.6 \times 10^{-5} \,\mathrm{R}_{\odot} = 11.1 \,\mathrm{km}$ is the NS model. The jet radial velocity is given by $v_{\rm j} = Q_{\rm eff} \sqrt{GM_2/R_2}$. (1): 'Y' means $\dot{M}_{\rm acc} = \min(10\dot{M}_{\rm j}, \dot{M}_{\rm BHL})$

Run#	Code	Model	$\dot{M}_{ m j}$	$v_{ m j}$	$t_{\rm vel}$	$ ho_{ m j}$	$t_{\rm adv}$	$t_{\rm den}$
			$[10^{-3}{ m M_\odot}{ m yr^{-1}}]$	$[\mathrm{kms^{-1}}]$	$[\mathbf{s}]$	$\mathrm{gcm^{-3}}]$	\mathbf{S}	\mathbf{S}
016	M21	J1	2	864	30	5×10^{-7}	2000	2000
		J2	2	864	30	$5 imes 10^{-7}$	2000	2000
015	M21	J3	2	864	30	$5 imes 10^{-7}$	2000	2000
		J4	2	748	30	2×10^{-7}	4000	4000
		J5	0.2	864	300	5×10^{-8}	2000	2000
017	M21	J6	2	1728	30	3×10^{-7}	1000	1000
018	M21	J7	2	864	120	1×10^{-7}	2000	2000
		J8	0.02	8640	3000	5×10^{-10}	200	200
		J9	0.32	$3 imes 10^4$	200	2×10^{-9}	50	50

Table 3: Estimated jet initialization properties: Time required for jet to attain its input velocity $t_{\rm vel} \sim [4\pi \rho_{\rm amb} r_{\rm j}^3 (1 - \cos \theta_{\rm h})]/3\dot{M}_{\rm j}$; final density of jet $\rho_{\rm j} \sim \dot{M}_{\rm j}/2Av_{\rm j}$; time for the jet to advect out of the jet initialization region $t_{\rm adv} \sim r_{\rm j}/v_{\rm j}$, which is roughly equal to the time it takes for the density in the jet to reach $\rho_{\rm j}$, i.e. $t_{\rm den} \sim 2V\rho_{\rm j}/\dot{M}_{\rm j} \sim V/Av_{\rm j} \sim r_{\rm j}/v_{\rm j}$.

2 **BlueHive test runs**

In test run we set the jet mass loss rate at $\dot{M} = 2 \times 10^{-3} \,\mathrm{M_{\odot} yr^{-1}}$, and the radial velocity at $v_j = 864 \,\mathrm{km \, s^{-1}}$ Each of the jet launching region is a spherical cone with radius of $r_i = 16$ grid cells, and (half) opening

angle of $\theta = 30^{\circ}$. Density of the jet material in the cone region is then

 $\rho_j = \dot{M}/(2A_{cap}v_j) = \dot{M}/(2 \times 2\pi r_j^2 (1 - \cos(\theta)) \cdot v_j) = 3.5 \times 10^{-8} \text{ g cm}^{-3}$

Ram pressure of the jet is $P_{ram} = \rho_j v_j^2 \sim 2.8 \times 10^8 \text{ dyn cm}^{-2}$ and force $F = \dot{M} v_j/2$. To accelerate the ambient material in each jet cone to v_j ,

 $t_{\rm acc} = v_j (\rho_{\rm amb} V_{\rm cone}) / F \sim 355 \; {\rm sec}$

run dir	run #	final time	final frame	Rjet	collimation	Mdot	Vjet	m2	rho_cone	p_th	p_ram	t_acc	t_vel
testnewfiducial	#14	1	1	16	pi/12	2d-3	864	0.978	1.396d-7	3.46d4	1.03d9	551	638
J3 (J1)	#15	100	10	16	pi/12	2d-3	864	0.978					
	#16	1000	100	16	pi/12	2d-3	864	0.978					
	#17	1d5	100	16	pi/12	2d-3	864	0.978					
testsmallP2	#31	1	1	16	pi/12	2d-3	864	0.489	1.40d-7	3.46d5	1.04d9	551	591
J2	#32	1000	100	16	pi/12	2d-3	864	0.489					
	#33	1d5	100	16	pi/12	2d-3	864	0.489					
testlargeRjet	#28	1	1	32	pi/12	2d-3	864	0.978	3.49d-8	8.65d4	2.58d8	4412	6056
J4	#29	1000	100	32	$\mathrm{pi}/12$	2d-3	864	0.978					
	#30	1d5	100	32	pi/12	2d-3	864	0.978					
testlowMdot	#22	1	1	16	pi/12	2d-4	864	0.978	1.396d-8	3.46d4	1.03d8	5515	-15429
J5	#23	1000	100	16	$\mathrm{pi}/12$	2d-4	864	0.978					
	#24	1d5	100	16	$\mathrm{pi}/12$	2d-4	864	0.978					
testdoubleVr	#37	1	1	16	pi/12	2d-3	1728	0.978	6.98d-8	1.73d5	2.09d9	551	591
J6	#38	1000	100	16	$\mathrm{pi}/12$	2d-3	1728	0.978					
	#39	1d5	100	16	$\mathrm{pi}/12$	2d-3	1728	0.978					
testlargeangle	#11	100	10	16	pi/6	2d-3	864	0.978	3.55d-8	8.80d4	2.63d8	355	390
J7	#12	1000	100	16	pi/6	2d-3	864	0.978					
	#13	1d5	100	16	pi/6	2d-3	864	0.978					
testWD	#40	1	1	16	pi/36	2d-5	8640	0.978	1.25d-9	3096	9.34d8	73793	-90415
J8	#41	1000	100	16	pi/36	2d-5	8640	0.978					
	#42	1d5	100	16	pi/36	2d-5	8640	0.978					
testlowtemp	#18	1	1	16	pi/12	2d-3	864	0.978	1.396d-7	3.46d3	1.03d9	551	638
	#19	1000	100	16	pi/12	2d-3	864	0.978					
	#20	1d5	100	16	pi/12	2d-3	864	0.978					
	#21			16	$\mathrm{pi}/12$	2d-3	864	0.978					
testpenciljet	#25	1	1	16	pi/36	2d-3	864	0.978	1.25d-6	3.10d6	9.34d9	737	901
	#26	1000	100	16	pi/36	2d-3	864	0.978					
	#27	1d5	100	16	pi/36	2d-3	864	0.978					

Table 4: Test runs on BlueHive.

Figure 2: Jet potential relative to particle 2

Figure 3: Angular distribution of normalized jet radial speed

Figure 4: Test J3 (J1) as new fiducial, 600 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 5: 1d5 sec

Figure 6: Test J2, M2=0.5Msun, 500 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 7: 600 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 8: 1d5 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 9: Test J4, Rjet=32, 1000 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 10: 6000 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 11: 7000 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 12: 1d5 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 13: Test J5, lower Mdot = 2d-4, 4000 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 14: 1d5 sec $\,$

Figure 15: Test J6, double Vjet=1728, 400 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 16: 1d5 sec

Figure 17: Test J7, theta=30, 300 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 20: 1d5 sec $\,$

Figure 21: Test WD pencil beam, 100 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 22: Test WD, J8, 100 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 23: Test WD pencil beam 1000 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 24: Test WD, J8, 1000 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 25: 1d4 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 26: 1d5 sec. 1: Jet density. 2: gas vz. 3: jet specific energy (bulk + potential relative to particle 2). 4: gas temperature.

Figure 27: Test, NS, jet density at time 10, 40, 200, 1000 seconds.

Figure 28: Test, NS, jet density at time 10, 40, 200, 1000 seconds.