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1 Physics of Radiation Transfer

1.1 Spectral Intensity

Typically when we discuss the radiation field we use the spectral intensity I (v,x, ) which is a function of
frequency, position, and direction. This is very similar to the phase space density used in deriving the fluid
equations f (x,Vv) except that

e light always travels at ¢, so the velocity dependence is just a direction dependence.
e Furthermore, photons can have different frequencies, so there is an extra dimension to the phase space.

e Instead of storing the phase space density of photons, the spectral intensity is the phase space density
of energy flux...

Going between photon number and energy just involves a factor of hv and going from energy density to
energy flux density just involves a factor of ¢ so we have:

I (U7 X? Q’ ) = hycf (V7 X’ Q7 )

This can also be seen by considering the differential energy:

dE =1 (v,x,Q,)dvdQdAdt = hvf (v,x,Q,) dvdQdV

where the number of photons traveling normal to the surface dA that cross the surface dA in time dt is
just the number of photons in the volume dV = dA c¢d¢ (assuming the photons are headed normal to dA)...

so we also have:
dE = hvf (v,x,Q,)dvdQdAcdt

which gives:
I (V’ X? Q’ ) = hycf (V7 X’ Q7 )
1.2 Deriving the Transport Equation

If we consider the Boltzmann transport equation for photons of a specific frequency f, we have

9 _(Of
Ef,,—i—v-Vf—i—F-fo B (m)colz

Now photons don’t experience body forces, always travel at the speed of light, and in general the ” collision
term” consists of photon emission and absorption... so we have
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where A, is the emission rate of photons of frequency v and the mean free path length is given by
Xv» = o,n where o, is the particle scattering cross section and n is the number density of particles.
Now if we multiply through by hv we have

0
711/ . Il/ =T — VL/
cot v =7

where 7, = hv A, is the radiative power.
If we solve the transport equation along a characteristic

[x(s),t(s)] = {XO + ns, Z}

we have

dl, oI, dr oL, ot 101,
ds 0z Os + ot %*nvju'i‘z ot *nu(s)_XV(s)Iu(s)

where f(s) = f(x(s),t(s)) = f (xo + ns, £) and then we can divide through by x, (s) we get

dr,  n(s) B
Xv(8)ds  xu(s)
Now if we define d7, = x,,(s)ds which gives

and

%

1
s(t,) = | —dr],
Xv

we can write the transport equation in the simplest form

ar,

dr,

Sy(1y) — I,(1)
although the RHS is now more difficult to evaluate as

fr) =f(s(m)) = f(x(s(r)),t(s(n)))

Also if we include scattering then the source function can depend on the mean radiative flux % and the
transport equation becomes an integro-differential equation that must be solved iteratively...
There are also a few important dimensionless numbers to consider (table :
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Table 1:
T=Ilk=1/\ B=u/c
T<<1 streaming limit
T>>1, 0r<<1 static diffusion limit
T>>1, 87 >> 1 | dynamic diffusion limit

Table 2: The moments of the specific intensity.
Radiation Energy moments | Corresponding fluid moments

CEZZQOOdI/fdQI(Il,V) p=[dvf(v)
F=["dv[dOml(n,v) pv = [dvvf(v)
P = [, dv [dQnnI(n,v) P=[dvvvf(v)

1.3 Equations of Radiation Hydrodynamics

Some of what follows is taken from
http://adsabs.harvard.edu/abs/2007ApJ. ..667..626KKrumholzetal . 2007

0
prrVo(pv):O

ot
0
a(pv)+v-(pvv):fVP+G
%+V~[(e+P)v]ch0
OF
E+V~F270GO
1 OF
?E+V~P7—G

where the moments of the specific intensity are defined as Table
and the radiation 4-force density is given by

GO = /) 'y / 49 [r(n, )1 (n, v) — 7(n, v)]

(

cG = /000 dZ//dQ [k(n,v)](n,v) —n(n,v)|n

If we had a closure relation for the radiation pressure then we could solve this system. For gas particles,
collisions tend to produce a Boltzmann Distribution which is isotropic and gives a pressure tensor that is a
multiple of the identity tensor. Photons do not ”collide” with each other and they all have the same velocity
‘¢’ but in various directions. If the field were isotropic than P¥ = §“1/3E but in general P¥ = f¥ E where
‘t” is the Eddington Tensor.

1.4 Simplifying assumptions

e If the flux spectrum of the radiation is direction-independent then we can write the radiation four-force
density in terms of the moments of the radiation field
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G° = Y[y’kop + (1 = v*)kor)E — ykoparTy
— (v -F/*)[kor — 29" (kor — kor)]
— ¥ (kor — Kk + 0E)(vv) : P/c?
G = vror(F/c) — ykoparTy(v/c)
— [V’ (kor — KoE)(V/©)E + yror(v/c) - P
+ 7% (kor — koE) [2v-F/c* — (vv) : P/] v

where

Kop comoving-frame Planck function weighted opacity
KoE comoving-frame radiation energy weighted opacity
KoF comoving-frame radiation flux weighted opacity

e If the radiation has a blackbody spectrum then kop = kop

e If the radiation is optically thick, then

F()(I/Q) X —VEo(I/())/Ho(I/()) X —[aB(V(),To)/aTo](VTo)/lio(l/(])

which implies that
R Jo~ dvoro(vo) T OB(vo, To) /0T

Kom = Kpp = =
or on Jo dvo[0B(vo, Ty)/0Th)

e In the optically thin regime, |Fo(vg)| = ¢Ey(v0), so we would have kor = Kog.
however assuming a blackbody temperature in the optically thin limit may be any more accurate than
assuming that kor = Kogr

1.5 Flux limited diffusion

The flux limited diffusion approximation drops the radiation momentum equation in favor of

where A is the flux-limiter and is given by

and
_ |VE|

rkorEo

which corresponds to a pressure tensor

E
P, = 70[(1 — Ry)I + (3Ry — 1)ngny)

where
Ry = A+ N°R?
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Here are A(R) and Ry (R) plotted
If we Lorentz boost the comoving terms into the lab frame and keep terms necessary to maintain accuracy

we get:
4B
GO = kop (E—”) + <A> (2“‘”3—1>V-VE
C C ROR

- -1 1 2 4B
e e () e (017

2 2 2 c
ATBY 1 /)2 VE
G =-\VE+kopw (B — = —7(9) AWE 42 [ for _q) (- VEV
c c 2 \¢c KOR c?

2 Numerics of Flux Limited Diffusion

If we plug the expressions for the radiation 4-momentum back into the gas equations and keep terms necessary
to maintain accuracy we get:

9 (pv) + V- (pvv) =VP

ot
Oe 3—R v?
a"ﬁ‘V'[(e—l—P)V]:—/{()p(4ﬂ'B—CE) — 5 2HOP?E
OF )\ 3—R 2
P V. L VE = kop(dnB — cE) n 2 wop—E
ot KOR 2 c

For static diffusion, the terms in blue with % can be dropped and the system can be split into the usual
hydro update (black), radiative source terms ( ), and a coupled implicit solve (red) for the radiation
energy density and thermal energy density (i.e. temperature).

2.1 Operator splitting

Krumholz et al. perform Implicit Radiative, Explicit Hydro, Explicit Radiative
In AstroBEAR this would look like:

e Initialization

e Prolongate, p, pv, e, E, and E!

e Step 1

e Overlap p, pv, e, F and do physical BC’s

e Do IR which updates eg and Ey using p1, e1, E1, and E{

I

e Update F ombe

ombe Using E

e Update e using F. E and e

ombc ombc

I
2mbc a2mbc

e Update Eé using pre IR and post IR Ej

e Ghost ey 1 Embc+1 ’ Erlnbc+1

e Do first EH,,mbc,),
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e Do ER, mbc,, — Terms with VE can be done without ghosting since EH did not change F . The
V - vE term needs time centered face centered velocities which can be stored during the hydro update.

e Store E in child arrays to be prolongated

e Step 2

e Overlap p, pv , e , F and do physical BC’s

e Do IR which updates eg and Fy using p1 , 1 , E7 , and E{

e Update Eé using pre IR and post IR Ej

e Update F; using E{

e Ghost eppe , E1 E{

e Do second EH,,0,,

e Do ER, mbc,, — Terms with VE can be done without ghosting since EH did not

e Do ER,,0,, — Terms with grad E can be done without ghosting since EH did not change E. The V-vE

term needs time centered face centered velocities which can be stored during the hydro update.

2.2 Explicit Update 1

The extra terms in the explicit update due to radiation energy are as follows:

0

g — _\VE
5 (V) \Y
86:)\<2W—1>V~VE
8t ROR
aE:—)\(QW—l)V-VE—V- (3_R2VE>
ot KOR 2

These can be discretized as follows:

1 At
n+l _
D; = p? - 5&& ( in+1 - Einfl)

2 Az m

S lﬁ)\z plihoP (v (B — ELy))
KioRr

At [N ‘%? n n n
E;H'1 =E - s <2 (2,;013 - 1) (Ui ( it1 Ei—l)) + (Fi+1/2 - Fi1/2)>

kiR
where 3 Ryuir)s
Fit1/2= f (v + o) (BF + EP)
where
Ryjiv1/2 = Aig1/2 + )‘12+1/2R?+1/2
and

|Er — B
2koR,i+1/2 (EP + EP)

Rit1)2 =

i -6
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and )
)\i = COth Rz —
/2 i+1/2 ( +1/2 R¢+1/2>
and N
KoR.i T KOR.: 1
KOR,i+1/2 = SOt ORTHL and Ait1/2 = (COth Rit1/2 — )
2 i+1/2 Rit1y2
and ) )
)\i = E (COthRi — &>
and
‘ i+1 1n ‘
2koR,i B

2.3 Implicit Update 1

For now we will assume that kop and kor are constant over the implicit update and we will treat the
energy as the total internal energy ignoring kinetic and magnetic contributions. In this case we can solve
the radiation energy equations:

oL =V. —)\VE—I—/iop(leB(T)—cE):V~F+/<c0p(47rB(T)—cE)
87& ROR

Oe

5% —kop(drB(T) — cE)

where F = c’\ VE
Expandlng ‘about e,,0,,
Of course even if the opacity is independent of energy and radiation energy, the above combined system
of equations is still non-linear due to the dependence on Temperature of the Planck Function B(T)
However we can expand the Plank Function about eg

B(T) = B(Ty +dT) = B (Tp) + o8

Zde = —ap (T} +4T3Tde) = By (1 1) 60)
7r Ty

where o)
or _ (v—1
I'= De ’Y
Then the system of equations becomes
%7? =Vv. cA VE + Kop |:47TBO (1 +4Fe 60) — CE:| % = —Kop |:47TBO (1 +4F%) — CE:|

KOR

which will be accurate as long as ‘4F‘)‘T§° ‘ <f<<lorAe=le—eg| < 5%‘1

We can calculate the time scale for this to be true using the evolution equation for the energy density

Ae = Atkop [ATBy — cE| < ¢ 52

which giVGS At < fm
Implicit Discretization 1

We can now discretize the equations

B B = [ogga (B — B7) — aiorgo (Bf — Biy)] — €Bf + def + 6 — gief) el — e = 7 —
pie; — (0; — piel)

where the diffusion coefficient is given by
At Chiti1/2
Az? kog yit1/2
El',—E}|
260m,i+1/2(E] +E7y )

_ _ KORTROR 11 _ 1 1
Q172 = where RoR,i+1/2 = — 5 and >\i+1/2 = Rit12 COthRZ‘+1/2 — Rit1)s and

where RH_l/Q =

i -7
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and

€; — CAtKV()p)i

represents the number of absorption/emissions during the time step
and

b = 2B (T7) (45

0; = ¢;*ZB (T!")

and we can think of the radiative flux as

arFi1e = i (Bl — EY)
Time Discretization

Now all the terms on the right hand side that are linear in E or e have been written as E* or e* because
there are different ways to approximate E*(e*). For Backward Euler we have Er = E;L“ and for Crank
Nicholson we have E; = i (EZ-”+1 + ET) or we can parameterize the solution Ef = YE!M! + ¢ E where
Yv=1-19

Backward Euler has ¢ = 1 and Crank Nicholson has ¢ = 1/2

Forward Euler has v =0

In any event in 1D we have the following matrix coefficients

[1 + (0%'+1/2 +a;1/0+ 61‘)] EZH (1/1az+1/2) E (1/}041 1/2) En“ (Vi) e; s

= [1 =9 (12 + aim1o + &) Bf + (Yvis1)2) By + (Yai1y2) B — Ysel + 0
(L+6i) et = (ei) BT = (L+ i) €] + (Vi) B} 92»

Now since the second equation has no spatial dependence, we can solve it for

_ 1
1+ Yo,

et = e +

(e BE Y + () B — 03}
and plug the result into the first equation to get a matrix equation involving only one variable.

€;
1 EMY — (Yo 9) B i1/2) B
{ +¢( Qir1/2 T Q179 + 1+¢oz>} i (1/J0/z+1/2) 7,+1 (7/)% 1/2) i—1
0.

— €; — —
= |1—9 | iy1j2 + @i1jo + ———— | | B + (Yay1y2) By + (Yoim1y2) B + ——
[ Y ( +1/2 1/2 1+ oo )] ( +1/2) i+1 (1/ 1/2) 1 1+ ¢g;

This equation decouples and can be solved on it’s own, and then the solution plugged back into the
second equation to solve for the new energy.

2D etc...

For 2D or 3D we have more connections to add to the matrix elements but it is very straight forward...
There will be additional alpha terms for each dimension, but everything else stays the same.

Initial solution vector For the initial solution vector, we can just use Edot from the parent update (or
last time step if we are on the coarse grid) to guess E, and then we can solve for the new e given our guess
at the new E using the same time stepping (Backward Euler, Crank Nicholson, etc...).

E}Tt = EP + EJAt eft! = e + - {(e) EfT o+ (ve) B - 0;)

2.3.1 Coarse-Fine Boundaries

Since we are doing our implicit solves first, we can use time interpolated solutions for the implicit solve
for non-refined ghost zones. To do this we just need Edot. The opacities etc... in the ghost zones can be
obtained from the hydro terms.

And the radiative implicit heating in coarse ghost cells can be done along with the initial solution vector
so they are available for the hydro update.

i -8



Radiation

2.3.2 Physical Boundary Conditions

Open (Free streaming) boundaries We would like the radiation to leave at the free streaming limit.
So A VE =F = ckn = 22 )
Clearly if we set By = 0 and Ay = k,Az we should get the correct flux.
This corresponds to an o = c%
So we would just modify a and zero out the matrix coefficient to the ghost zone

Constant Slope Boundary Here we want the flux to be constant so energy does not pile up near the
boundary. If we cancel all derivative terms on both sides of the cell, this will effectively match the incoming
flux with the outgoing flux. This can also be done by setting ay = o; =0

Periodic Boundary This is the same as internal zones - it just maps the neighbor cell to be across the
domain. Hypre has built in functionality for this under for the Struct Interface
User defined radiation field/Coarse Fine boundary

This will be the boundary at internal coarse-fine boundaries, but could also be used at the physical
boundary if the radiation energy were specified.

Reflecting/ZeroSlope Boundary Reflecting boundary should be fairly straightforward. This an be
achieved by setting oy, = 0 which zeros out any flux - and has the same effect as setting £ = E or
Ertt = B and EY = EP
Constant radiative flux To have a constant radiative flux we must zero out terms involving the gradient
and just add Foﬁ—; in the source vector
Summary Table 3]

[ig] -9
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) e 4 S 0T e/1=togh— 0 0 XNTd AANTIAqYASN Ay g
W — N\Mg_sm — i) @/ttoq & I=tog— | &/T+ogq 0 AIVANNOT INY/AIVANNOI AANIIAAUASN AV i
=0 e/ 0h— 0 0 ONILDHATATY dvVy ¢
ol — g ) /g e/1-toq— | @T+hoq | e/ THoh— DIAOTIAJITY NYALNI ¢
0 0 0 XN T ALVTOdVIILXT Avy I
+ oA TR — ei-top— | Foq 0 ONINVHULS ddUd dvy 0
Crud Liud Hﬂwm Arepunog ON[eA [ROLIOWINN

Arewrung :¢ o[qe],
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2.4 Tightly Coupled Simplifications

If we plug the expressions for the radiation 4-momentum back into the gas equations and keep terms necessary
to maintain accuracy we get:
2 (pv)+ V- (pvv) = VPV L
. 2
% + V- [(e+ P)v] = —kop(4TB — cE)+\ (2;j_~f' |> v VE-3 g, U

OR

G-V - EVE = rop(47B — cE)—\ (37 . 1) v-VE-V. (3fevE) 43Rk p 2 F
Now if

4
E= aRT4 = apr (p%)

and
1/4

e = pc, T = pey, (%)
and we just consider the implicit terms, we can combine the gas and radiation diffusion equations to
arrig? at:)
e+E) )\
o =V e VE

which simpliﬁe% to

1/4

v (E OB _ A
(e (2)") s =v-ve
or
(1+&) 9 =V-2VE
OR
The second term in parenthesis represents the extra ’inertia’ the radiation field has due to its coupling
with the gas. It is non-linear and this limits the time step that can be taken.

E+e
Atr g = o
Bt Ve VE

2.4.1 Changes to the discretization

For the coupled system of equations we had the following:

€ n n n
|:1 =+ ’g/) (()é,‘,_;'_l/g + ()é,;_l/g —+ 71 n 1/)@5 >:| E[ +1 _ (’(ﬁ(li+1/2) E}[,/_;Lll o (d)ai,—l/Q) Ei—+11

_ _ 0,
EM + (Yo EM 4+ (Yay_q)9) B | + ———
)] 2 o) B+ o) B2+
If the gas and radiation are in thermal equilibrium, then we have 8; = ¢; F; and we also have that in the
limit that kp — 0o , we have € — 0o and ¢ — oo
This simplifies the above equation to

— E’L
— 11— T
{ ”(a””2+“1”2+1+w@

Kl T ;) +¢ (ai+1/2 + 041'1/2)} E?H — (?/faiﬂ/z) Eﬁrll _ (@%4/2) Einfll

= Kl + 61) -9 (()41:+1/2 + @1—1/2)} E + (1/3(1114-1/2) El oy + (’&047‘,—1/2) B4

bi
T 4
And & = I = 255 which if tion of state wh T gives & =
nd gt = 4= = —2= which if we use our equation of state where e oc T gives 7 = ;3
1
i Qe _ 0e 8T _ T i € e ich i ;
Now if we go back and calculate 37 = 5755 = g We arrive at 2t instead of yop which is consistent

with our derivation above.
Also our time equation should be

T;
At~ 4y = gras
ot V‘NOR VE
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So in principle combining the gas and energy equations in the limit that of high planck opacity, does not
change the matrix or rhs vector, however it does limit the ability for there to be strong source terms on the
right in regions where the gas and radiation have gotten out of equilibrium. It is not clear how this effects
the ability of the elliptic solver to converge to given tolerances.

2.5 Modifications to time steps

More importantly is the recognition of the time scales over which the internal energy can change.

Previously we looked at the decoupled equation for the gas energy density

% = —Hop(47‘(’B — CE)

Ae = Atkop [ATBy — cE| < £5a

which giVQS At < fm

however, if the gas is in equilibrium with the radiation, this does not limit the time step at all - even
though diffusion may quickly move the gas out of equilibrium with the radiation.

We can account for this by expanding our equation

At < & Tropin BO_TS( Jo N which gives us a quadratic for At

4T kgpc |8tE| At? + (4F/€0p |47TBO — CEO|) At < fTQ

where we have conservatively assumed that the diffusion always causes the gas to be more out of equi-
librium.

Now if we recognize that there are three time scales at play here:

T
Diffusion Time 7p =
4r‘v- 2 VE‘
KOR
C ling Ti r
oupling Time 7¢ =
PHRg €T UTrop [4n By — cB|
1
Absorption Time 74 =
CRop

then this quadratic simplifies to
At? At
farp T e <8

2
At = \/(TQATTCD) +&TpTA — TéAT;D

__ TAT 4¢72
At = T2 <\/1 + o 1)

So we can choose * the diffusion time if we assume the gas and radiation are strongly coupled - optically
thick, * the coupling time if we assume that the gas is optically thin (which should imply the radiation is
fairly diffused) * Or we can solve the quadratic

2.6 Alternative Splitting Method

While the previous method for splitting the equation technically works, it is likely to lead to large differences
in the radiation field and the energy fields at coarse fine boundaries since there is no radiative flux to coarsen
from the explicit updates to keep the various AMR levels consistent. There is one term that could potentially
be coarsened and applied like any flux, but it is not the dominant term. As a result it might be better to
treat the entire radiative energy equation implicitly (though keeping the velocity constant)

-12
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at (pv)+ V- (pvv) = -VP

0
- Q 02
ge + V- [(e+ P)v] = —kop(4rB — cE)+A\ AL V- VE—S ae H,OPU—E
ot ROR 2 C
E ) ; 3 R. 3— Ry 02
OF . A GE = kop(nB — cB)- (252 _1)v.vE_v. (3=l p) 32, Vg
ot ROR ROR 2 2 C

It is possible that with included the terms in magenta in a semi-implicit method, the dynamic diffusion
regime may be stable... In any event, it costs very little to add all of the terms in magenta to the implicit
solve (using the old velocity). Then the momentum update can be done explicitly - though using a time
centered radiation field.

Operator Splitting 2

2.6.1 Operator splitting 2

In AstroBEAR this would look like: * Initialization * Prolongate, p , pv , e , E , and E * Step 1* Overlap
p,pv e, E and do physical BC’s * Do IR which updates eg and Ejy using p1 , e1 , £y, and E} * Update
E,ybe using Eyp . * Update €mbe using E, be > Eombe » and eype ™ Update g using pre IR and post
IR Ey * Ghost e, 1 Ebest » Prbeit * Do first EH,,mbc,, * Do ER,,mbc,, — Terms with VE can be
done without ghosting since EH did not change E . * Store E in child arrays to be prolongated * Step 2 *
Overlap p , pv , e, E and do physical BC’s * Do IR which updates eg and Ey using p; ; e1, B, and By *
Update Ey using pre IR and post IR Ey * Update F; using By * Ghost empe , E1 , E1 * Do second EH,,0,,
* Do ER,,0,, — Terms with VFE can be done without ghosting since EH did not change F .

2.7 Explicit Update 2

The extra terms in the explicit update due to radiation energy are as follows:

2 (pv) = —AVE

These can be discretized as follows:

1 A 1 1

Pt =P = pAEN (( Y+ B = (Bl + ERY))

)\i = L (COthRi — ﬁ
‘Ez+1 E’L,;1|
2koR,i B

and R; =

2.8 Implicit Update 2

For now we will assume that kop and kgr are constant over the implicit update and we will treat the
energy as the total internal energy ignoring kinetic and magnetic contributions. In this case we can solve
the radiation energy equations:

9e — Iiop(47rB—cE)+)\(2”0P _ )v VE - 3f2p0p B 98 = V. A VE + rop(4rB(T) — cE) —
A(z”gf’ 1)v VE + 5k p B - V- (3f2vE)

which we can also write as
% = f(e)+g(E,VE) % =V C)‘ -VE-V: (3 R vE)—f (e)—g (e, E,VE) where f (¢) = —4rropB(T(€))

andg(aE,VE):ffop(cE)+)\<2%— )v-VE— R o p

Now we can linearize f about e,,0,, f (€) = f (eo) + % (e —ep)
so that the first equation can be written as
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5= f(eo) + 9 (B, VE) + G (e — eo)

and then discretized as

it —ep = AL(f (ef) + g (E*, VE")) + ¢pef — ge; ™

where

¢ = —At% = dmropAt2BTE)

which can be solved for et = el + 1fdt)¢ (f(e})+g(E*,VE"))
or

entl =er 4 s (0 + & Bf +wp v (Biyy — B y) — &EY)
Then if we take the semi-discretized equation for E

9 =V . AVE -V (3f2vE) — f(e]) —g(BE,VE) - 2 (Wi} — biel ™)

and then plugin the solution for ™ + 1°,4,, we get

O =V AVE-V-(3fvE)~ [ ()~ g (B, VE) & (verel — vonel — 1295 (f () + (B, VE)))
which simplifies to

OE ) 3—R
Now we have 1 equation with 1 variable that we can solve implicitly using hypre, and then we can use
E"t! and E™ to construct E* which we can plug into the equation for e”t!

Expanding f about e,,0,,

Expanding

_ _ oB oT _ c 4 3 _ e—eg
B(T'(e)) = B (To +dT(e)) = B(Tv) + 47 T, e de = zagr (TO + 475 Fde) = By (1 + 4F—TO )
where
r=2ar _ =1

Oe —  nkp
and we can identify ¢ = fAt% = 47r/<;0pAt%—]f = IGWHOPAtBOTLO
Then the equation for e becomes

% = —kop [4mBy (1+4T <320 ) — cB| + A (222 — 1) v VE - 2 pop 2 B

which will be accurate as long as 4F% <&<<lor|Ae|=le—eo| <&
We can calculate the time scale for this to be true using the evolution equation for the energy density
le — eg] = |Ae| = At %| < 5%2

hich gives At < £¢—-1o_ = 1o
WHeh gV Sar|gs §4F|—K0P [47730(14-41“%)—015]+,\(2237§—1)V.VE—3*232mm%E‘

ot

or in discretized form

0;
At < gmﬁ\(—ei+eiE;+wm,iv;’,i(E;fH—E;:l)—fiE*)|

Implicit Discretization 2 Now we can discretize g(Ex, VE*) = kopcE* + A (222—’; — 1) v.-VE* —
as
g=e (VEI +OB]) +wei (VELY — OB + OB, —OE!,) - & (VBT + O EY)
which along with the other terms gives
EM — B = a2 (WERY + OB —EM —4E}) — ai_1p (WEM + OB —EM —)EP )]

- [Ci+1/27];b,i+1/2 (¢E?J:r11 + iE”ﬁ‘rl + sznH + ﬁEzn) - C1’*1/2“;;,1'71/2 (Q/JE?H + @/;Ezn + 1/’Ezn_+11 + iEznq)}

1 _ _ _ _
“T5va [=0; + € (VEIT + QE]) + wa v, (WEIE + QB —¢EM —gE! ) — & (WEPT + )E])]

where the diffusion coefficient is given by
At CAit1/2

Qit1/2 = Ag2 KOR,i+1/2
and where

¢ _ At 3—Ra it/
i+1/2 = Az 4
and

€; — CAtHOP’i

16 - 14



Radiation

and
¢i = Atdrrop B (T}") (:%)
and
0; = —Atf(e}) = Atdrkop, B (T}
and NN
_ Az At [ Kopi 1
i = 28t (ome 1)
and

3—Ro; 2
fi = At 22’1 Iiop’i% and

__ KOR,itKoOR,i+1
where KoR,i+1/2 = — 5
and |
E! ,—E"
R‘ — i+1 K3
i+1/2 2k0R,i+1/2( BF+EP, )
and
- 1 ) _ 1
)\7,+1/2 - Ri+1/2 (Coth RZ+1/2 Ri+1/2)
and
. 2 2
Rait1/2 = Aigr2 + )‘i+1/2Ri+1/2
and |
E™  —E"
. i41 i—1
RZ - 2HOR,11E,?
and
Ao = 4 (coth By — )
and

Ro; = \i+ N2R?
Which we can arrange into the following form

€ — El n+1
(1 + (Oéi+1/2 +ai_1/0+ Ci+1/2v;l,i+1/2 - Cifl/QU;l’i71/2 + 1+ 0, 1/@1)) E;
n Wa,i Vg n
<Oéi+1/2 - Cz‘+1/2%,¢+1/2 BEETS T ¢¢'>> EiJ:rll

_ (1/)

n Wa,iVy nil
—\ ¥ @im1y2 + Gim1/205 ;10 + T+ oo, B
_ (w

+¢ " L oii ) g
(o738 i— Vgpoie i—
1/2 1/2 ,i—1/2 1 =+ ,lpqsl 1

_ n n 62‘62‘ n
= (1 - (Oéi+1/2 +ai1/0+ Ci+1/2vm,i+1/2 - Cil/QUg;’Z;UQ + Hzl)qb)) E;
2D etc... /

For 2D or 3D we have more connections to add to the matrix elements but it is very straight forward...
There will be additional terms for each dimension - and the velocity components (v,,x,,) will change, but
everything else stays the same.

Initial solution vector For the initial solution vector, we can just use Edot from the parent update (or
last time step if we are on the coarse grid) to guess E Ef“ =E"+ E{’At

2.8.1 Coarse-Fine Boundaries

Since we are doing our implicit solves first, we can use time interpolated solutions for the implicit solve
for non-refined ghost zones. To do this we just need Edot. The opacities etc... in the ghost zones can be
obtained from the hydro terms.

And the radiative implicit heating in coarse ghost cells can be done along with the initial solution vector
so they are available for the hydro update.
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2.8.2 Physical Boundary Conditions

For each boundary type we need to specify E7, E;+1, kg, and v, in terms of other quantities (i.e. including
E™ + 1¢). The v,,g,, and kappa,,g,, terms should come from the hydro boundary conditions so we just need
an equation for E™,g,,

Open (Free streaming) boundaries We would like the radiation to leave at the free streaming limit.
But we could have to modify the opacity in the ghost zone to keep the radiation energy positive

AVE=F =cEn = e )

KOR Kg
Clearly if we set Eg =0 and ry << ﬁ we should get A = k,Az and a free streaming flux of cEn

which also corresponds to an o = c%

Constant Slope Boundary FE,; =2FE; — F;
Periodic Boundary This is the same as internal zones - it just maps the neighbor cell to be across the
domain. Hypre has built in functionality for this under for the Struct Interface
User defined radiation field/Coarse Fine boundary
This will be the boundary at internal coarse-fine boundaries, but could also be used at the physical
boundary if the radiation energy were specified.
Reflecting/ZeroSlope Boundary
E, = F;
Constant radiative flux
E, = E; — Fy"a2®
g
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