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1 Physics of Radiation Transfer

1.1 Spectral Intensity

Typically when we discuss the radiation field we use the spectral intensity I (ν,x,Ω) which is a function of
frequency, position, and direction. This is very similar to the phase space density used in deriving the fluid
equations f (x,v) except that

• light always travels at c, so the velocity dependence is just a direction dependence.

• Furthermore, photons can have different frequencies, so there is an extra dimension to the phase space.

• Instead of storing the phase space density of photons, the spectral intensity is the phase space density
of energy flux...

Going between photon number and energy just involves a factor of hν and going from energy density to
energy flux density just involves a factor of c so we have:

I (ν,x,Ω, ) = hνcf (ν,x,Ω, )

This can also be seen by considering the differential energy:

dE = I (ν,x,Ω, ) dν dΩ dA dt = hνf (ν,x,Ω, ) dν dΩ dV

where the number of photons traveling normal to the surface dA that cross the surface dA in time dt is
just the number of photons in the volume dV = dAcdt (assuming the photons are headed normal to dA)...

so we also have:
dE = hνf (ν,x,Ω, ) dν dΩ dAcdt

which gives:
I (ν,x,Ω, ) = hνcf (ν,x,Ω, )

1.2 Deriving the Transport Equation

If we consider the Boltzmann transport equation for photons of a specific frequency fν we have

∂

∂t
fν + v · ∇f + F · ∇pf =

(
∂f

∂t

)
coll

Now photons don’t experience body forces, always travel at the speed of light, and in general the ”collision
term” consists of photon emission and absorption... so we have
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∂

∂t
fν + cn · ∇fν = Aν − χνfνc

where Aν is the emission rate of photons of frequency ν and the mean free path length is given by
χν = σνn where σν is the particle scattering cross section and n is the number density of particles.

Now if we multiply through by hν we have

∂

c∂t
Iν + n · ∇Iν = ην − σνIν

where ην = hνAν is the radiative power.
If we solve the transport equation along a characteristic

[x (s) , t (s)] =
[
x0 + ns,

s

c

]
we have

dIν
ds

=
∂Iν
∂xi

∂xi

∂s
+
∂Iν
∂t

∂t

∂s
= n · ∇Iν +

1

c

∂Iν
∂t

= ην(s)− χν(s)Iν(s)

where f(s) = f(x(s), t(s)) = f
(
x0 + ns, sc

)
and then we can divide through by χν(s) we get

dIν
χν(s)ds

=
ην(s)

χν(s)
− Iν(s) = Sν(s)− Iν(s)

Now if we define dτν = χν(s)ds which gives

τν(s) =

s∫
0

χν(s′)ds′

and

s(τν) =

τν∫
0

1

χν
dτ ′ν

we can write the transport equation in the simplest form

dIν
dτν

= Sν(τν)− Iν(τν)

although the RHS is now more difficult to evaluate as

f (τν) = f (s (τν)) = f (x (s (τν)) , t (s (τν)))

Also if we include scattering then the source function can depend on the mean radiative flux cE
4π and the

transport equation becomes an integro-differential equation that must be solved iteratively...
There are also a few important dimensionless numbers to consider (table 1):
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Table 1:
τ = lκ = l/λp β = u/c

τ << 1 streaming limit
τ >> 1, βτ << 1 static diffusion limit
τ >> 1, βτ >> 1 dynamic diffusion limit

Table 2: The moments of the specific intensity.
Radiation Energy moments Corresponding fluid moments
cE =

∫∞
0

dν
∫

dΩI(n, ν) ρ =
∫

dvf(v)
F =

∫∞
0
dν
∫

dΩnI(n, ν) ρv =
∫

dv vf(v)
cP =

∫∞
0

dν
∫

dΩ nn I(n, ν) P =
∫

dv vvf(v)

1.3 Equations of Radiation Hydrodynamics

Some of what follows is taken from
http://adsabs.harvard.edu/abs/2007ApJ...667..626KKrumholzetal.2007

∂ρ

∂t
+∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) = −∇P + G

∂e

∂t
+∇ · [(e+ P ) v] = cG0

∂E

∂t
+∇ · F = −cG0

1

c2
∂F

∂t
+∇ ·P = −G

where the moments of the specific intensity are defined as Table 2:
and the radiation 4-force density is given by

cG0 =

∫ ∞
0

dν

∫
dΩ [κ(n, v)I(n, ν)− η(n, v)]

cG =

∫ ∞
0

dν

∫
dΩ [κ(n, v)I(n, ν)− η(n, v)] n

If we had a closure relation for the radiation pressure then we could solve this system. For gas particles,
collisions tend to produce a Boltzmann Distribution which is isotropic and gives a pressure tensor that is a
multiple of the identity tensor. Photons do not ”collide” with each other and they all have the same velocity
‘c’ but in various directions. If the field were isotropic than P ij = δij1/3E but in general P ij = f ijE where
‘f’ is the Eddington Tensor.

1.4 Simplifying assumptions

• If the flux spectrum of the radiation is direction-independent then we can write the radiation four-force
density in terms of the moments of the radiation field
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G0 = γ[γ2κ0E + (1− γ2)κ0F ]E − γκ0PaRT
4
0

− γ(v · F/c2)[κ0F − 2γ2(κ0F − κ0E)]

− γ3(κ0F − κ+ 0E)(vv) : P/c2

G = γκ0F (F/c)− γκ0PaRT
4
0 (v/c)

−
[
γ3(κ0F − κ0E)(v/c)E + γκ0F (v/c) ·P

]
+ γ3(κ0F − κ0E)

[
2v · F/c3 − (vv) : P/c3

]
v

where

κ0P comoving-frame Planck function weighted opacity

κ0E comoving-frame radiation energy weighted opacity

κ0F comoving-frame radiation flux weighted opacity

• If the radiation has a blackbody spectrum then κ0E = κ0P

• If the radiation is optically thick, then

F0(ν0) ∝ −∇E0(ν0)/κ0(ν0) ∝ −[∂B(ν0, T0)/∂T0](∇T0)/κ0(ν0)

which implies that

κ−1
0F = κ−1

0R =

∫∞
0
dν0κ0(ν0)−1[∂B(ν0, T0)/∂T0]∫∞

0
dν0[∂B(ν0, T0)/∂T0]

• In the optically thin regime, |F0(ν0)| → cE0(ν0), so we would have κ0F = κ0E .
however assuming a blackbody temperature in the optically thin limit may be any more accurate than
assuming that κ0F = κ0R

1.5 Flux limited diffusion

The flux limited diffusion approximation drops the radiation momentum equation in favor of

F0 = − cλ

κ0R
∇E0

where λ is the flux-limiter and is given by

λ =
1

R

(
cothR− 1

R

)
and

R =
|∇E0|
κ0RE0

which corresponds to a pressure tensor

P0 =
E0

2
[(1−R2)I + (3R2 − 1)n0n0]

where
R2 = λ+ λ2R2
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Here are λ(R) and R2(R) plotted
If we Lorentz boost the comoving terms into the lab frame and keep terms necessary to maintain accuracy

we get:

G0 = κ0P

(
E − 4πB

c

)
+

(
λ

c

)(
2
κ0P

κ0R
− 1

)
v · ∇E

− κ0P

c2
E

[
3−R2

2
v2 +

3R2 − 1

2
(v · n)2

]
+

1

2

(v
c

)2

κ0P

(
E − 4πB

c

)
G = −λ∇E + κ0P

v

c

(
E − 4πB

c

)
− 1

2

(v
c

)2

λ∇E + 2λ

(
κ0P

κ0R
− 1

)
(v · ∇E)v

c2

2 Numerics of Flux Limited Diffusion

If we plug the expressions for the radiation 4-momentum back into the gas equations and keep terms necessary
to maintain accuracy we get:

∂

∂t
(ρv) +∇ · (ρvv) = ∇P−λ∇E

∂e

∂t
+∇ · [(e+ P ) v] = −κ0P (4πB − cE)+λ

(
2
κ0P

κ0R
− 1

)
v · ∇E−3−R2

2
κ0P

v2

c
E

∂E

∂t
−∇ · cλ

κ0R
∇E = κ0P (4πB − cE)−λ

(
2
κ0P

κ0R
− 1

)
v · ∇E−∇ ·

(
3−R2

2
vE

)
+

3−R2

2
κ0P

v2

c
E

For static diffusion, the terms in blue with v2

c can be dropped and the system can be split into the usual
hydro update (black), radiative source terms (green), and a coupled implicit solve (red) for the radiation
energy density and thermal energy density (i.e. temperature).

2.1 Operator splitting

Krumholz et al. perform Implicit Radiative, Explicit Hydro, Explicit Radiative

In AstroBEAR this would look like:

• Initialization

• Prolongate, ρ, ρv, e, E, and ĖI

• Step 1

• Overlap ρ, ρv, e, E and do physical BC’s

• Do IR which updates e0 and E0 using ρ1, e1, E1, and ĖI1

• Update E
2mbc using ĖI

2mbc

• Update e
2mbc using E

2mbc , ĖI
2mbc , and e

2mbc

• Update ĖI0 using pre IR and post IR E0

• Ghost e
2mbc , Embc+1

, ĖImbc+1

• Do first EH,,mbc,,
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• Do ER,,mbc,, — Terms with ∇E can be done without ghosting since EH did not change E . The
∇·vE term needs time centered face centered velocities which can be stored during the hydro update.

• Store Ė in child arrays to be prolongated

• Step 2

• Overlap ρ , ρv , e , E and do physical BC’s

• Do IR which updates e0 and E0 using ρ1 , e1 , E1 , and ĖI1

• Update ĖI0 using pre IR and post IR E0

• Update E1 using ĖI1

• Ghost embc , E1 , ĖI1

• Do second EH,,0,,

• Do ER,,mbc,, — Terms with ∇E can be done without ghosting since EH did not

• Do ER,,0,, — Terms with grad E can be done without ghosting since EH did not change E. The ∇·vE
term needs time centered face centered velocities which can be stored during the hydro update.

2.2 Explicit Update 1

The extra terms in the explicit update due to radiation energy are as follows:

∂

∂t
(ρv) = −λ∇E

∂e

∂t
= λ

(
2
κ0P

κ0R
− 1

)
v · ∇E

∂E

∂t
= −λ

(
2
κ0P

κ0R
− 1

)
v · ∇E −∇ ·

(
3−R2

2
vE

)
These can be discretized as follows:

pn+1
i = pni −

1

2

∆t

∆x
λi
(
Eni+1 − Eni−1

)
en+1
i = eni +

1

2

∆t

∆x
λi

(
2
κni,0P
κni,0R

− 1

)(
vni
(
Eni+1 − Eni−1

))
En+1
i = Eni −

∆t

∆x

(
λi
2

(
2
κni,0P
κni,0R

− 1

)(
vni
(
Eni+1 − Eni−1

))
+
(
Fi+1/2 − Fi−1/2

))

where

Fi+1/2 =
3−R2,i+1/2

8

(
vni + vni+1

) (
Eni + Eni+1

)
where

R2,i+1/2 = λi+1/2 + λ2
i+1/2R

2
i+1/2

and

Ri+1/2 =

∣∣Eni+1 − Eni
∣∣

2κ0R,i+1/2

(
Eni + Eni+1

)
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and

λi+1/2 =
1

Ri+1/2

(
cothRi+1/2 −

1

Ri+1/2

)
and

κ0R,i+1/2 =
κn0R,i + κn0R,i+1

2
and λi+1/2 =

1

Ri+1/2

(
cothRi+1/2 −

1

Ri+1/2

)
and

λi =
1

Ri

(
cothRi −

1

Ri

)
and

Ri =

∣∣Eni+1 − Eni−1

∣∣
2κ0R,iEni

2.3 Implicit Update 1

For now we will assume that κ0P and κ0R are constant over the implicit update and we will treat the
energy as the total internal energy ignoring kinetic and magnetic contributions. In this case we can solve
the radiation energy equations:

∂E

∂t
= ∇ · cλ

κ0R
∇E + κ0P (4πB(T )− cE) = ∇ · F + κ0P (4πB(T )− cE)

∂e

∂t
= −κ0P (4πB(T )− cE)

where F = cλ
κ0R
∇E

Expanding about e,,0,,
Of course even if the opacity is independent of energy and radiation energy, the above combined system

of equations is still non-linear due to the dependence on Temperature of the Planck Function B(T )
However we can expand the Plank Function about e0

B(T ) = B (T0 + dT ) = B (T0) +
∂B

∂T

∣∣∣∣
T0

∂T

∂e
de =

c

4π
aR
(
T 4

0 + 4T 3
0 Γde

)
= B0

(
1 + 4Γ

e− e0

T0

)
where

Γ = ∂T
∂e = (γ−1)

nkB
Then the system of equations becomes
∂E
∂t = ∇ · cλκ0R

∇E + κ0P

[
4πB0

(
1 + 4Γ e−e0

T0

)
− cE

]
∂e
∂t = −κ0P

[
4πB0

(
1 + 4Γ e−e0

T0

)
− cE

]
which will be accurate as long as

∣∣∣4Γ e−e0
T0

∣∣∣ < ξ << 1 or ∆e = |e− e0| < ξ T0

4Γ

We can calculate the time scale for this to be true using the evolution equation for the energy density
∆e = ∆tκ0P |4πB0 − cE| < ξ T0

4Γ

which gives ∆t < ξ T0

4Γκ0P |4πB0−cE|
Implicit Discretization 1

We can now discretize the equations
En+1
i − Eni =

[
αi+1/2

(
E∗i+1 − E∗i

)
− αi−1/2

(
E∗i − E∗i−1

)]
− εE∗i + φe∗i + θi − φieni ) en+1

i − eni = εiE
∗
i −

φie
∗
i − (θi − φieni )
where the diffusion coefficient is given by

αi+1/2 = ∆t
∆x2

cλi+1/2

κ0R,i+1/2
where κ0R,i+1/2 =

κn0R,i+κ
n
0R,i+1

2 and λi+1/2 = 1
Ri+1/2

(
cothRi+1/2 − 1

Ri+1/2

)
and

where Ri+1/2 =
|Eni+1−E

n
i |

2κ0R,i+1/2(Eni +Eni+1)
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and
εi = c∆tκ0P,i

represents the number of absorption/emissions during the time step
and
φi = εi

4π
c B (Tni )

(
4Γ
Tni

)
θi = εi

4π
c B (Tni )

and we can think of the radiative flux as
∆t
∆xFi+1/2 = αi+1/2

(
E∗i+1 − E∗i

)
Time Discretization

Now all the terms on the right hand side that are linear in E or e have been written as E∗ or e∗ because
there are different ways to approximate E∗(e∗). For Backward Euler we have E∗i = En+1

i and for Crank
Nicholson we have E∗i = 1

2

(
En+1
i + Eni

)
or we can parameterize the solution E∗i = ψEn+1

i + ψ̄Eni where
ψ̄ = 1− ψ

Backward Euler has ψ = 1 and Crank Nicholson has ψ = 1/2
Forward Euler has ψ = 0
In any event in 1D we have the following matrix coefficients[

1 + ψ
(
αi+1/2 + αi−1/2 + εi

)]
En+1
i −

(
ψαi+1/2

)
En+1
i+1 −

(
ψαi−1/2

)
En+1
i−1 − (ψφi) e

n+1
i

=
[
1− ψ̄

(
αi+1/2 + αi−1/2 + εi

)]
Eni +

(
ψ̄αi+1/2

)
Eni+1 +

(
ψ̄αi−1/2

)
Eni−1 − ψφieni + θi

(1 + ψφi) e
n+1
i − (ψεi)E

n+1
i = (1 + ψφi) e

n
i +

(
ψ̄εi
)
Eni − θi

Now since the second equation has no spatial dependence, we can solve it for

en+1
i = eni +

1

1 + ψφi

{
(ψεi)E

n+1
i +

(
ψ̄εi
)
Eni − θi

}
and plug the result into the first equation to get a matrix equation involving only one variable.[

1 + ψ

(
αi+1/2 + αi−1/2 +

εi
1 + ψφi

)]
En+1
i −

(
ψαi+1/2

)
En+1
i+1 −

(
ψαi−1/2

)
En+1
i−1

=

[
1− ψ̄

(
αi+1/2 + αi−1/2 +

εi
1 + ψφi

)]
Eni +

(
ψ̄αi+1/2

)
Eni+1 +

(
ψ̄αi−1/2

)
Eni−1 +

θi
1 + ψφi

This equation decouples and can be solved on it’s own, and then the solution plugged back into the
second equation to solve for the new energy.
2D etc...

For 2D or 3D we have more connections to add to the matrix elements but it is very straight forward...
There will be additional alpha terms for each dimension, but everything else stays the same.
Initial solution vector For the initial solution vector, we can just use Edot from the parent update (or

last time step if we are on the coarse grid) to guess E, and then we can solve for the new e given our guess
at the new E using the same time stepping (Backward Euler, Crank Nicholson, etc...).

En+1
i = Eni + ĖIi ∆t en+1

i = eni + 1
1+ψφi

{
(ψεi)E

n+1
i +

(
ψ̄εi
)
Eni − θi

}
2.3.1 Coarse-Fine Boundaries

Since we are doing our implicit solves first, we can use time interpolated solutions for the implicit solve
for non-refined ghost zones. To do this we just need Edot. The opacities etc... in the ghost zones can be
obtained from the hydro terms.

And the radiative implicit heating in coarse ghost cells can be done along with the initial solution vector
so they are available for the hydro update.
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2.3.2 Physical Boundary Conditions

Open (Free streaming) boundaries We would like the radiation to leave at the free streaming limit.

So cλ
κ0R
∇E = F = cEn =

cλg
κg

(E−Eg)
∆x

Clearly if we set Eg = 0 and λg = κg∆x we should get the correct flux.
This corresponds to an α = c∆t

∆x
So we would just modify α and zero out the matrix coefficient to the ghost zone

Constant Slope Boundary Here we want the flux to be constant so energy does not pile up near the
boundary. If we cancel all derivative terms on both sides of the cell, this will effectively match the incoming
flux with the outgoing flux. This can also be done by setting αg = αi = 0
Periodic Boundary This is the same as internal zones - it just maps the neighbor cell to be across the

domain. Hypre has built in functionality for this under for the Struct Interface
User defined radiation field/Coarse Fine boundary

This will be the boundary at internal coarse-fine boundaries, but could also be used at the physical
boundary if the radiation energy were specified.
Reflecting/ZeroSlope Boundary Reflecting boundary should be fairly straightforward. This an be

achieved by setting αg = 0 which zeros out any flux - and has the same effect as setting E∗g = E∗i or

En+1
g = En+1

i and Eng = Eni
Constant radiative flux To have a constant radiative flux we must zero out terms involving the gradient

and just add F0
∆t
∆x in the source vector

Summary Table 3
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2.4 Tightly Coupled Simplifications

If we plug the expressions for the radiation 4-momentum back into the gas equations and keep terms necessary
to maintain accuracy we get:

∂
∂t (ρv) +∇ · (ρvv) = ∇P−λ∇E
∂e
∂t +∇ · [(e+ P ) v] = −κ0P (4πB − cE)+λ

(
2κ0P

κ0R
− 1
)

v · ∇E− 3−R2

2 κ0P
v2

c E

∂E
∂t −∇ ·

cλ
κ0R
∇E = κ0P (4πB − cE)−λ

(
2κ0P

κ0R
− 1
)

v · ∇E−∇ ·
(

3−R2

2 vE
)
+ 3−R2

2 κ0P
v2

c E

Now if

E = aRT
4 = aR

(
e
ρcv

)4

and

e = ρcvT = ρcv

(
E
aR

)1/4

and we just consider the implicit terms, we can combine the gas and radiation diffusion equations to
arrive at:

∂(e+E)
∂t = ∇ · cλκ0R

∇E
which simplifies to(

1 + ρcv
4E

(
E
aR

)1/4
)
∂E
∂t = ∇ · cλκ0R

∇E
or(
1 + e

4E

)
∂E
∂t = ∇ · cλκ0R

∇E
The second term in parenthesis represents the extra ’inertia’ the radiation field has due to its coupling

with the gas. It is non-linear and this limits the time step that can be taken.

∆t ≈ E
∂E
∂t

=
E+ e

4

∇· cλκ0R
∇E

2.4.1 Changes to the discretization

For the coupled system of equations we had the following:[
1 + ψ

(
αi+1/2 + αi−1/2 +

εi
1 + ψφi

)]
En+1
i −

(
ψαi+1/2

)
En+1
i+1 −

(
ψαi−1/2

)
En+1
i−1

=

[
1− ψ̄

(
αi+1/2 + αi−1/2 +

εi
1 + ψφi

)]
Eni +

(
ψ̄αi+1/2

)
Eni+1 +

(
ψ̄αi−1/2

)
Eni−1 +

θi
1 + ψφi

If the gas and radiation are in thermal equilibrium, then we have θi = εiEi and we also have that in the
limit that κP →∞ , we have ε→∞ and φ→∞

This simplifies the above equation to[(
1 +

εi
φi

)
+ ψ

(
αi+1/2 + αi−1/2

)]
En+1
i −

(
ψαi+1/2

)
En+1
i+1 −

(
ψαi−1/2

)
En+1
i−1

=

[(
1 +

εi
φi

)
− ψ̄

(
αi+1/2 + αi−1/2

)]
Eni +

(
ψ̄αi+1/2

)
Eni+1 +

(
ψ̄αi−1/2

)
Eni−1

And εi
φi

=
Ti
4Γ

Ei
=

Ti

4 ∂T
∂e

Ei
which if we use our equation of state where e ∝ T gives εi

φi
= ei

4Ei

Now if we go back and calculate ∂e
∂E = ∂e

∂T
∂T
∂E =

1
Γ

4E
T

we arrive at εi
φi

instead of ei
4Ei

which is consistent

with our derivation above.
Also our time equation should be

∆t ≈ E
∂E
∂t

=
E+

Ti
4Γ

∇· cλκ0R
∇E
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So in principle combining the gas and energy equations in the limit that of high planck opacity, does not
change the matrix or rhs vector, however it does limit the ability for there to be strong source terms on the
right in regions where the gas and radiation have gotten out of equilibrium. It is not clear how this effects
the ability of the elliptic solver to converge to given tolerances.

2.5 Modifications to time steps

More importantly is the recognition of the time scales over which the internal energy can change.
Previously we looked at the decoupled equation for the gas energy density
∂e
∂t = −κ0P (4πB − cE)

∆e = ∆tκ0P |4πB0 − cE| < ξ T0

4Γ

which gives ∆t < ξ T0

4Γκ0P |4πB0−cE|
however, if the gas is in equilibrium with the radiation, this does not limit the time step at all - even

though diffusion may quickly move the gas out of equilibrium with the radiation.
We can account for this by expanding our equation
∆t < ξ T0

4Γκ0P |4πB0−c(E0+∂tE∆t)| which gives us a quadratic for ∆t

4Γκ0P c |∂tE|∆t2 + (4Γκ0P |4πB0 − cE0|) ∆t < ξT0

where we have conservatively assumed that the diffusion always causes the gas to be more out of equi-
librium.

Now if we recognize that there are three time scales at play here:

Diffusion Time τD =
T

4Γ
∣∣∣∇ · cλκ0R

∇E
∣∣∣

Coupling Time τC =
T

4Γκ0P |4πB0 − cE|

Absorption Time τA =
1

cκ0P

then this quadratic simplifies to
∆t2

τAτD
+ ∆t

τC
< ξ

∆t =

√(
τAτD
2τC

)2

+ ξτDτA − τAτD
2τC

∆t = τAτD
2τC

(√
1 +

4ξτ2
C

τDτA
− 1

)
So we can choose * the diffusion time if we assume the gas and radiation are strongly coupled - optically

thick, * the coupling time if we assume that the gas is optically thin (which should imply the radiation is
fairly diffused) * Or we can solve the quadratic

2.6 Alternative Splitting Method

While the previous method for splitting the equation technically works, it is likely to lead to large differences
in the radiation field and the energy fields at coarse fine boundaries since there is no radiative flux to coarsen
from the explicit updates to keep the various AMR levels consistent. There is one term that could potentially
be coarsened and applied like any flux, but it is not the dominant term. As a result it might be better to
treat the entire radiative energy equation implicitly (though keeping the velocity constant)
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∂

∂t
(ρv) +∇ · (ρvv) = −∇P−λ∇E

∂e

∂t
+∇ · [(e+ P ) v] = −κ0P (4πB − cE)+λ

(
2
κ0P

κ0R
− 1

)
v · ∇E−3−R2

2
κ0P

v2

c
E

∂E

∂t
−∇ · cλ

κ0R
∇E = κ0P (4πB − cE)−λ

(
2
κ0P

κ0R
− 1

)
v · ∇E−∇ ·

(
3−R2

2
vE

)
+

3−R2

2
κ0P

v2

c
E

It is possible that with included the terms in magenta in a semi-implicit method, the dynamic diffusion
regime may be stable... In any event, it costs very little to add all of the terms in magenta to the implicit
solve (using the old velocity). Then the momentum update can be done explicitly - though using a time
centered radiation field.

Operator Splitting 2

2.6.1 Operator splitting 2

In AstroBEAR this would look like: * Initialization * Prolongate, ρ , ρv , e , E , and Ė * Step 1 * Overlap
ρ , ρv , e , E and do physical BC’s * Do IR which updates e0 and E0 using ρ1 , e1 , E1 , and Ė1 * Update
E

2mbc using Ė
2mbc * Update e

2mbc using E
2mbc , Ė

2mbc , and e
2mbc * Update Ė0 using pre IR and post

IR E0 * Ghost e
2mbc , Embc+1

, Ėmbc+1
* Do first EH,,mbc,, * Do ER,,mbc,, — Terms with ∇E can be

done without ghosting since EH did not change E . * Store Ė in child arrays to be prolongated * Step 2 *
Overlap ρ , ρv , e , E and do physical BC’s * Do IR which updates e0 and E0 using ρ1 , e1 , E1 , and Ė1 *
Update Ė0 using pre IR and post IR E0 * Update E1 using Ė1 * Ghost embc , E1 , Ė1 * Do second EH,,0,,
* Do ER,,0,, — Terms with ∇E can be done without ghosting since EH did not change E .

2.7 Explicit Update 2

The extra terms in the explicit update due to radiation energy are as follows:
∂
∂t (ρv) = −λ∇E
These can be discretized as follows:
pn+1
i = pni − 1

4
∆t
∆xλi

((
Eni+1 + En+1

i+1

)
−
(
Eni−1 + En+1

i−1

))
λi = 1

Ri

(
cothRi − 1

Ri

)
and Ri =

|Eni+1−E
n
i−1|

2κ0R,iEni

2.8 Implicit Update 2

For now we will assume that κ0P and κ0R are constant over the implicit update and we will treat the
energy as the total internal energy ignoring kinetic and magnetic contributions. In this case we can solve
the radiation energy equations:

∂e
∂t = −κ0P (4πB − cE) + λ

(
2κ0P

κ0R
− 1
)

v · ∇E − 3−R2

2 κ0P
v2

c E
∂E
∂t = ∇ · cλκ0R

∇E + κ0P (4πB(T )− cE)−

λ
(

2κ0P

κ0R
− 1
)

v · ∇E + 3−R2

2 κ0P
v2

c E −∇ ·
(

3−R2

2 vE
)

which we can also write as
∂e
∂t = f (e)+g (E,∇E) ∂E

∂t = ∇· cλκ0R
∇E−∇·

(
3−R2

2 vE
)
−f (e)−g (e, E,∇E) where f (e) = −4πκ0PB(T (e))

and g (e, E,∇E) = κ0P (cE) + λ
(

2κ0P

κ0R
− 1
)

v · ∇E − 3−R2

2 κ0P
v2

c E

Now we can linearize f about e,,0,, f (e) = f (e0) + ∂f
∂e (e− e0)

so that the first equation can be written as
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∂e
∂t = f (e0) + g (E,∇E) + ∂f

∂e (e− e0)
and then discretized as
en+1
i − eni = ∆t (f (eni ) + g (E∗,∇E∗)) + ψφeni − ψφe

n+1
i

where
φ = −∆t∂f∂e = 4πκ0P∆t∂B(T (e))

∂e

which can be solved for en+1
i = eni + ∆t

1+ψφ (f (eni ) + g (E∗,∇E∗))
or
en+1
i = eni + 1

1+ψφi

(
−θi + εiE

∗
i + ωx,iv

n
x,i

(
E∗i+1 − E∗i−1

)
− ξiE∗

)
Then if we take the semi-discretized equation for E
∂E
∂t = ∇ · cλκ0R

∇E −∇ ·
(

3−R2

2 vE
)
− f (eni )− g (E,∇E)− 1

∆t

(
ψφie

n
i − ψφie

n+1
i

)
and then plugin the solution for en + 1,, i, , we get
∂E
∂t = ∇· cλκ0R

∇E−∇·
(

3−R2

2 vE
)
−f (eni )−g (E,∇E)− 1

∆t

(
ψφie

n
i − ψφieni −

ψφi
1+ψφi

(f (eni ) + g (E,∇E))
)

which simplifies to
∂E
∂t = ∇ · cλκ0R

∇E −∇ ·
(

3−R2

2 vE
)
− 1

1+ψφi
(f (eni ) + g (E,∇E))

Now we have 1 equation with 1 variable that we can solve implicitly using hypre, and then we can use
En+1 and En to construct E∗ which we can plug into the equation for en+1

Expanding f about e,,0,,
Expanding

B(T (e)) = B (T0 + dT (e)) = B (T0) + ∂B
∂T

∣∣
T0

∂T
∂e de = c

4πaR
(
T 4

0 + 4T 3
0 Γde

)
= B0

(
1 + 4Γ e−e0

T0

)
where
Γ = ∂T

∂e = (γ−1)
nkB

and we can identify φ = −∆t∂f∂e = 4πκ0P∆t∂B∂e = 16πκ0P∆tB0
Γ
T0

Then the equation for e becomes
∂e
∂t = −κ0P

[
4πB0

(
1 + 4Γ e−e0

T0

)
− cE

]
+ λ

(
2κ0P

κ0R
− 1
)

v · ∇E − 3−R2

2 κ0P
v2

c E

which will be accurate as long as 4Γ |e−e0|T0
< ξ << 1 or |∆e| = |e− e0| < ξ T0

4Γ
We can calculate the time scale for this to be true using the evolution equation for the energy density
|e− e0| = |∆e| = ∆t

∣∣∂e
∂t

∣∣ < ξ T0

4Γ

which gives ∆t < ξ T0

4Γ| ∂e∂t |
= ξ T0

4Γ
∣∣∣−κ0P

[
4πB0

(
1+4Γ

e−e0
T0

)
−cE

]
+λ
(

2
κ0P
κ0R
−1
)
v·∇E− 3−R2

2 κ0P
v2

c E
∣∣∣

or in discretized form
∆t < ξ θi

φi
1

∆t |(−θi+εiE∗
i +ωx,ivnx,i(E∗

i+1−E∗
i−1)−ξiE∗)|

Implicit Discretization 2 Now we can discretize g(E∗,∇E∗) = κ0P cE
∗ + λ

(
2κ0P

κ0R
− 1
)

v · ∇E∗ −
3−R2

2 κ0P
v2

c E
∗

as
g = εi

(
ψEn+1

i + ψ̄Eni
)

+ ωx,i
(
ψEn+1

i+1 − ψE
n+1
i−1 + ψ̄Eni+1 − ψ̄Eni−1

)
− ξi

(
ψEn+1

i + ψ̄Eni
)

which along with the other terms gives
En+1
i − Eni =

[
αi+1/2

(
ψEn+1

i+1 + ψ̄Eni+1 − ψEn+1
i − ψ̄Eni

)
− αi−1/2

(
ψEn+1

i + ψ̄Eni − ψEn+1
i−1 − ψ̄E

n
i−1

)]
−
[
ζi+1/2v

n
x,i+1/2

(
ψEn+1

i+1 + ψ̄Eni+1 + ψEn+1
i + ψ̄Eni

)
− ζi−1/2v

n
x,i−1/2

(
ψEn+1

i + ψ̄Eni + ψEn+1
i−1 + ψ̄Eni−1

)]
− 1

1 + ψφi

[
−θi + εi

(
ψEn+1

i + ψ̄Eni
)

+ ωx,iv
n
x,i

(
ψEn+1

i+1 + ψ̄Eni+1 − ψEn+1
i−1 − ψ̄E

n
i−1

)
− ξi

(
ψEn+1

i + ψ̄Eni
)]

where the diffusion coefficient is given by

αi+1/2 = ∆t
∆x2

cλi+1/2

κ0R,i+1/2

and where
ζi+1/2 = ∆t

∆x

3−R2,i+1/2

4
and
εi = c∆tκ0P,i
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and
φi = ∆t4πκ0P,iB (Tni )

(
4Γ
Tni

)
and
θi = −∆tf(eni ) = ∆t4πκ0P,iB (Tni )
and
ωx,i =

λx,i∆t
∆x

(
κ0P,i

κ0R,i
− 1

2

)
and
ξi = ∆t

3−R2,i

2 κ0P,i
v2
i

c and

where κ0R,i+1/2 =
κ0R,i+κ0R,i+1

2
and

Ri+1/2 =
|Eni+1−E

n
i |

2κ0R,i+1/2(Eni +Eni+1)
and
λi+1/2 = 1

Ri+1/2

(
cothRi+1/2 − 1

Ri+1/2

)
and
R2,i+1/2 = λi+1/2 + λ2

i+1/2R
2
i+1/2

and

Ri =
|Eni+1−E

n
i−1|

2κ0R,iEni
and
λi = 1

Ri

(
cothRi − 1

Ri

)
and
R2,i = λi + λ2

iR
2
i

Which we can arrange into the following form(
1 + ψ

(
αi+1/2 + αi−1/2 + ζi+1/2v

n
x,i+1/2 − ζi−1/2v

n
x,i−1/2 +

εi − ξi
1 + ψφi

))
En+1
i

−
(
ψ

(
αi+1/2 − ζi+1/2v

n
x,i+1/2 −

ωx,iv
n
x,i

1 + ψφi

))
En+1
i+1

−
(
ψ

(
αi−1/2 + ζi−1/2v

n
x,i−1/2 +

ωx,iv
n
x,i

1 + ψφi

))
En+1
i−1

−
(
ψ

(
αi−1/2 + ζi−1/2v

n
x,i−1/2 +

ωx,iv
n
x,i

1 + ψφi

))
En+1
i−1

=

(
1− ψ̄

(
αi+1/2 + αi−1/2 + ζi+1/2v

n
x,i+1/2 − ζi1/2v

n
x,i−1/2 +

εiξi
1 + ψφi

))
Eni

2D etc...
For 2D or 3D we have more connections to add to the matrix elements but it is very straight forward...

There will be additional terms for each dimension - and the velocity components (v,,x,,) will change, but
everything else stays the same.
Initial solution vector For the initial solution vector, we can just use Edot from the parent update (or

last time step if we are on the coarse grid) to guess E En+1
i = Eni + Ėni ∆t

2.8.1 Coarse-Fine Boundaries

Since we are doing our implicit solves first, we can use time interpolated solutions for the implicit solve
for non-refined ghost zones. To do this we just need Edot. The opacities etc... in the ghost zones can be
obtained from the hydro terms.

And the radiative implicit heating in coarse ghost cells can be done along with the initial solution vector
so they are available for the hydro update.
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2.8.2 Physical Boundary Conditions

For each boundary type we need to specify Eng , E
n+1
g , κg, and vg in terms of other quantities (i.e. including

En + 1i). The v,,g,, and kappa,,g,, terms should come from the hydro boundary conditions so we just need
an equation for En,, g, ,
Open (Free streaming) boundaries We would like the radiation to leave at the free streaming limit.

But we could have to modify the opacity in the ghost zone to keep the radiation energy positive
cλ
κ0R
∇E = F = cEn =

cλg
κg

(E−Eg)
∆x

Clearly if we set Eg = 0 and κg <<
1

∆x we should get λ = κg∆x and a free streaming flux of cEn

which also corresponds to an α = c∆t
∆x

Constant Slope Boundary Eg = 2Ei − Ei+1

Periodic Boundary This is the same as internal zones - it just maps the neighbor cell to be across the
domain. Hypre has built in functionality for this under for the Struct Interface
User defined radiation field/Coarse Fine boundary

This will be the boundary at internal coarse-fine boundaries, but could also be used at the physical
boundary if the radiation energy were specified.
Reflecting/ZeroSlope Boundary
Eg = Ei

Constant radiative flux
Eg = Ei − F0

κg∆x
cλg
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