Detector acceptance tests and characterization

- Acceptance tests to ensure compliance with specifications
 - Source measurements with analog electronics and analysis
 - Specifications developed by detector working group and to be incorporated into contract
 - Test procedure for each specification developed jointly LBNL/MSU
 - MSU tests and advises LBNL of results
 - LBNL decides on disposition of detector
 - Manufacturer can perform the same tests to reduce number of returns

- Detector characterization
 - Pulse shape measurements with collimated source
 - In-beam characterization with analysis

- Perform acceptance tests and characterizations in cost-effective manner
 - Develop procedures by scientists and faculty (LBNL/MSU)
 - Production work done by graduate students
 - Continuity and quality assurance by faculty (Glasmacher/Starosta)
Acceptance tests
guided by IEEE 325-1996

• Energy resolution for segments and central contact
 – Cryostat pointing down
• Energy resolution for central contact
 – Cryostat pointing up
 – Ambient noise 80 dB, 85 dB, 88 dB, 90dB
• Absolute efficiency
 – Each crystal
 – triplet
• Peak-to-total ratio
 – Each crystal
 – 3-crystal summing
• Bandwidth of preamp
• Noise power spectrum
• Time resolution at nominal bias (CsF or fast plastic with ^{22}Na)
Acceptance tests II

- Time resolution at nominal bias (CsF or fast plastic with ^{22}Na)
- Cross talk between selected channels
- Depletion voltage (manufacturer to provide curve)
- Cool-down time
- Dewar holding time detector pointing up and down
- Heater resistance
- Temperature monitor PT100
- HV shutdown operational
- Mechanical dimensions
 - Crystal cans relative to cryostat
 - Crystal cans relative to mounting flange
Detector characterization

• Singles pulse shape measurements with collimated source on automated 2-D test stand (100 MHz, 12 bits) illuminating detector front
 – Locate front segments relative to optical reference point on cryostat housing (57Co)

• Coincidence pulse shape measurements (60Co)
 – Measure selected pulse shapes to compare to calculations
 • Segment geometry
 • Crystal orientation

• In-beam measurement with analysis
 – Doppler correction ability with slow and fast beams
MSU experience with highly-segmented HPGe dets

- Completed SeGA (an array of 18 32-fold-segmented HPGe detectors) in 2001 (funded by NSF and MSU) within budget and time
 - SeGA runs about 1500 hrs/year in about half of all NSCL CCF experiments
 - Acceptance tested 18 detectors with graduate students and characterized in automated test stand
- Available infrastructure
 - Dedicated gamma detector laboratory
 - Real-time data acquisition, HV and central contact digitizers for three central contacts, waveform digitizers for 1 crystal
 - Motion control for test stand, but need to build larger test stand
 - LN2 fill system
 - Established procedures (and culture) of handling Ge detectors