Physics Opportunities and Functional Requirements for “Offline” γ-ray spectrometers

C.J. Lister
Argonne National Laboratory

Even at an “Equipment” meeting….Physics First!

What will we be measuring with RIA?

Current examples of “Offline” γ-spectroscopy

Functional Requirements for the future

Conclusions
What are the physics challenges at RIA?

Determine Spin-Orbit splitting.
Quantify Residual Interactions / Correlations
Measure Wavefunction Purity
Determine Strength Functions
Properties of poorly-bound states.

Devil is in the detail:
Look for NON YRAST states

Need DETAILED investigation of state wavefunctions.

 Usually with very low intensity beams
Fine structure at the proton drip line

Proton decay spectroscopy has evolved from a dripline curio to a precise and detailed tool for probing nuclear wavefunctions.

Theory has evolved to cover:
- Spherical
- Deformed
- Vibrational
- Odd-odd
- Triaxial Nuclei.

More complicated cases (e.g. odd-odds) need more than groundstate decay for clear interpretation.

Often, the combination of groundstate and excited state decays can allow the parent to be unambiguously identified.
Fine structure following alpha decay

“Background-free” α–γ correlation allows absolutely unambiguous assignment.

Complicated α- and γ- “singles spectra
Very Heavy Elements ($Z > 100$)

What can we learn about nuclear structure when the production cross-section is nb (10^{-37} m^2) or even pb?

Even with GRETA, “In-Beam” spectroscopy becomes VERY difficult.

But many of the decays have α-decay “Fine-structure”.

Which can be detected quite efficiently.

And α–γ correlations, together with α-hindrancerance factors, can pin down the identification of Nilsson states near the Fermi Level.
The Case of 249Cf Decay

(I. Ahmad et. al. ANL 2003)

cf-249 alpha, December 19, 2003

4 Bands with 4 states
PLUS
Hindrance factors
Beta Decay

A powerful though recently quite neglected tool.

A beautiful complement to “In-Beam” spectroscopy.

Populates “Non Yrast” states well

Low spin ($\Delta J = 0,1$) Selection rules favored

Range of accessible states INCREASE as you move away from stability

Technical Drawback for very low production channels:

Finding an efficient and channel-specific trigger.

(β-spectrum is continuous)
(Lifetimes relatively long \sim seconds)
Beta Decay Example: Decay of 150Ho

J. Agramunt et. al. (Valencia) in Nuclear Structure ’98 from Gatlinburg Meeting

Experiments at GSI after mass separation. Data collected using Na(I) calorimetry….the Total Absorption Spectrometer (TAS) AND using the “Cluster Cube”.

Result: $h_{11/2}$ to $h_{9/2}$ “spin flip” Gammow-Teller decay DOMINATES. Cluster cube has fantastic sensitivity to mixing of this into other states (>1000 g-rays !!)
GSI Cluster Cube Array
β-decay of 80Zr

4 µs isomer trigger is the key that picks out this beta decay from the A=80 “background that is 5000 times stronger
Isomer Physics: Example of 140Dy

At ORNL at the back of the RS using “cluster” detectors

And at ANL at the back of the FMA using a motley array
First observation of the drip line nucleus 140Dy: Identification of a 7 μs K isomer populating the ground state band

Happily, in the end, everyone agreed!!
Functional requirements for “offline” arrays

Detection Efficiency is VERY VERY important as:

Mass Separation,
Selection Rules
Temporal Correlations (RDT, RBT, IT)

May have allowed the selection of the nucleus, AND state of interest

Energy and Time Resolution are VERY important for:

Signal-to-noise
Cases of “Many Gammas” (resolving multiplets)
Isomer identification and measurement

Dynamic Range is VERY important

From X-Rays (for identification and C.E. measurement)
To ~10MeV (for the highest β-decays)
Polarization and Angular Correlation Measurements

Generally, in “Offline” studies the γ-multiplicity is low, and thus high segmentation may not appear very important. Also, all the reaction-induced alignment or polarization of magnetic substates have been lost.

BUT

Of course it can be regained by establishing a preferred “Z-direction”

From direction of emitted proton, or alpha particle (“Box” detector)

From first photon in γ–γ angular correlation. (Pixel detector)

SO

Good SPATIAL RESOLUTION may be very useful

BONUS

“Directionality” helps reject background radiation
The X-Array: A step forward

Compact Three Layer Concept:

A) Inner array for efficiently detecting (α, p, β, CE) decays
 Highly segmented silicon DSSDs
 Thin Wall Vacuum Envelope

B) Array of large area planar detectors for efficiently detecting X-rays, and for polarization and correlation studies.
 Highly segmented planar germanium DSSDs

C) Calorimeter of low-segmentation large germanium detectors for efficient absorption of total gamma ray flux.
 Large Volume non-segmented “clover” detectors
GARBO MCNP Geometry

Horizontal cross section

HPGe

Aluminum

Vertical cross section
MCNP Results

Photopeak efficiency Peak to Total (E > 30 keV)
GARBO MCNP efficiency vs. Clover size in cm

- 14x14x7
- 12x12x6
- 10x10x5
- 12x12x9

Energy (keV) vs. Absolute efficiency graph.
Conclusions

New physics challenges will need new techniques.

Access to non-yrast states will be very important.

Combining the selection rules of \((\alpha,\beta,p,e^-)\) decay, with the power of \(\gamma\)-spectroscopy, can give *UNIQUE* insight into nuclear wavefunctions.

The technological sophistication of “in-beam” \(\gamma\)-arrays have fantastic (and relatively unexplored) potential for decay spectroscopy.

High **Efficiency** for “offline” \(\gamma\)-decay is critical.

Excellent **Energy** and **Time** resolution are very important.

Spatial Resolution (Pixels or “Tracking”) is a big **PLUS**