Problem 10.1

An electron in the \(n = 2 \) state of hydrogen remains there on average \(\Delta t = 10 \) ns before jumping to the \(n = 1 \) state (the so-called lifetime of the excited state) by emission of light.

(a) Estimate the uncertainty in the energy (\(\Delta E \)) and frequency (\(\Delta \nu \)) of the \(n = 2 \) state.

(b) What fraction of the transition energy, \(\Delta E/(E_2-E_1) \), is this?

(c) What is the wavelength, and width (in nm), of this line in the spectrum of hydrogen?

(d) Show that

\[
\frac{\Delta \lambda \lambda}{\lambda} = \frac{\Delta \nu \nu}{\nu} = \frac{\Delta E}{E_2 - E_1} = 6.46 \times 10^{-9}
\]

Solution 10.1

(a) The minimum uncertainty in the energy is found from Eq. 38-2.

\[
\Delta E \geq \frac{\hbar}{\Delta t} = \frac{\left(1.055 \times 10^{-34} \text{ J} \cdot \text{s}\right)}{\left(1 \times 10^{-8} \text{ s}\right)} = 1.055 \times 10^{-26} \text{ J} = 6.59 \times 10^{-9} \text{ eV} \approx 10^{-7} \text{ eV}
\]

\[
\Delta \nu = \frac{\Delta \omega}{2\pi} = \frac{1}{2\pi} \frac{1}{\Delta t} = \frac{1}{2\pi} \frac{1}{\left(1 \times 10^{-8} \text{ s}\right)} = 16 \text{ MHz}
\]

(b) The transition energy can be found from Eq. 37-14b. \(Z = 1 \) for hydrogen.

\[
E_n = -\left(13.6 \text{ eV}\right) \frac{Z^2}{n^2} \quad \rightarrow \quad E_2 - E_1 = \left[-\left(13.6 \text{ eV}\right) \frac{1^2}{2^2}\right] - \left[-\left(13.6 \text{ eV}\right) \frac{1^2}{1^2}\right] = 10.2 \text{ eV}
\]

\[
\frac{\Delta E}{E_2 - E_1} = \frac{6.59 \times 10^{-8} \text{ eV}}{10.2 \text{ eV}} = 6.46 \times 10^{-9} \approx 10^{-8}
\]

(c) The wavelength is given by Eq. 37-3.

\[
E = \frac{\hbar c}{\lambda} \quad \rightarrow
\]

\[
\lambda = \frac{\hbar c}{E_2 - E_1} = \frac{\left(6.63 \times 10^{-34} \text{ J} \cdot \text{s}\right) \left(3.00 \times 10^8 \text{ m/s}\right)}{\left(10.2 \text{ eV}\right) \left(1.60 \times 10^{-19} \text{ J}/\text{eV}\right)} = 1.22 \times 10^{-7} \text{ m} = 122 \text{ nm} \approx 100 \text{ nm}
\]
Take the derivative of the above relationship to find $\Delta \lambda$.

$$E \equiv E_2 - E_1, \quad \lambda = \frac{hc}{E} \rightarrow d\lambda = -\frac{hc}{E^2} dE \rightarrow \Delta \lambda = -\frac{hc}{E^2} \Delta E = -\frac{\Delta E}{E} \rightarrow$$

$$|\Delta \lambda| = \frac{\Delta E}{E_2 - E_1} = (122 \text{ nm})(6.46 \times 10^{-2}) = 7.88 \times 10^{-7} \text{ nm} = 10^{-6} \text{ nm}$$

(d) Follows from above.

Problem 10.2

A free electron has a wave function $\psi(x) = A \sin(2.0 \times 10^8 x)$, where x is given in centimeters. Determine the particle’s (a) wavelength, (b) momentum, (c) speed, and (d) kinetic energy.

Solution 10.2

The wave function is given in the form $\psi(x) = A \sin kx$.

(a) $\lambda = \frac{2\pi}{k} = \frac{2\pi}{2.0 \times 10^8 \text{ m}^{-1}} = 3.142 \times 10^{-10} \text{ m} = 3.1 \times 10^{-10} \text{ m}$

(b) $p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34} \text{ J} \cdot \text{s}}{3.142 \times 10^{-10} \text{ m}} = 2.110 \times 10^{-24} \text{ kg} \cdot \text{m/s} = 2.1 \times 10^{-24} \text{ kg} \cdot \text{m/s}$

(c) $v = \frac{p}{m} = \frac{2.110 \times 10^{-24} \text{ kg} \cdot \text{m/s}}{9.11 \times 10^{-31} \text{ kg}} = 2.3 \times 10^6 \text{ m/s}$

(d) $K = \frac{p^2}{2m} = \left(2.110 \times 10^{-24} \text{ kg} \cdot \text{m/s}\right)^2 \frac{1}{2(9.11 \times 10^{-31} \text{ kg})(1.60 \times 10^{-19} \text{ J/eV})} = 15 \text{ eV}$

Problem 10.3

A quantum particle has a wave function

$$\psi(x) = \begin{cases} \sqrt{\frac{2}{a}} e^{-x/a} & \text{for } x > 0 \\ 0 & \text{for } x < 0 \end{cases}$$

(a) Find and sketch the probability density.

(b) Find the probability that the particle will be at any point where $x < 0$.

2
(c) Show that $\psi(x)$ is normalized.
(d) Find the probability of finding the particle between $x = 0$ and $x = a$.

Solution 10.3

(a)
\[
|\psi(x)|^2 = \begin{cases}
\frac{2}{a} e^{-2x/a} & \text{for } x > 0 \\
0 & \text{for } x < 0
\end{cases}
\]

(b) Prob ($x < 0$) = 0

(c)
\[
\int_{-\infty}^{\infty} |\psi(x)|^2 \, dx = \int_{0}^{\infty} |\psi(x)|^2 \, dx + \int_{0}^{\infty} |\psi(x)|^2 \, dx = \int_{0}^{\infty} \frac{2}{a} e^{-2x/a} \, dx = 1
\]

(d) Prob ($0 < x < a$) = 0.865

Problem 10.4

A single oxygen molecule is confined in a one-dimensional rigid box of width 0.4 cm.
(a) Treating this as a particle in a rigid box, determine the ground-state energy.
(b) If the molecule has an energy equal to the one-dimensional average thermal energy 0.5kT at $T = 300$ K, what is the quantum number n?
(c) What is the energy difference between the nth state and the next higher state?

Solution 10.4

(a) The ground state energy is given by Eq. 38-13 with $n = 1$.

\[
E_1 = \frac{\hbar^2 n^2}{8mL^2} \bigg|_{n=1} = \frac{\left(6.63 \times 10^{-34} \text{ J s}\right)^2}{8(32 \text{ u})(1.66 \times 10^{-27} \text{ kg/amu})(4.0 \times 10^{-3} \text{ m})^2}(1.60 \times 10^{-19} \text{ J/eV})
\]
\[
= 4.041 \times 10^{-19} \text{ eV} \approx 4.0 \times 10^{-19} \text{ eV}
\]

(b) We equate the thermal energy expression to Eq. 38-13 in order to find the quantum number.
\[\frac{1}{2} kT = \frac{h^2 n^2}{8m} \rightarrow \]
\[n = 2\sqrt{kTm \frac{I}{\hbar}} = 2\sqrt{(1.38 \times 10^{-23} \text{ J/K})(300 \text{ K})(32 \text{ u})(1.66 \times 10^{-27} \text{ kg/u}) \left(\frac{4.0 \times 10^{-3} \text{ m}}{6.63 \times 10^{-34} \text{ J s}} \right)} \]
\[= 1.789 \times 10^8 \approx 2 \times 10^8 \]

(c) Use Eq. 38-13 with a large-\(n \) approximation.

\[\Delta E = E_{n+1} - E_n = \frac{h^2}{8m} \left[(n+1)^2 - n^2 \right] = \frac{h^2}{8m} \left(2n + 1 \right) \approx 2n \frac{h^2}{8m} = 2nE_i \]
\[= 2 \left(1.789 \times 10^8 \right) \left(4.041 \times 10^{-19} \text{ eV} \right) = 1.4 \times 10^{-10} \text{ eV} \]

Problem 10.5

An excited H atom is in a 5\(d \) state. (a) Name all the states to which the atom is “allowed” to jump with the emission of a photon. (b) How many different wavelengths are there (ignoring the fine structure)?

Solution 10.5

Photon emission means a jump to a lower state, so for the final state, \(n = 1, 2, 3, \) or 4. For a \(d \) subshell, \(l = 2 \), and because \(\Delta l = \pm 1 \), the new value of \(l \) must be 1 or 3.

(a) \(l = 1 \) corresponds to a \(p \) subshell, and \(l = 3 \) corresponds to an \(f \) subshell. Keeping in mind that \(0 \leq l \leq n - 1 \), we find the following possible destination states: \(2p, 3p, 4p \), \(4f \).

(b) In a hydrogen atom, \(l \) has no appreciable effect on energy, and so for energy purposes there are four possible destination states, corresponding to \(n = 2, 3, \) and 4. Thus there are three different photon wavelengths corresponding to three possible changes in energy.

Problem 10.6

List the quantum numbers for each electron in the ground state of oxygen \((Z = 8)\).

Solution 10.6

For oxygen, \(Z = 8 \). We start with the \(n = 1 \) shell, and list the quantum numbers in the order \((n,l,m_l,m_s)\).
\[
\begin{align*}
(1,0,0,-\frac{1}{2}),&(1,0,0,+\frac{1}{2}),&(2,0,0,-\frac{1}{2}),&(2,0,0,+\frac{1}{2}), \\
(2,1,-1,-\frac{1}{2}),&(2,1,-1,+\frac{1}{2}),&(2,1,0,-\frac{1}{2}),&(2,1,0,+\frac{1}{2})
\end{align*}
\]

Note that, without additional information, there are two other possibilities that could substitute for any of the last four electrons.