Today in Physics 217: the divergence and curl theorems

- Flux and divergence: proof of the divergence theorem, à la Purcell.
- Circulation and curl: proof of Stokes’ theorem, also following Purcell.

See Purcell, chapter 2, for more information.

\[
\Gamma = \oint_C \mathbf{v} \cdot d\mathbf{l} = \oint_{C_1} \mathbf{v} \cdot d\mathbf{l}_1 + \oint_{C_2} \mathbf{v} \cdot d\mathbf{l}_2
\]
The divergence theorem

Consider a vector function \mathbf{v} that exists everywhere in space, and a specific volume V, bounded by surface S. The flux of \mathbf{v} through S is given by

$$\Phi = \oint_S \mathbf{v} \cdot d\mathbf{a}$$

where the infinitesimal area element vectors on S, $d\mathbf{a}$, point outward and are perpendicular to S.

Now consider dividing V in two:
The divergence theorem (continued)

The two new volumes have more total surface area on their boundaries than they used to, by twice the area of the dividing surface D. But because the area elements point outward from each volume, the flux through D from V_1 is equal and opposite to that from V_2, so the total flux through all the surfaces is the same as it was before:

$$\Phi = \oint_S v \cdot da = \oint_{S_1} v \cdot da_1 + \oint_{S_2} v \cdot da_2$$
The divergence theorem (continued)

In fact, if we were to subdivide V into $N \gg 1$ cells, the flux through all the dividing surfaces would cancel out in the sum, though the total surface area would be much larger than originally:

$$\Phi = \oint_{S} \mathbf{v} \cdot d\mathbf{a} = \sum_{i=1}^{N} \oint_{S_{i}} \mathbf{v} \cdot d\mathbf{a}_{i}$$

We now claim that

$$\lim_{V_{i} \to 0} \left(\frac{\oint_{S_{i}} \mathbf{v} \cdot d\mathbf{a}_{i}}{V_{i}} \right) = \nabla \cdot \mathbf{v} .$$

S_{i} bounds V_{i}.
Note:

We’re about to examine the variation of a function v in a very small volume near the point x,y,z. Recall that if the volume is small enough that v changes very little within it, then the value of v at $x+\delta x, y+\delta y, z+\delta z$ would be

$$v(x+\delta x, y+\delta y, z+\delta z) \approx v(x,y,z) + \frac{\partial v}{\partial x} \delta x + \frac{\partial v}{\partial y} \delta y + \frac{\partial v}{\partial z} \delta z$$

One can see this from the definition of the derivative, or by expanding v in a Taylor series about the point x,y,z and neglecting all the terms of higher order than those with first derivatives – OK, because they have successively higher powers of the intervals $\delta x, \delta y, \delta z$ and are thus much smaller than the zeroth and first-derivative terms.
The divergence theorem (continued)

To justify the claim, consider a small box within \(V \), lying with one corner at \(r_i = (x, y, z) \) with volume \(\Delta x \Delta y \Delta z \), as one of the \(V_i \). Its contribution to the flux is

\[
\int \mathbf{v} \cdot d\mathbf{a}_i = \sum_{\text{sides}} \mathbf{v} \cdot \Delta a_i
\]

Look at the top and bottom sides first. Their area vectors are equal and opposite and lie along \(z \), and the top lies \(\Delta z \) above the bottom. If the box is indeed small, the value of the \(z \) component of \(\mathbf{v} \) in the center of the top face is approximately

\[
v_{z, \text{top}} \approx v_z(x, y, z) + \frac{\partial v_z}{\partial x} \frac{\Delta x}{2} + \frac{\partial v_z}{\partial y} \frac{\Delta y}{2} + \frac{\partial v_z}{\partial z} \Delta z
\]
The divergence theorem (continued)

The value of v_z in the center of the bottom face is, on the other hand,

$$v_{z, \text{bot.}} \approx v_z(x, y, z) + \frac{\partial v_z}{\partial x} \frac{\Delta x}{2} + \frac{\partial v_z}{\partial y} \frac{\Delta y}{2}$$

Take the value at the center of each face to serve as the average of v_z on the face. Then the flux contributed by the top and bottom is

$$v_{z, \text{top}} \Delta a_{\text{top}} + v_{z, \text{bot.}} \Delta a_{\text{bot.}} \approx \left(v_z(x, y, z) + \frac{\partial v_z}{\partial x} \frac{\Delta x}{2} + \frac{\partial v_z}{\partial y} \frac{\Delta y}{2} + \frac{\partial v_z}{\partial z} \Delta z \right) (\Delta x \Delta y)$$

$$+ \left(v_z(x, y, z) + \frac{\partial v_z}{\partial x} \frac{\Delta x}{2} + \frac{\partial v_z}{\partial y} \frac{\Delta y}{2} \right) (-\Delta x \Delta y)$$

$$= \frac{\partial v_z}{\partial z} \Delta x \Delta y \Delta z$$
The divergence theorem (continued)

Similarly, the front and back, and right and left, pairs contribute

\[v_{x, \text{fr.}} \Delta a_{\text{fr.}} + v_{x, \text{ba.}} \Delta a_{\text{ba.}} \approx \left(v_x (x, y, z) + \frac{\partial v_x}{\partial z} \frac{\Delta z}{2} + \frac{\partial v_x}{\partial y} \frac{\Delta y}{2} + \frac{\partial v_x}{\partial x} \Delta x \right) (\Delta y \Delta z) \]

\[+ \left(v_x (x, y, z) + \frac{\partial v_x}{\partial z} \Delta z + \frac{\partial v_x}{\partial y} \Delta y \right) (-\Delta y \Delta z) \]

\[= \frac{\partial v_x}{\partial x} \Delta x \Delta y \Delta z \]

\[v_{y, \text{R}} \Delta a_{\text{R}} + v_{y, \text{L}} \Delta a_{\text{L}} \approx \left(v_y (x, y, z) + \frac{\partial v_y}{\partial x} \frac{\Delta x}{2} + \frac{\partial v_y}{\partial z} \frac{\Delta z}{2} + \frac{\partial v_y}{\partial y} \Delta y \right) (\Delta x \Delta z) \]

\[+ \left(v_y (x, y, z) + \frac{\partial v_y}{\partial x} \Delta x + \frac{\partial v_y}{\partial z} \Delta z \right) (-\Delta x \Delta z) \]

\[= \frac{\partial v_y}{\partial y} \Delta x \Delta y \Delta z \]
The divergence theorem (continued)

Thus
\[\int v \cdot da_i \approx \sum_{\text{sides}} v \cdot \Delta a_i = \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) \Delta x \Delta y \Delta z \]
\[= \nabla \cdot v (r_i) V_i , \]
and
\[\lim_{V_i \to 0} \left(\int_{S_i} v \cdot da_i \right) V_i = \nabla \cdot v , \text{ just as we claimed.} \]

Back to the flux:

\[\Phi = \oint_S v \cdot da = \sum_{i=1}^{N} \oint_{S_i} v \cdot da_i \approx \sum_{i=1}^{N} V_i \left(\int_{S_i} v \cdot da_i \right) V_i = \sum_{i=1}^{N} V_i (\nabla \cdot v)_i \rightarrow \int_{V} \nabla \cdot v d\tau , \text{ or} \]
\[\oint_S v \cdot da = \int_{V} \nabla \cdot v d\tau \quad \text{Divergence theorem} \]
The divergence theorem (continued)

The meaning of the divergence theorem is illustrated by applying it to fluid flow, with \mathbf{v} as the fluid velocity:

$$\oint_S \mathbf{v} \cdot d\mathbf{a} = \int_V \nabla \cdot \mathbf{v} \, d\mathbf{r}$$

Total flow through \text{bounding surface} = \text{Difference of numbers of faucets and drains within volume}

The divergence theorem will eventually lead us to Gauss’ law.
Stokes’ theorem

Consider a vector function \(\mathbf{v} \) that exists everywhere in space, and a specific surface \(S \) (not necessarily planar), bounded by curve \(C \). The circulation of \(\mathbf{v} \) around \(C \) is given by

\[
\Gamma = \oint_C \mathbf{v} \cdot d\mathbf{l}
\]

where the infinitesimal line element vectors on \(C \), \(d\mathbf{l} \), point parallel to \(C \) in the right-hand-rule sense (as in \(d\mathbf{a} = d\mathbf{l}_a \times d\mathbf{l}_b \)) relative to the area element vectors on \(S \).
Stokes’ theorem (continued)

Now divide the area in two. The two new areas have more total circumference than they used to, by twice the length of the dividing line D. But because the line elements follow each curve counterclockwise, the line integral along B around S_1 is equal and opposite to that from S_2, so the sum of the two line integrals is the same as the original:

$$\Gamma = \oint_C v \cdot dl = \oint_{C_1} v \cdot dl_1 + \oint_{C_2} v \cdot dl_2$$
Stokes’ theorem (continued)

In fact, if we were to subdivide S into N ($>>1$) cells, the line integrals along all the dividing lines would cancel out in the sum, though the sum of circumferences would be much larger than originally:

$$\Gamma = \oint_C \mathbf{v} \cdot d\mathbf{l} = \sum_{i=1}^{N} \oint_{C_i} \mathbf{v} \cdot d\mathbf{l}_i$$

I bet you can guess what we’ll claim now:

$$\lim_{a_i \to 0} \left(\frac{\oint_{C_i} \mathbf{v} \cdot d\mathbf{l}_i}{a_i} \right) = \hat{n} \cdot (\nabla \times \mathbf{v}) .$$

C_i bounds S_i; area of S_i is $a_i = a_i \hat{n}_i$
Stokes’ theorem (continued)

To justify the claim, consider a small box within S, lying with one corner at $r_i = (x, y, z)$ with area $a_i = \hat{z}\Delta x\Delta y$, as one of the S_i. Its contribution to the total circulation is

$$\oint_{C_i} \mathbf{v} \cdot d\mathbf{l} = \sum_{\text{sides}} \mathbf{v} \cdot \Delta \mathbf{l}_i$$

Look at the top and bottom sides first. Their line element vectors are equal and opposite and lie along x, and the top lies Δy above the bottom. If the box is indeed small, the value of the x component of \mathbf{v} in the center of the top side is approximately

$$v_{x, T} \approx v_x(x, y, z) + \frac{\partial v_x}{\partial x} \frac{\Delta x}{2} + \frac{\partial v_x}{\partial y} \Delta y$$
Stokes’ theorem (continued)

The value of \(v_x \) in the center of the bottom side is, on the other hand,

\[
v_{x, B} \approx v_x(x, y, z) + \frac{\partial v_x}{\partial x} \frac{\Delta x}{2}
\]

Take the value at the center of each side to serve as the average of \(v_x \) on the side. Then the contribution to the circulation by the top and bottom is

\[
v_{x, T} \Delta l_T + v_{x, B} \Delta l_B \approx \left(v_x(x, y, z) + \frac{\partial v_x}{\partial x} \frac{\Delta x}{2} + \frac{\partial v_x}{\partial y} \Delta y \right)(-\Delta x)
\]

\[
+ \left(v_x(x, y, z) + \frac{\partial v_x}{\partial x} \frac{\Delta x}{2} \right)(\Delta x) = -\frac{\partial v_x}{\partial y} \Delta x \Delta y
\]
Stokes’ theorem (continued)

Similarly, the left and right sides give

\[v_y, R \Delta l_R + v_y, L \Delta l_L \equiv \left(v_y(x, y, z) + \frac{\partial v_y}{\partial y} \frac{\Delta y}{2} + \frac{\partial v_y}{\partial x} \Delta x \right)(\Delta y) \]

\[+ \left(v_y(x, y, z) + \frac{\partial v_y}{\partial y} \frac{\Delta y}{2} \right)(-\Delta y) = \frac{\partial v_y}{\partial x} \Delta x \Delta y \]

So, noting that \(a_i = \hat{z} \Delta x \Delta y \), we have for all four sides together

\[\oint v \cdot dl = \sum_{\text{sides}} v \cdot \Delta l_i \equiv \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) \Delta x \Delta y = (\nabla \times v) \cdot a_i \]

Rest assured that we would get the same result with the area vector in any direction; thus our claim is justified.
Stokes’ theorem (continued)

Thus

\[\Gamma = \oint_C \mathbf{v} \cdot d\mathbf{l} = \sum_{i=1}^{N} \oint_{C_i} \mathbf{v} \cdot d\mathbf{l}_i = \sum_{i=1}^{N} (\nabla \times \mathbf{v}) \cdot \mathbf{a}_i \xrightarrow{N \to \infty} \int_S (\nabla \times \mathbf{v}) \cdot d\mathbf{a} \, , \]

or \[\oint_C \mathbf{v} \cdot d\mathbf{l} = \int_S (\nabla \times \mathbf{v}) \cdot d\mathbf{a} \, . \]

\textbf{Stokes’ theorem}