Today in Physics 217: AC circuits

- Finish resistive circuit problem from last time
- The LRC circuit
- Energy in LRC, and the meaning of Quality

The third simplest AC circuit: LRC

Suppose that, in this simple circuit, the charge on the capacitor is \(q_0 \), and the current \(I = 0 \), at \(t = 0 \). What is the charge on the capacitor at later times?

Set up first:
- Let upper plate have positive charge initially, and define \(I \) flowing into this plate, so that \(I = dq/dt \).
- With this choice of direction for \(I \), the polarities for the potential differences across \(L \) and \(R \) are as shown.
- The magnitudes of the potential differences are \(V_C = q/C \), \(V_R = IR \), and \(V_L = LdI/dt \) (back EMF).

LRC (continued)

Now apply Kirchhoff’s second rule:

\[
\frac{dq}{dt} + IR + L \frac{dI}{dt} = 0 \quad \text{or} \quad \frac{dq}{dt} + \frac{R}{L} \frac{dq}{dt} + \frac{d^2q}{dt^2} = 0
\]

and define two useful new quantities:

\[
\omega_0 = \frac{1}{\sqrt{LC}} \quad \text{(natural frequency)}, \quad Q = \frac{\omega_0 L}{R} \quad \text{(quality)}
\]

so that

\[
\frac{d^2q}{dt^2} + \frac{\omega_0}{Q} \frac{dq}{dt} + \omega_0^2 q = 0
\]
Many of you will recognize this as the equation of motion of a damped harmonic oscillator, and will be able to recite the solution without my help. Too bad, here it is anyway. Use an exponential trial solution:

\[q = Ae^{\omega t} , \]
\[\frac{dq}{dt} = \rho A e^{\omega t} = \rho q , \]
\[\frac{d^2q}{dt^2} = \rho^2 A e^{\omega t} = \rho^2 q . \]

Thus

\[\rho^2 - \frac{\omega_0^2}{Q^2} \rho + \omega_0^2 = 0 . \]

This is just a quadratic equation, and its solutions are

\[\rho = \frac{\omega_0}{2Q} \pm \sqrt{\frac{\omega_0^2}{4Q^2} - \frac{\omega_0}{Q}} \sqrt{1 - \left(\frac{1}{2Q} \right)^2} . \]

The general solution to the differential equation is thus

\[q(t) = A \exp \left(\frac{\omega_0 t}{2Q} + i \omega_0 \sqrt{\frac{1}{2Q} - \frac{1}{4Q^2}} \right) \]
\[+ B \exp \left(- \frac{\omega_0 t}{2Q} - i \omega_0 \sqrt{\frac{1}{2Q} - \frac{1}{4Q^2}} \right) . \]

Now write \(D = \sqrt{1 - (1/2Q)^2} \), and apply the initial conditions, \(q(0) = q_0 \) and \(\frac{dq}{dt}(0) = 0 \):

\[q(0) = A + B = q_0 \]
\[\frac{dq}{dt}(0) = \left(- \frac{\omega_0}{2Q} + i \omega_0 D \right) A + \left(- \frac{\omega_0}{2Q} - i \omega_0 D \right) B = 0 , \] so
\[\begin{cases} - \frac{\omega_0}{2Q} + i \omega_0 D \ A + \left(- \frac{\omega_0}{2Q} - i \omega_0 D \right) (q_0 - A) = 0 , \\ (2i \omega_0 D) A = \frac{\omega_0}{2Q} + i \omega_0 D q_0 , \end{cases} \] and...
LRC (continued)

\[A \left(1 - \frac{i}{2QD} \right) \frac{q_0}{2}, \quad B = q_0 - A \left(1 + \frac{i}{2QD} \right) \frac{q_0}{2}. \]

So the general solution becomes

\[q(t) = A + B = q_0 \exp \left(-\frac{\omega D}{2Q} t \right) \exp \left(\frac{i\omega D}{2Q} t \right). \]

Rearrange the complex exponentials and you get sines and cosines:

\[q(t) = q_0 \exp \left(-\frac{\omega D}{2Q} t \right) \left[1 + \frac{i}{2QD} \left(\frac{1}{2} e^{\omega D t} - \frac{1}{2i} e^{-\omega D t} \right) \right]. \]

It is useful to consider the limit of high quality, \(Q \gg 1 \):

\[D = \sqrt{1 - \left(\frac{1}{2Q} \right)^2} \approx 1 \quad \text{to first order in} \quad \frac{1}{Q}, \]

so \(q(t) = q_0 \exp \left(-\frac{\omega D}{2Q} t \right) \left[\cos \omega D t + \frac{1}{2Q} \sin \omega D t \right]. \)

Now use \(\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \), and note that since \(Q \gg 1 \), \(\sin(1/2Q) \approx 1/2Q \) and \(\cos(1/2Q) \approx 1 \) to first order:

\[q(t) = q_0 \exp \left(-\frac{\omega D}{2Q} t \right) \cos \left(\omega D t - \frac{1}{2Q} \right). \]
This is a damped oscillation: less strongly damped the larger \(Q \) (or the smaller \(R \)) is. Its period is \(T = 2\pi/\omega_0 \).

Energy in LRC, and the significance of quality

At the extrema of \(q \), the current is zero, so the total energy of the circuit is stored in the capacitor, as \(W_{\text{max}} = q^2/2C \).

- Between extrema, the peak charge decreases by a factor of \(e^{-\pi \omega T/2Q} = e^{-\pi Q} \), so the energy decreases by the square of this factor, or \(e^{-2\pi Q} \).
- Energy is conserved, so the energy dissipated during one period of the oscillation is
 \[
 \Delta W = W_{\text{max}} \left(1 - e^{-2\pi Q}\right).
 \]

Energy in LRC, and the significance of quality (continued)

If \(Q \gg 1 \), then

\[
\frac{W_{\text{max}}}{\Delta W} = \frac{1}{1 - e^{-2\pi Q}} \approx \frac{1}{\left(1 - \left(\frac{2\pi}{Q}\right)^2\right)^{1/2}} = \frac{Q}{2}\pi.
\]

Thus an interpretation of \(Q \) emerges:

\[
Q = \frac{2\pi}{\Delta W} \quad \frac{W_{\text{max}}}{\Delta W} = \frac{2\pi}{\Delta W}
\]

maximum stored energy

energy dissipated per period

\[
= \frac{W_{\text{max}}}{\Delta W} = \text{energy dissipated per radian}.
\]