Highlights of the New Material for Midterm #4

CAVEAT EMPTOR
I strongly advise that you do not take this to be a substitute for your own gathering of the material in your mind because that won’t work. Rather, I suggest that you look over these topics and make sure you’ve thought about and understood these before the exam.

Also, please note that I am only attempting to summarize the most important points in the material. Nowhere am I implying that you need only know these items. You are still responsible for all that is covered in classes, workshops and assigned reading and problems.
New Material

- Magnetic Materials
- Faraday’s Law
- Mutual and Self Inductance
- LR Circuits
- AC Circuits

- TA Review Before Next Midterm
 - December 1st, 8:30pm, B&L 109
Magnetic Materials Review

- In response to an external magnetic field, materials develop internal magnetization

\[B_{\text{total}} = B_0 + \mu_0 M = (1 + \chi_m) B_0 = \kappa_m B_0 \]

- **Paramagnetism**
 - weak alignment of \(M \) and \(B \), \(0 < \chi_m << 1 \)

- **Diamagnetism**
 - weak anti-alignment of \(M \) and \(B \), \(-1 << \chi_m < 0 \)

- **Ferromagnetism**
 - strong alignment of \(M \) and \(B \), \(\chi_m >> 1 \)

These are very strong effects, magnetization dominates field!
It’s the Floating Frog!

• A diamagnetic frog levitates in a strong magnetic field as shown at right
• If gravity causes a downwards force in the picture at right, where is the magnitude of the field greatest? At the bottom of the page.
• Better be able to explain why… this brings together a lot of key ideas.

\[U = -\vec{\mu} \cdot \vec{B}(z) = |\chi_m| \left| \vec{B}(z) \right|^2 \]

\[F_z = -\frac{dU}{dz} = -(-\chi_m)2B \frac{dB}{dz} \]

\[\therefore F_z > 0 \text{ if } \frac{dB}{dz} < 0 \]

If potential energy is highest at bottom of page, then the frog feels an upward force.

Therefore, \(B \) is largest at bottom of the page.
The Big Picture
which you should be able to explain...

• **Electrostatics**
 • motion of “q” in external E-field
 • E-field generated by Σq_i

• **Magnetostatics**
 • motion of “q” and “I” in external B-field
 • B-field generated by “I”

• **Electrodynamics**
 • time dependent B-field generates E-field
 • ac circuits, inductors, transformers, etc
 • our last topic (not this exam)
 time dependent E-field generates B-field
 • electromagnetic radiation - *light*
Faraday’s and Lenz’s Laws

- a changing magnetic flux through a loop induces a current in that loop

\[\varepsilon = -\frac{d\Phi_B}{dt} \]

negative sign indicates that the induced EMF opposes the change in flux

- Need to also understand Faraday’s Law in terms of Electric Field

- It does need a loop of wire to be true! This field can accelerate free charges not in a wire!
Applications

• should be able to explain how a generator works

\[E \equiv -\frac{d\Phi_B}{dt} = -\frac{d}{dt}[BA\cos\omega t] = BA\omega \sin\omega t \]

• should be able to explain how a transformer works

• should be able to explain our eddy current demonstrations done in class
Big Picture of Inductance

• A coil produces a magnetic field

• That magnetic field produces magnetic flux in that coil and adjacent coils

• If current changes in Coil 1, flux changes in Coils 1 and 2

• That change of flux causes an EMF which induces current!
 – in Coil 2 “Mutual Inductance”;
 – in Coil 1, “Self Inductance”
Inductors

- Current in Coil 1 causes
 - Magnetic flux in Coils 1 & 2
- Changing current…
 - Induces EMF in Coils 1 & 2
 - Self and Mutual Inductance
- Depends on geometry only!
 - Unit is *Henry*, $T \cdot m^2/A \equiv \Omega \cdot s$

- Mutual Inductance

 \[
 M = \frac{\Phi_B \text{ through } a \text{ from } b}{I_b} = \frac{\Phi_B \text{ through } b \text{ from } a}{I_a}
 \]

- Self-Inductance

 \[
 L \equiv \frac{\Phi_B}{I}
 \]

 - Self-Inductance for Solenoid

 \[
 L = \mu_0 \frac{N^2}{l} \pi r^2
 \]
 - L increases with Ferromagnetic core

 $\mu_0 \rightarrow \mu = \kappa_M \mu_0$
Summary so far...

Want to find voltage given a current, or find current if given a voltage.

\[V = \frac{Q}{C} = \int I \, dt \]

Voltage determined by integral of current and capacitance

\[V = IR \]

Voltage determined by current itself and resistance

\[V = L \frac{dI}{dt} = L \frac{d^2 Q}{dt^2} \]

Voltage determined by derivative of current and inductance
Rules of Thumb for Inductors in Circuits

- After circuit has had a long time to settle…
 - What is dl/dt? Zero
 - So the EMF across the inductor is? Zero
 - So it acts like a wire (no potential difference)

- When something changes in the circuit
 - How much should I be allowed to change instantaneously? Not a lick!
 - What is the mechanism for opposing change? Provide an EMF!
 - How much EMF? IR
 - Change is exponential in time, $\tau = L/R$
Energy in the *Electric* and *Magnetic* Fields

Energy stored in a capacitor ...

\[U = \frac{1}{2} C V^2 \]

... energy density ...

Energy stored in an inductor

\[U = \frac{1}{2} LI^2 \]

... energy density ...

\[u_{\text{electric}} = \frac{1}{2} \varepsilon_0 E^2 \]

\[u_{\text{magnetic}} = \frac{1}{2} \frac{B^2}{\mu_0} \]
LC Oscillations

\[L \frac{d^2 Q}{dt^2} + \frac{Q}{C} = 0 \]

\[\omega_0 = \frac{1}{\sqrt{LC}} \]
Response to an AC Voltage

- **R**: \[V_R = R I_R = \varepsilon_m \sin \omega t \quad \Rightarrow \quad I_R = \frac{\varepsilon_m}{R} \sin \omega t \]
 - \(V \) in phase with \(I \)

- **C**: \[V_C = \frac{Q}{C} = \varepsilon_m \sin \omega t \quad \Rightarrow \quad I_C = \omega C \varepsilon_m \sin(\omega t + 90^\circ) \]

- **L**: \[V_L = L \frac{dI_L}{dt} = \varepsilon_m \sin \omega t \quad \Rightarrow \quad I_L = \frac{\varepsilon_m}{\omega L} \sin(\omega t - 90^\circ) \]
 - \(V \) lags \(I \) by 90°

- Voltage/Current relationship across a single circuit element can be divided into:
 - magnitude
 \[I = \frac{\varepsilon_m}{"X"} \sin(\omega t - \phi) \]
 \[X_L \equiv \omega L \quad X_R \equiv R \]
 - relative phase
 » leading, lagging

\[X_C \equiv \frac{1}{\omega C} \]
Impedance Networks

\[Z_R = R = Re^{i0} \]

\[Z_c = \frac{1}{i\omega C} = -i = e^{-i\pi/2} \]

\[Z_L = i\omega L = \omega L e^{i\pi/2} \]

- Combining impedances in series and parallel is just as simple as it was with resistors
 - But here impedances are complex numbers!

\[V_0 e^{i\omega t} \sim Z_1 \quad \frac{1}{Z_p} = \frac{1}{Z_1} + \frac{1}{Z_2} \]

\[V_0 e^{i\omega t} \sim Z_1 \quad Z_s = Z_1 + Z_2 \]
Resonance in LRC Series Circuit

\[V_{\text{max}} = I_{\text{max}} |Z_{eq}| \]

- So when does the current reach a maximum if the voltage and \(R, L, C \) are fixed?

\[|Z_{eq}| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2} \]

- The current \(I_{\text{max}} \) will be a maximum at the resonant frequency \(\omega_0 \) which makes the impedance \(Z \) purely real (\(R \) only)!

i.e.: when \(\omega_0 L - \frac{1}{\omega_0 C} = 0 \) or \(\omega_0 = \frac{1}{\sqrt{LC}} \)
Power in LRC Circuit

• The power supplied by the emf in a series LRC circuit depends on the frequency ω (maximum power is supplied at the resonant frequency ω_0).

• Can calculate from either power supplied by generator or power dissipated in resistor

$$P(t) = \varepsilon(t)I(t) = (\varepsilon_m \sin \omega t)(I_m \sin(\omega t - \phi))$$

• average power delivered in a cycle.

$$\langle P(t) \rangle = \varepsilon_m I_m \langle \sin \omega t \sin(\omega t - \phi) \rangle$$

$$\varepsilon_{rms} = \frac{1}{\sqrt{2}} \varepsilon_m \quad I_{rms} = \frac{1}{\sqrt{2}} I_m \quad \Rightarrow \quad \langle P(t) \rangle = \varepsilon_{rms} I_{rms} \cos \phi$$

• so power delivered also depends on relative phase of voltage and current in the generator