Driven diffusion in the two-dimensional lattice Coulomb gas:
A model for flux flow in superconducting networks

Jong-Rim Lee
Center for Theoretical Physics, Seoul National University, Seoul 151-742, Republic of Korea

S. Teitel
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 2 December 1993)

We carry out driven-diffusion Monte Carlo simulations of the two-dimensional classical lattice Coulomb gas in an applied uniform electric field, as a model for vortex motion due to an applied dc current in a periodic superconducting network. A finite-size version of dynamic scaling is used to extract the dynamic critical exponent z, and infer the nonlinear response at the transition temperature. We consider the Coulomb gases $f = 0$ and $f = 1/2$, corresponding to a superconducting network with an applied transverse magnetic field of zero, and one-half flux quantum per unit cell, respectively.

I. INTRODUCTION

Phase transitions in two dimensional (2D) superconducting networks, such as periodic Josephson junction arrays and superconducting wire nets, has been a topic of much investigation. Theoretically, the phase transitions in such systems have been most extensively studied by equilibrium calculations and simulations. Experimentally however, it has been most common to measure steady-state current-voltage ($I-V$) characteristics, and look for a crossover from linear to nonlinear resistivity as a sign of the superconducting transition. In this regard, the Kosterlitz-Thouless (KT) model of a vortex pair unbinding transition makes a clear prediction: as one heats up through the transition temperature T_{KT}, the $I-V$ characteristics should make a discontinuous change from $V \sim I^3$ exactly at T_{KT} to $V \sim I$ above T_{KT}. In experimental studies of superconducting 2D films and networks however, as well as in numerical simulations, agreement with this prediction has been claimed in some cases, not found in others, and is ambiguous in yet others. In particular, it is not clear how this prediction may become modified when a transverse magnetic field is applied to the sample. In this case, the melting of the ground state vortex lattice induced by the magnetic field may change the universality class of the superconducting transition, and lead to different steady-state behavior. In view of these questions, it remains of interest to establish what steady-state $I-V$ behavior may be expected at criticality, for specific simple cases.

Recently, a new dynamic scaling conjecture was proposed by Fisher et al. to describe $I-V$ characteristics in superconducting systems. Although this approach was developed for application to the "vortex-glass" transition in high temperature superconductors, it should apply equally well to any superconducting transition that is believed to be second order. In this work we carry out steady-state "driven-diffusion" Monte Carlo (MC) simulations of the 2D lattice Coulomb gas in a uniform applied electric field, as a model for vortex motion due to a uniform applied dc current, in a periodic superconducting network. We consider the special cases of $f = 0$, corresponding to no transverse magnetic field, and $f = 1/2$, corresponding to a transverse magnetic field of one-half flux quantum per unit cell of the network. We apply a finite-size version of the new dynamic scaling conjecture to analyze our data, and extract the dynamic critical exponent z, and the power law of the $I-V$ characteristic at the superconducting transition. For $f = 0$, we find $z = 2$, consistent with the Kosterlitz-Thouless prediction. For $f = 1/2$, we again find $z = 2$, consistent with the KT model, but in disagreement with expectations from recent equilibrium simulations of this model.

The remainder of this paper is organized as follows. In Sec. II, we give the theoretical framework for our simulations. We present our Coulomb gas model and the driven-diffusion Monte Carlo algorithm. We review the KT vortex pair unbinding prediction, and we describe the finite-size version of dynamic scaling. In Sec. III, we present our numerical results for $f = 0$ and for $f = 1/2$. In Sec. IV, we give our conclusions.

II. THEORETICAL FRAMEWORK

A. The driven diffusive lattice Coulomb gas

The standard model to describe behavior in a 2D superconducting network, is the uniformly frustrated 2D XY model, given by the Hamiltonian,

$$\mathcal{H}_{XY} = \sum_{\langle ij \rangle} U(\theta_i - \theta_j - \Delta_{ij}).$$

(1)
Here θ_i is the phase of the superconducting wave function at node i of the periodic network, the sum is over all nearest neighbor bonds (ij) of the network, and

$$A_{ij} = \frac{2e}{\hbar c} \int_i^j A \cdot dl$$

is the line integral of the magnetic vector potential A across the bond from i to j. For a uniform magnetic field applied transverse to the plane of the network, the sum of the A_{ij} around (going counter clockwise) any unit cell is,

$$\sum_{\text{cell}} A_{ij} = 2\pi f,$$

$$f = BA/\Phi_0,$$

where A is the area of a unit cell, and the constant f is the density of magnetic flux quanta ($\Phi_0 = 2e/\hbar c$) per unit cell. f is referred to as the “uniform frustration”.

$U(\phi)$ is the interaction potential between the nodes of the network, which is periodic in ϕ with period 2π, and has a minimum at $\phi = 0$. For a Josephson junction array, one takes

$$U(\phi) = -J_0 \cos(\phi).$$

For a wire net, the Villain, or “periodic Gaussian” interaction may be more appropriate.

It is generally believed that it is the excitation of vortices in the superconducting phase θ_i that is responsible for the superconducting transition in such networks. Since 2D vortices interact with a logarithmic potential, the Hamiltonian (1) is assumed to be in the same universality class (for the Villain interaction, the mapping via duality is exact) as the following Hamiltonian for Coulomb interacting point charges,

$$H_{\text{CGG}} = \frac{1}{2} \sum_{ij} (n_i - f) V(r_i - r_j)(n_i - f).$$

Here, i and j label the dual sites of the original superconducting network, $n_i = 0, \pm 1, \pm 2, \ldots$ is the integer vorticity of the superconducting phase θ at site i, CG denotes Coulomb gas, and $V(r)$ is the 2D lattice Green’s function, which satisfies,

$$\Delta^2 V(r_i - r_j) = -2\pi \delta_{ij},$$

where Δ^2 is the discrete Laplacian. In this work we restrict our interest to a square network, with periodic boundary conditions. In this case, $V(r)$ is explicitly given by

$$V(r) = \frac{1}{N} \sum_k e^{ik \cdot r} \frac{\pi}{2 - \cos k_x - \cos k_y},$$

where k are the allowed wave vectors with $k_{nx} = (2\pi n_{nx}/L)$, with $n_{nx} = 0, 1, \ldots, L - 1$. L is the length of the network, and $N = L^2$. For large r,

$$V(r) \sim \ln r.$$

Since $V(r = 0)$ is divergent, the partition sum over $\{n_i\}$ is restricted to neutral configurations where

$$\frac{1}{N} \sum_i n_i = f.$$
for computing energy differences, in connection with the standard Metropolis Monte Carlo algorithm for accepting or rejecting proposed excitations, it yields an enhanced probability (consistent with detailed balance) for accepting excitations with a net movement of charge in the direction of \(\mathbf{E} \), thus setting up a nonequilibrium steady-state with a finite charge current density \(\mathbf{J} \) flowing parallel to \(\mathbf{E} \).

In our simulations, we have chosen \(\mathbf{E} = E \hat{y} \), along one of the axes of the periodic lattice of sites. At each step of the simulation we pick at random a pair of nearest neighbor sites \((i_0, i_1) \). For the \(f = 0 \) case (where the ground state is \(n_i = 0 \)), we add a positive unit charge to site \(i_0 \), i.e., \(\Delta n_{i_0} = +1 \), and a negative unit charge to site \(i_1 \), i.e., \(\Delta n_{i_1} = -1 \). For the \(f = 1/2 \) case (where the ground state is as in Fig. 1), we simply interchange the charges \(n_{i_0} \) and \(n_{i_1} \) at the two sites. For \(f = 1/2 \), this restricts configurations to those where half of the \(n_i \) are \(+1 \) and the other half are \(0 \); charges \(n_i = -1 \) or \(+2 \) are not allowed. Tests showed that these other values of \(n_i \) correspond to higher energy excitations, which are negligible at the temperatures of interest, i.e., the melting temperature of the ground state charge lattice. In both the \(f = 0 \) and the \(f = 1/2 \) cases, the change in energy due to the addition of the excitation is computed using \(\mathcal{H}_{	ext{CCD}} = \delta \mathcal{H} \), and the excitation is accepted or rejected using the Metropolis algorithm. In both cases, acceptance of the excitation gives a contribution to the average current density,

\[
\Delta \mathbf{J} = \Delta n_{i_0} \frac{r_{i_0} - r_{i_1}}{2} + \Delta n_{i_1} \frac{r_{i_1} - r_{i_0}}{2} = \Delta n_{i_0} (r_{i_0} - r_{i_1}),
\]

(11)

where \(\Delta n_i \) is the change in \(n_i \) at site \(i \) created by adding the excitation, and our algorithm always satisfies \(\Delta n_{i_0} = -\Delta n_{i_1} \).

While the above driven-diffusion Monte Carlo algorithm encodes a specific dynamics, which in detail may well be different from the true microscopic dynamics of vortices in superconductors, our hope is that qualitative behaviors which are largely determined by energetics, particularly the nonlinear form at criticality, will be preserved. We have chosen to simulate the driven-diffusion Coulomb gas, rather than the more realistic resistively shunted junction (RSJ) model for the dynamics of an array of Josephson junctions, because in the Coulomb gas algorithm one directly moves the important degrees of freedom, the positions of the vortices. This results in a computationally faster algorithm for several reasons: (i) spin wave degrees of freedom are eliminated; (ii) the effective energy barrier for an isolated vortex to hop to a neighboring cell in the \(XY \) model is removed, since in the Coulomb gas this hop takes place in one discrete step; (iii) the RSJ dynamics requires a computation of order \(L^2 \) (or \(L \ln L \) for improved algorithms) at each step of simulation. For the Coulomb gas, where we keep tabulated the "electrostatic potential" arising from the charges, computing the energy of a trial excitation is a computation of order 1. Only when an excitation is accepted, and we need to update this electrostatic potential, do we have to do a computation of order \(L^2 \). For the low acceptance ratios we find, this effect is significant.\(^5\)

\(N = L^2 \) steps of the above updating process will be referred to a one MC pass. In our runs, presented in Sec. III, an initial 10,000 passes were typically discarded to equilibrate the system. Following this equilibration, five independent runs (using different random number sequences) of 200,000 passes each, were used to compute averages. Our error bars are estimated from the standard deviation of the averages from these five runs.

B. Kosterlitz-Thouless pair unbinding model

We now review the Kosterlitz-Thouless model of pair unbinding\(^6,13\) as applied to the determination of non-linear steady-state behavior\(^11\) below the transition temperature \(T_{KT} \). If we consider the addition of a neutral pair of charges \(\Delta n_i = \pm 1 \) separated by a distance \(r \), we may estimate the free energy of this pair in the presence of all other charges as,

\[
F_{\text{pair}}(r) = \frac{1}{\epsilon} (\ln |r| - \mathbf{E} \cdot \mathbf{r}).
\]

Here \(\epsilon \) is the effective long wavelength dielectric function of the Coulomb gas, which serves to screen the logarithmic interaction between the members of the pair, as well as to screen the interaction of the pair with the external field \(\mathbf{E} \). A pair oriented along the direction of \(\mathbf{E} \), therefore, sees a potential maximum at \(r_c = 1/E \). If the pair is able to overcome this potential barrier through thermal fluctuations, the pair can then lower its free energy by increasing the separation \(r \) without bound. The pair will thus unbind, and give a contribution to a net current of charges flowing along the direction of \(\mathbf{E} \). The rate for such critical pair unbindings to occur is given by the Boltzmann factor,

\[
W_{\text{pair}} \sim e^{-F_{\text{pair}}(r_c)/T} \sim E^{1/\epsilon T}.
\]

Such critical pairs will expand until they recombine with other such free charges into new bound pairs. This unbinding and recombination of pairs leads\(^11\) to an effective density of free charges \(n_f \),

\[
n_f \sim (W_{\text{pair}})^{1/2}.
\]

Using Eqs. (13) and (14), the net current that flows due to pair unbinding is then,

\[
J \sim n_f E \sim E^{1+1/2\epsilon T}.
\]

The insulator to metal transition in the Coulomb gas, where \(\epsilon \) diverges, marks the crossover from nonlinear to linear \(J-E \) characteristics. Using the correspondence of Eq. (9), together with \(I = L J \) and \(V = L E \) for the total current and total voltage drop in a superconducting network, we see that this Coulomb gas insulator to metal transition corresponds to the superconducting to normal transition in the superconducting network.

For \(f = 0 \), where the ground state is the vacuum,
pair unbinding excitations such as above, are believed to be the only source of net charge current. The Kosterlitz-Thouless model is expected to describe the insulator to metal transition in this system, and gives the prediction\(^{10,11}\) that \(\epsilon^{-1}(T)\) has a universal discontinuous jump to zero exactly at the transition temperature \(T_{KT}\), with,

\[
1/\epsilon(T_{KT})T_{KT} = 4. \tag{16}
\]

Thus, exactly at \(T_{KT}\), Eq. (15) gives the nonlinear behavior, \(J \sim E^3\). The corresponding result in the superconducting network is \(V \sim J^3\).

For \(f = 1/2\), where the ground state is the doubly degenerate ordered charge lattice shown in Fig. 1, the above pair unbinding continues to provide a mechanism for nonlinear response below the insulator to metal transition temperature, which we will continue to refer to as \(T_{KT}\). However, there are now also other possible excitations, involving the formation of domains of oppositely oriented ground state, which might possibly contribute\(^{14}\) to a nonlinear response in \(J\). Thus no clear prediction exists for the form of the nonlinear response at the transition.

Similarly, the nature of the equilibrium transition in the \(f = 1/2\) model remains controversial.\(^3,4,6,7\) If \(T_{KT}\) is the insulator to metal transition, the Kosterlitz-Thouless arguments continue to provide a lower bound on a discontinuous jump in \(\epsilon^{-1}\), i.e., \(1/\epsilon(T_{KT})T_{KT} \geq 4\). It is unclear however, whether this is satisfied only as an inequality, or whether the universal KT behavior as in Eq. (16) continues to hold. Additionally, there is a well defined temperature \(T_M\) in the model, corresponding to the melting of the ordered ground state charge lattice. General arguments\(^24\) suggest the bound \(T_M \geq T_{KT}\), however it remains unclear whether or not these two temperatures are in fact equal. It is further unclear whether the melting transition at \(T_M\) is Ising-like (as the double discrete symmetry of the ground state suggests), or whether the long range interactions between the charges cause the melting to fall in a new universality class. Our present work was in part motivated by the hope that dynamic calculations might shed some light on these remaining equilibrium questions.

C. Finite-size dynamic scaling

Recently, Fisher et al.\(^{15}\) have proposed the following dynamic scaling relation, for an infinite superconducting system with a second order phase transition at \(T_c\). The relation between the dissipative electric field \(\mathcal{E}\), and the applied dc current density \(J\), is given by,

\[
\mathcal{E} = J\xi^{d-2}\Phi_\pm(J\xi^{d-1}/T), \tag{17}
\]

where \(\xi\) is the spatial correlation length, \(d\) the dimensionality of the system, \(z\) the dynamic scaling exponent, and \(\Phi_\pm\) the scaling function above and below the transition. The most natural generalization of this form, to a system of finite length \(L\), is,

\[
\mathcal{E} = Jb^{d-2-z}\Phi(Jb^{d-1}/T, tb^{1/\nu}, b/L), \tag{18}
\]

where \(b\) is an arbitrary length rescaling factor, \(t = (T - T_c)/T_c\), and \(\nu\) is the correlation length scaling exponent, \(\xi \sim t^{-\nu}\). The form Eq. (17) can be obtained from Eq. (18) by choosing \(b = \xi\), and taking \(L \to \infty\). For finite \(L\), \(\Phi\) is a continuous function as \(t\) passes through zero. Only in the \(L \to \infty\) limit does \(\Phi(J, t, 0)\) become discontinuous as \(t\) passes through zero; this determines the different scaling functions \(\Phi_+\) and \(\Phi_-\) of Eq. (17).

From Eq. (18) one can now determine the scaling behavior at criticality, \(t = 0\). Choosing \(b = J^{-1/(d-1)}\), \(L \to \infty\), and setting \(t = 0\), one finds,

\[
\mathcal{E} = J^{1-(d-2-z)/(d-1)}\Phi(1/T_c, 0, 0, 0) \sim J^{(1+\xi)/(d-1)}, \tag{19}
\]

as found by Fisher et al.\(^{15}\) Thus at \(T_c\), one always expects a nonlinear power law response. For \(d = 2\), a dynamic exponent of \(z = 2\) recovers the \(\mathcal{E} \sim J^3\) result of the KT pair unbinding picture.

Using the correspondences of Eq. (9), we now recast the scaling Eq. (18) into a form for use with our Coulomb gas model. Choosing the rescaling length \(b = L\), we get,\(^{25}\)

\[
J = EL^{d-2-z}\Phi(EL^{d-1}/T, tL^{1/\nu}, 1). \tag{20}
\]

Finally, for \(d = 2\), exactly at criticality, \(t = 0\), we have the scaling,

\[
J = EL^{-z}\Phi(EL/T_c, 0, 1). \tag{21}
\]

To fit this scaling equation to our Monte Carlo data, and extract the dynamic exponent \(z\), we use the method used by Nightingale and Blöte\(^{26}\) for similar equilibrium problems. We consider behavior exactly at \(T_c\), as a function of varying \(E\), in the limit of large \(L\) but small \(EL\). Expanding the scaling function \(\Phi\) gives,

\[
J(E, L) = EL^{-z}[\Phi_0 + \Phi_1 EL + \Phi_2(EL)^2 + O(EL^3)]. \tag{22}
\]

Truncating this expansion at any finite order, we perform a least \(\chi^2\) nonlinear fit\(^{27}\) of our Monte Carlo data to Eq. (22) to determine the unknown parameters \(z\), and the \(\Phi_0\).

We check for stability of our fit by increasing the order of the expansion, and by dropping data from successively smaller values of \(L\), and checking if the fitted parameters change within our estimated statistical error. Statistical errors in the fitted parameters are estimated by generating many synthetic data sets, by adding random noise to each of the original MC data point. The noise for each data point is taken from a Gaussian distribution whose width is set equal to the estimated statistical error of the original MC data point. Using these fictitious data sets, we repeat the fitting procedure to obtain new fitted parameters. The estimated error of a parameter is then taken as the standard deviation of the results from all the fictitious data sets.
III. NUMERICAL RESULTS

A. \(f = 0 \)

For our simulations of the \(f = 0 \) Coulomb gas, corresponding to the ordinary \(XY \) model, we use as the equilibrium KT transition temperature \(T_{KT} = 0.218 \), as determined by one of us\(^29\) from a finite-size scaling analysis applied to equilibrium simulations of \(\epsilon^{-1}(T, L) \). This value is in good agreement with earlier estimates, based on Coulomb gas simulations by Saito and Müller-Krumbhaar,\(^29\) \(T_{KT} = 0.215 \), and by Grest,\(^4\) \(T_{KT} = 0.220 \).

In Fig. 2, we plot the resulting charge current density \(J(E, L) \) versus \(E \), for several values of \(L \), at the fixed temperature \(T_{KT} = 0.218 \). We see that the smaller \(E \), the larger is the finite-size effect as \(L \) varies. From Eq. (21) we see that smaller values of \(E \) probe larger length scales; correspondingly, our statistical error increases as \(E \) decreases.

To find the dynamic exponent \(z \), we now fit the data of Fig. 2 to the expanded scaling function of Eq. (22). Since this expansion converges fastest for small values of the argument, we restrict the data used in our fitting to those points where \(EL \leq 1 \). This corresponds to lattice sizes \(L = 6 - 14 \), with \(E = 0.02 - 0.08 \). In Table I, we show the results of this fit, for several orders of expansion, for various ranges of \(L \). Using the fourth order expansion for lattice sizes \(L = 8 - 14 \), we find \(z = 2.073 \pm 0.098 \). Using this \(z \) in Eq. (19), we get a nonlinear response \(J \sim E^{1.073} \), consistent with the prediction from the KT pair unbinding model, assuming the universal jump in \(\epsilon^{-1}(T_{KT}) \) [see Eqs. (19) and (16)].

In Fig. 3, we plot our data as \(J L^z/E \) versus \(EL \). We see that the data collapse onto a universal curve.

TABLE I. Results of the fitting of \(J \) to an expansion of the scaling function in powers of \(EL \), as in Eq. (22). The data of Fig. 2 for the \(f = 0 \) model is used. The first column shows the range of system sizes \(L_i - L_f \) which are included in the particular fit. The following columns give the fitted parameters. The last column is the \(\chi^2 \) error of the fit. For each sequence of \(L_i - L_f \), the first row gives the value of the fitted parameter, while the second row gives the estimated error.

| \(L_i - L_f \) | \(z \) | \(\Phi_0 \) | \(\Phi_1 \) | \(\Phi_2 \) | \(\Phi_3 \) | \(\Phi_4 \) | \(\chi_\text{fit}^2 \) \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 14</td>
<td>1.9831</td>
<td>0.1017</td>
<td>0.0935</td>
<td>0.0215</td>
<td>0.0119</td>
<td>0.0535</td>
<td>8.8463</td>
</tr>
<tr>
<td>0.0590</td>
<td>0.0106</td>
<td>0.0215</td>
<td>0.0119</td>
<td>0.0535</td>
<td>8.5589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 - 14</td>
<td>2.0297</td>
<td>0.1070</td>
<td>0.1148</td>
<td>0.0459</td>
<td>0.0119</td>
<td>0.0535</td>
<td>5.0160</td>
</tr>
<tr>
<td>0.1097</td>
<td>0.0261</td>
<td>0.1148</td>
<td>0.0459</td>
<td>0.0535</td>
<td>5.0160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 - 14</td>
<td>2.0777</td>
<td>0.1119</td>
<td>0.1415</td>
<td>0.0119</td>
<td>0.0535</td>
<td>5.0160</td>
<td></td>
</tr>
<tr>
<td>0.1382</td>
<td>0.0393</td>
<td>0.1415</td>
<td>0.0535</td>
<td>5.0160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second order expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - 14</td>
<td>2.0067</td>
<td>0.1281</td>
<td>0.0317</td>
<td>0.0734</td>
<td>4.8485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0663</td>
<td>0.0253</td>
<td>0.0740</td>
<td>0.0734</td>
<td>4.8485</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 - 14</td>
<td>2.0747</td>
<td>0.1541</td>
<td>0.0940</td>
<td>0.1058</td>
<td>3.6025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1163</td>
<td>0.0524</td>
<td>0.1058</td>
<td>0.1038</td>
<td>3.6025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 - 14</td>
<td>2.1203</td>
<td>0.1657</td>
<td>0.0195</td>
<td>0.1053</td>
<td>2.9278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1238</td>
<td>0.1284</td>
<td>0.1053</td>
<td>2.9278</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third order expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - 14</td>
<td>2.0060</td>
<td>0.1268</td>
<td>0.0192</td>
<td>0.0631</td>
<td>0.0052</td>
<td>4.8474</td>
<td></td>
</tr>
<tr>
<td>0.0953</td>
<td>0.0345</td>
<td>0.1114</td>
<td>0.1335</td>
<td>0.1307</td>
<td>4.8474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 - 14</td>
<td>2.0725</td>
<td>0.1520</td>
<td>0.0132</td>
<td>0.0835</td>
<td>0.0077</td>
<td>3.6012</td>
<td></td>
</tr>
<tr>
<td>0.1075</td>
<td>0.0373</td>
<td>0.0835</td>
<td>0.1105</td>
<td>0.1159</td>
<td>3.6012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 - 14</td>
<td>2.1208</td>
<td>0.1669</td>
<td>0.0131</td>
<td>0.1174</td>
<td>-0.0065</td>
<td>2.9228</td>
<td></td>
</tr>
<tr>
<td>0.1220</td>
<td>0.0525</td>
<td>0.1174</td>
<td>2.9228</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth order expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - 14</td>
<td>2.0101</td>
<td>0.1219</td>
<td>0.0076</td>
<td>0.0790</td>
<td>0.0068</td>
<td>-0.0061</td>
<td>4.8552</td>
</tr>
<tr>
<td>0.0722</td>
<td>0.0290</td>
<td>0.0076</td>
<td>0.0790</td>
<td>0.0068</td>
<td>-0.0061</td>
<td>4.8552</td>
<td></td>
</tr>
<tr>
<td>8 - 14</td>
<td>2.0727</td>
<td>0.1517</td>
<td>0.0144</td>
<td>0.0789</td>
<td>0.0151</td>
<td>-0.0040</td>
<td>3.5949</td>
</tr>
<tr>
<td>0.0984</td>
<td>0.0284</td>
<td>0.0789</td>
<td>0.0151</td>
<td>-0.0040</td>
<td>3.5949</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 - 14</td>
<td>2.1175</td>
<td>0.1638</td>
<td>0.0227</td>
<td>0.0966</td>
<td>0.0115</td>
<td>-0.0064</td>
<td>2.9201</td>
</tr>
<tr>
<td>0.0980</td>
<td>0.0304</td>
<td>0.0966</td>
<td>2.9201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
representing the scaling function \(\Phi(z, 0, 1) \). The value \(z = 2.073 \), obtained from the fitting, is used in making the vertical axis, and the solid line is drawn using the fitted values of the \(\Phi \). Although the agreement is reasonable, Table I does suggest some potential problems. The parameters \(z \simeq 2 \) and \(\Phi_0 \), while remaining stable within the estimated errors, both show a systematic increase as the smallest \(L_i \) used in the fit is increased. \(\Phi_2 \), although consistent within the different fits, shows a very large estimated statistical error (other \(\Phi \), although also strongly fluctuating, seem too small to be significant in the fit). Ideally, one would like to carry out these fits using increasingly smaller values of \(E \) than we have used here. However, when \(E \) becomes small, equilibration times become large, and we were unable to get accurate enough data to improve our fit.

Our results in Table I and Fig. 3 represent checks of scaling in the small \(EL \) limit. We have also tried to check scaling in the large \(EL \) limit. Provided that \(EL \) is sufficiently large that finite-size effects are small, we should be able to use Eq. (17) to collapse our data onto two universal curves, given by \(\Phi_+ \) and \(\Phi_- \) above and below \(T_{KT} \), by plotting \(J \xi^x / E \) versus \(E \xi^x / T \). To do so, we need an expression for the correlation length \(\xi(T) \). For the Kosterlitz-Thouless transition, asymptotically close to \(T_{KT} \), this form is

\[
\xi(T) \sim e^{C_+/|T-T_{KT}|^{\nu}},
\]

where the subscripts \(+\) and \(-\) refer to behavior above and below \(T_{KT} \), respectively, and for the KT transition, \(\nu = 1/2 \). Minnhagen and Olsson have argued that this true asymptotic form holds only in a narrow critical region of about 5% of \(T_{KT} \). Nevertheless, they also indicate that Eq. (23) is a useful phenomenological form for fitting over a wider temperature range for \(T > T_{KT} \), provided \(C_+ \) is taken as a phenomenological parameter not necessarily equal to the true asymptotic value. We adopt this approach and use Eq. (23) with \(C_{\pm} \) and \(\nu \) as phenomenological parameters.

To carry out this large \(EL \) check of scaling, we observe from our data at \(T_{KT} \) in Fig. 2, that finite-size effects are negligible provided we restrict the data to \(L \geq 24, E \geq 0.06 \). Since this is true at \(T_{KT} \), it should also certainly be true for other values of \(T \). We, therefore, carry out simulations on an \(L = 24 \) lattice, for values \(E \geq 0.14 \). Our results for \(J(E,T) \) versus \(E \), for various values of \(T \) above and below \(T_{KT} \), are shown in Fig. 4 on a log-log scale. Solid lines with slopes of \(1 \) (for Ohmic behavior above \(T_{KT} \)), and \(3 \) (for critical behavior at \(T_{KT} \)) are shown for reference. In Fig. 5, we try to collapse this data onto two universal curves as discussed above, by finding the best choices for the parameters \(T_{KT}, z, C_{\pm}, \) and \(\nu \). The results shown are for the values \(T_{KT} = 0.218, z = 2 \) (consistent with our small \(EL \) analysis), \(\nu = 1/2 \) (consistent with the KT form), and \(C_+ = C_- = 0.35 \). We have found that this collapse is very sensitive to the value of \(T_{KT} \);
when T_{KT} is varied only 1%, the data for different T fail to overlap at all. When either z, v, or C_2 are varied by more than roughly 10%, the quality of the collapse decreases substantially. There is no apparent reason that our fitted parameters satisfy $C_+ = C_-$. The collapse appears reasonable for $T > T_{KT}$, but is much less so for $T < T_{KT}$, particularly at the smallest several values of T. This is most likely due to a failure of the assumed form for $\xi(T)$, Eq. (23), to be valid over such a large temperature range, as well as to poor equilibration at the smallest values of E (in Fig. 4, we see that for $T < T_{KT}$, the raw data points for the smallest E appear to curve slightly upwards to somewhat higher J than one might expect from the shape of the rest of these curves).

B. $f = 1/2$

In this section, we carry out a similar analysis as in the previous section, except applied to the $f = 1/2$ Coulomb gas, which corresponds to the "fully frustrated" XY model. As discussed at the end of Sec. II B, there are in principle two transitions in this model: a insulator to metal transition at T_{KT}, and a charge lattice melting transition at T_M. It is T_{KT} that corresponds to the transition from nonlinear to linear $J - E$ characteristics [see Eq. (15) and following discussion]. The most recent equilibrium simulations of the $f = 1/2$ Coulomb gas model by one of us 9 find that $T_{KT} \simeq 0.126$ is very close to, but slightly below $T_M \simeq 0.135$; the discontinuous jump in ϵ^{-1} is $1/\epsilon(T_{KT})/T_{KT} \simeq 5.35$, larger than the universal KT value of 4 [see Eq. (16)]. This compares with ear-

TABLE II. Results of the fitting of J to an expansion of the scaling function in powers of EL, as in Eq. (22). The data of Fig. 6 for the $f = 1/2$ model are used. The first column shows the range of system sizes $L_i - L_f$ which are included in the particular fit. The following columns give the fitted parameters. The last column is the χ^2 error of the fit. For each sequence of $L_i - L_f$, the first row gives the value of the fitted parameter, while the second row gives the estimated error.

<table>
<thead>
<tr>
<th>$L_i - L_f$</th>
<th>z</th>
<th>ϕ_0</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>ϕ_3</th>
<th>ϕ_4</th>
<th>χ^2_{fit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 14</td>
<td>1.8976</td>
<td>0.7788</td>
<td>1.3337</td>
<td>0.6484</td>
<td>0.4648</td>
<td>1.1746</td>
<td>14.2661</td>
</tr>
<tr>
<td>8 - 14</td>
<td>1.9556</td>
<td>0.8891</td>
<td>1.5631</td>
<td>0.6081</td>
<td>0.5561</td>
<td>0.8506</td>
<td>12.3852</td>
</tr>
<tr>
<td>10 - 14</td>
<td>1.9894</td>
<td>0.9327</td>
<td>1.7894</td>
<td>0.6560</td>
<td>0.5859</td>
<td>0.9327</td>
<td>10.5980</td>
</tr>
<tr>
<td>12 - 14</td>
<td>1.9158</td>
<td>0.9092</td>
<td>1.6484</td>
<td>0.6392</td>
<td>0.5794</td>
<td>1.7420</td>
<td>11.2051</td>
</tr>
<tr>
<td>14 - 16</td>
<td>2.0622</td>
<td>1.4525</td>
<td>0.6034</td>
<td>0.6416</td>
<td>0.5755</td>
<td>2.7420</td>
<td>4.5429</td>
</tr>
<tr>
<td>16 - 18</td>
<td>2.1514</td>
<td>1.8426</td>
<td>0.6507</td>
<td>0.6802</td>
<td>0.6030</td>
<td>3.0757</td>
<td>3.0757</td>
</tr>
<tr>
<td>18 - 20</td>
<td>2.4021</td>
<td>1.3639</td>
<td>0.7366</td>
<td>0.6647</td>
<td>0.5755</td>
<td>3.4356</td>
<td>11.0736</td>
</tr>
<tr>
<td>20 - 22</td>
<td>2.1581</td>
<td>1.6954</td>
<td>1.5878</td>
<td>0.6416</td>
<td>0.6802</td>
<td>7.3724</td>
<td>4.3721</td>
</tr>
<tr>
<td>22 - 24</td>
<td>2.0699</td>
<td>0.2873</td>
<td>2.1804</td>
<td>0.6507</td>
<td>0.6802</td>
<td>5.3878</td>
<td>2.5403</td>
</tr>
<tr>
<td>24 - 26</td>
<td>1.9125</td>
<td>0.8566</td>
<td>1.3288</td>
<td>0.6975</td>
<td>0.4067</td>
<td>2.0827</td>
<td>11.0117</td>
</tr>
<tr>
<td>26 - 28</td>
<td>0.0938</td>
<td>0.2125</td>
<td>0.6552</td>
<td>0.6274</td>
<td>0.3502</td>
<td>3.0877</td>
<td>3.0877</td>
</tr>
<tr>
<td>28 - 30</td>
<td>0.1246</td>
<td>0.3867</td>
<td>0.7936</td>
<td>0.6519</td>
<td>0.3456</td>
<td>0.8044</td>
<td>4.3701</td>
</tr>
<tr>
<td>30 - 32</td>
<td>0.1581</td>
<td>1.6954</td>
<td>1.5878</td>
<td>0.6416</td>
<td>0.6802</td>
<td>7.3724</td>
<td>2.5403</td>
</tr>
<tr>
<td>32 - 34</td>
<td>0.0699</td>
<td>0.2873</td>
<td>2.1804</td>
<td>0.6507</td>
<td>0.6802</td>
<td>5.3878</td>
<td>2.5421</td>
</tr>
</tbody>
</table>

(Continued on next page)
lish estimates by Grest of $T_{KT} = 0.129 \pm 0.002$, with a jump $1/\epsilon(T_{KT})T_{KT} \simeq 4.88 \pm 0.31$. Similar simulations on the fully frustrated XY model by Ramirez-Santiago and Jose find $T_{KT} \simeq T_M$ and a jump $1/\epsilon(T_{KT})T_{KT} \simeq 5.21$.

Fixing the temperature at $T_{KT} = 0.126$, we show in Fig. 6 our results for $J(E, L)$ versus E for various L. To extract the critical exponent z we fit this data to the expanded scaling function of Eq. (22). We restrict the data used in our fitting to those points where $EL \leq 0.5$, which corresponds to lattice sizes $L = 6 - 14$, with $E = 0.01 - 0.04$. In Table II, we show the results of this fit. Using the fourth-order expansion for lattice sizes $L = 8 - 14$, we find $z = 2.060 \pm 0.124$. As was found for $f = 0$, the result $z \simeq 2$ is consistent with a power law response of $J \sim E^z$.

In Fig. 7 we plot the data of Fig. 6 as JL^z/E versus EL, and find fair agreement with the expected collapse onto a universal curve. Our fitted value of $z = 2.060$ is used in making the vertical axis, and the solid line is drawn using the fitted values of the Φ_i. Although the agreement is reasonable, Table II again suggests some potential problems. As we found in Table I for the $f = 0$ case, now for $f = 1/2$, the parameters z and Φ_0 show a systematic increase as the smallest L_i used in the fit is increased. Now however, this increase is more pronounced, and the fitted values remain consistent with varying L_i only within the outer limits of the estimated statistical errors. Furthermore, the higher Φ_i all seem to be significant, and all have very large statistical error. These observations make it unclear whether or not our data truly represents the asymptotic scaling region of large L, small EL.

We have not attempted to check scaling for this $f = 1/2$ model in the large EL limit. The strong finite-size effects seen in Fig. 6, even comparing $L = 24$ and 32, means that we would have to go either to larger lattice sizes (which are beyond our present computational ability), or to temperatures sufficiently far from T_{KT}, in order to reach the large EL limit, for the values of E we have studied. Uncertainties in the correct form one should take for $\xi(T)$, due in particular to the close proximity of the vortex lattice melting transition at T_M to the insulator to metal transition at T_{KT}, would undoubtedly make such an analysis more complicated than was the case for $f = 0$.

IV. CONCLUSIONS

To conclude, we have carried out steady-state driven-diffusion Monte Carlo simulations of the 2D lattice Coulomb gas, in order to compute the dynamic exponent z, and hence obtain the nonlinear response $J \sim E^a$, $a = z + 1$, at criticality. This corresponds to the nonlinear current-voltage characteristic $V \sim I^2$ in a superconducting network at the superconducting to normal transition. We have analyzed our data according to a finite-size scaling method based on a new dynamic scaling conjecture by Fisher et al.

For the $f = 0$ model, corresponding to a superconducting network in zero applied magnetic field, our results agree with the familiar Kosterlitz-Thouless pair unbinding model. Our finite-size scaling analysis, varying L and E at fixed $T = T_{KT}$, gives a value of $z \simeq 2$, consistent with a power law response at T_{KT} of $a = 3$. Our check of scaling in the infinite L limit, where we vary T and E for fixed L large, shows fair agreement with the Kosterlitz-Thouless model, but success is limited by our limited knowledge of the form of the correlation length $\xi(T)$ outside the narrow critical region. For the $f = 1/2$ model, corresponding to a superconducting network in an applied magnetic field of one-half flux quantum per unit cell, we again find $z \simeq 2$. This is consistent with the Kosterlitz-Thouless pair unbinding result of Eq. (15) only if the discontinuous jump in $\epsilon^{-1}(T_{KT})$ obeys the universal KT prediction of Eq. (16), i.e., $1/\epsilon(T_{KT})T_{KT} = 4$. Equilibrium simulations however indicate that for $f = 1/2$, this jump is nonuniversal, with $1/\epsilon(T_{KT})T_{KT} \simeq 5.35$. Using this value of ϵ in Eq. (15) yields the nonlinear response at T_{KT} due to pair unbinding as, $J \sim E^a$, with $a = 3.68$. If pair unbinding were the dominant contribution to J, this would imply a dynamic exponent of $z = a - 1 = 2.68$. This conclusion is based on energetic considerations alone, and hence is not influenced by our particular choice of Monte Carlo dynamics, versus a more realistic microscopic superconductor dynamics.

It remains unclear what is the source of this inconsistency. It could be that the analysis of ϵ^{-1} in the equilibrium simulations is in error; this equilibrium analysis involves identifying leading logarithmic corrections at T_{KT} which may be hard to determine accurately. Or it could be that our finite-size analysis of z in this present work is flawed; this possibility is indicated by the less than satisfactory behavior of the fitted parameters (see Table II, and discussion at the end of Sec. III B) as we vary the order of the fitting expansion, or the system sizes used.

![Figure 7](image)

FIG. 7. The finite-size scaling behavior of the charge current density, JL^z/E versus EL, is plotted for various system sizes L at fixed temperature $T_{KT} = 0.126$, for the $f = 1/2$ model. Symbols with error bars represent the MC data. The solid line results from the fitting to Eq. (22) using a fourth order expansion in EL, and data from $L = 8 - 14$ and $E = 0.01 - 0.04$. Data from $E = 0.05$ and 0.06 for each lattice size are included in the plot. The fitted value of $z = 2.060$ was used in making the vertical axis. 10^5 total MC passes were used to compute averages.
in the fit. Or it could be that the result $z = 2$ is a more general property of such superconducting systems, which is independent of the KT pair unbinding model; in this case one would expect that some excitation other than pairs gives the dominant contribution to J at T_{KT}. The natural guess for these other excitations is the domain excitations of the ground state charge lattice. However, this would seem unlikely if the charge lattice melting transition T_M is distinctly higher than T_{KT}, as equilibrium simulations suggest. Therefore, behavior in the $f = 1/2$

model remains an enigma, both from the equilibrium, and now from the steady-state dynamic point of view.

ACKNOWLEDGMENTS

This work has been supported by U. S. Department of Energy Grant No. DE-FG02-89ER14017, and in part by the Korea Science and Engineering Foundation through the SRC program of SNU-CTP.

\footnote{G. S. Grest, Phys. Rev. B 39, 9267 (1989).}

\footnote{J.-R. Lee, Phys. Rev. B 49, 3317 (1994).}

\footnote{G. Ramirez-Santiago and J. V. José, Phys. Rev. Lett. 68, 1224 (1992).}

\footnote{J. M. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973); J. M. Kosterlitz, ibid. 7, 1046 (1974); A. P. Young, ibid. 11, L453 (1978).}

\footnote{P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).}

\footnote{M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975).}

\footnote{J. Villain, J. Phys. (Paris) 36, 581 (1975).}

\footnote{While this work was being completed, we learned of similar computations being carried out, for $f = 0$, by H. Weber and M. Wallin (unpublished). These authors also consider the effects of random pinning potentials on the steady-state response.}

\footnote{H. Eikmanns and J. E. van Himbergen, Phys. Rev. B 41, 8927 (1990).}

\footnote{Similar approaches have been used in, K. H. Lee and D. Stroud, Phys. Rev. B 45, 2417 (1992); M. Wallin and S. M. Girvin, ibid. 47, 14642 (1993); K. H. Lee, D. Stroud, and S. M. Girvin, ibid. 48, 1233 (1993).}

\footnote{M. P. Nightingale and H. W. Blöte, Phys. Rev. Lett. 60, 1562 (1988).}

\footnote{J.-R. Lee, Ph. D. thesis, University of Rochester, 1993.}

\footnote{P. Minnhagen and P. Olsson, Phys. Rev. B 45, 10557 (1992).}

\footnote{We chose a smaller limit for EL, as compared to our fits for $f = 0$, because (as we will see in Table II) even with this smaller limit, the higher order coefficients Φ_i are more significant for $f = 1/2$ than for $f = 0$.}