Applications of Newton's Laws

\[\vec{F} = \frac{d\vec{p}}{dt} = m \frac{d\vec{v}}{dt} = m \frac{d^2\vec{r}}{dt^2} \]

Solve second order differential equation

If one knows the force \(F(t) \) as function of time, then can solve equation of motion by integration of given initial conditions \(\vec{r}(0) \) and \(\vec{v}(0) \)

\[\vec{v}(t) = \int_{0}^{t} \frac{\vec{F}(t)}{m} \, dt + \vec{v}(0) \]

\[\vec{r}(t) = \int_{0}^{t} \vec{v}(t) \, dt + \vec{r}(0) \]

In general, not so simple since \(\vec{F} \) may depend on position of particle \(\vec{r} \).

\[\text{Constant force problems} \]

Constant force \(\Rightarrow \) constant acceleration

\[\vec{F} = \vec{F}_{g} + \vec{N} + \vec{F}_{f} = m\vec{a} \]

Take components perpendicular \& parallel to surface
As a simple case, consider a constant force \vec{F}.

$$\vec{U}(t) = \int_0^t \vec{F} \frac{dt}{m} + \vec{U}(0) = \frac{\vec{F}}{m} t + \vec{U}(0)$$

$$\vec{r}(t) = \int_0^t \left(\frac{\vec{F}}{m} t + \vec{U}(0) \right) dt + \vec{r}(0)$$

$$\vec{r}(t) = \frac{1}{2} \frac{\vec{F}}{m} t^2 + \frac{\vec{F}}{m} \vec{U}(0) t + \vec{r}(0)$$

above is equation of motion at constant acceleration

$$\vec{a} = \frac{\vec{F}}{m}$$

with initial conditions $\vec{U}(0), \vec{r}(0)$

For gravity $\vec{F} = -mg \hat{e}_z$

$$\vec{r}(t) = -\frac{1}{2} mg t^2 \hat{e}_z + \vec{U}(0) t + \vec{r}(0)$$
perp: \[N - F_g \cos \theta = 0 \quad \text{no acceleration in } \perp \]
\[N = F_g \cos \theta = mg \cos \theta \quad \text{direction} \]

parallel: \[F_g \sin \theta - F_f = ma \quad \text{friction} \]
\[mg \sin \theta - \mu N = ma \quad F_f = \mu N \]
\[mg \sin \theta - \mu mg \cos \theta = ma \]
\[mg (\sin \theta - \mu \cos \theta) = ma \]
\[a = g (\sin \theta - \mu \cos \theta) \]

For static case where \(a = 0 \), \(\mu = \mu_s \) coefficient of static friction and \(F_f^{\text{max}} = \mu_s N \), then
\[\sin \theta_{\text{max}} - \mu_s \cos \theta_{\text{max}} = 0 \]
Determines max angle of incline \(\theta_{\text{max}} \) before block slip
\[\tan \theta_{\text{max}} = \mu_s \]

For case where \(a > 0 \), \(\mu = \mu_k \) coefficient of kinetic friction
\[a = g (\sin \theta - \mu_k \cos \theta) \]
In general, \(\mu_k < \mu_s \)
Linear restoring force

\[F(x) = -kx \quad \text{Hook's law: stretched spring} \]

\[F = ma \quad \Rightarrow \quad m \frac{d^2x}{dt^2} = -kx \]

\[\frac{d^2x}{dt^2} = -\frac{k}{m} x \]

Define \[\omega_0 = \frac{k}{m} \]

\[\frac{d^2x}{dt^2} = -\omega_0^2 x \quad \text{Simple harmonic oscillator} \]

General solution has the form

\[x(t) = A \sin(\omega_0 t - \delta) \]

\[= A \cos \delta \sin(\omega_0 t) - A \sin \delta \cos(\omega_0 t) \]

oscillations with angular freq \[\omega_0 = \sqrt{\frac{k}{m}} \]

Note \[F(x) = -kx = -\frac{d}{dx}(\frac{1}{2}kx^2) \]

\[\Rightarrow F(x) \ \text{is conservative with potential} \quad U(x) = \frac{1}{2}kx^2 \]

Total mechanical energy

\[E = T + U = \frac{1}{2} mv^2 + \frac{1}{2} kx^2 \quad \text{is conserved} \]
General Conserved Forces

in one dimension

$$-\int F \cdot dr^2 = U_2 - U_1$$

$$E = T + U = \frac{1}{2} m v^2 + U(x)$$ is conserved

$$\Rightarrow v^2 = \frac{2}{m} [E - U(x)]$$

$$\Rightarrow v = \frac{dx}{dt} = \pm \sqrt{\frac{2}{m} [E - U(x)]}$$

$$\Rightarrow \int dt = \int \frac{\pm dx}{\sqrt{\frac{2}{m} [E - U(x)]}}$$

$$t - t_0 = \int_{x_0}^{x} \frac{\pm dx}{\sqrt{\frac{2}{m} [E - U(x)]}}$$ where $x(t_0) = x_0$

If we know $U(x)$, we can in principle do the integration and get $t - t_0 = \Phi(x)$

To function we get after doing integral

we can then solve for $x(t) = \Phi^{-1}(t - t_0)$
In general we can understand what to expect for such motion.

Points x_0 and x_1 are stable equilibrium.

At these points, $F = -\frac{dU}{dx} = 0$

\Rightarrow no force on particle, so particle at rest.

Also, if perturb particle's position $x_0 \Rightarrow x_0 + \delta$,
the resulting force F pushes particle back to x_0.

Point x_4 is unstable equilibrium.

Here $F = -\frac{dU}{dx} = 0$ also, so particle at rest. But if perturb $x_4 \Rightarrow x_4 + \delta$, the resulting force pushes the particle away from x_4.

If the particle has energy E_1, it may either be at the stable points x_1 or x_3 or it may oscillate between points x_2 and x_3.

For such oscillation, $E = U$ and hence $T = 0$ and so $V = 0$, when $x = x_2$ or x_3. These are the "turning points" where velocity vanishes and particles motion reverses.

At $x = x_0$, U is minimum and so $T \neq 0$ hence V.
If particle has energy E_2, it will come in from left, slow down at step when reaches x_0, then reverse directions and travel back to left.

Near a minimum of $U(x)$, say at x_0, one can always write

Taylor expansion: $U(x) \approx U(x_0) + \frac{1}{2} U''(x_0) (x-x_0)^2$

$\Rightarrow F = -\frac{du}{dx} = -U''(x_0) (x-x_0)$

$U'' = \frac{d^2U}{dx^2}$

Neumann's 2nd Law: Then

$m \frac{d^2x}{dt^2} = -U''(x_0) (x-x_0)$

Let $x' = x-x_0$, then $dx' = dx$

$m \frac{d^2x'}{dt^2} = -U''(x_0) x'$

Since x_0 is a minimum, $U''(x_0) > 0$

$\Rightarrow \frac{d^2x'}{dt^2} = -\frac{U''(x_0)}{m} x'$

x' undergoes simple harmonic motion at angular frequency $\omega_0 = \sqrt{\frac{U''(x_0)}{m}}$

Curvature of $U(x)$ at minimum determines ω_0.
velocity dependent force

A particle moving through a fluid (such as air) experiences a drag force that can often be approximated as

\[F_d(v) = -k v^n \hat{v} \]

where:

- \(k \) is positive
- \(\hat{v} \) is in direction of \(v \)

Experimentally, for small objects moving at relatively low velocities (~ 2 m/s = 80 ft/s) in air, \(n = 1 \). For higher velocities (but lower than the speed of sound \(\approx 330 \text{ m/s} \approx 1100 \text{ ft/s} \)), \(n = 2 \).

In the latter regime, for air we have

\[F_d(v) = -\frac{1}{2} c_D \rho A v^2 \hat{v} \]

where:
- \(c_D \) is a dimensionless drag coefficient
- \(\rho \) is the density of air
- \(A \) is the cross section of object 1 to direction of motion

More generally, for air, a good approximate is

\[F_d(v) \approx -(c_1 v + c_2 v^2) \hat{v} \]

where for spherical objects of diameter \(D \):
- \(c_1 = 1.55 \times 10^{-6} D \) and \(c_2 = 0.22 D^2 \) in MKS units
Example

0) vertical fall, low velocities $F_d \sim \nu \quad \rho g \gg c_2 \nu$

$$\frac{md\nu}{dt} = F = -mg - c_1 \nu$$

Separate variables

$$\int \frac{md\nu}{-mg - c_1 \nu} = \int dt$$

$$\nu_0 = \nu(t_0)$$

$$t = -\frac{m}{c_1} \left[\ln \left(\frac{\nu + \frac{mg}{c_1}}{\nu_0 + \frac{mg}{c_1}} \right) \right] = -\frac{m}{c_1} \ln \left(\frac{\nu + \frac{mg}{c_1}}{\nu_0 + \frac{mg}{c_1}} \right)$$

Define $T = \frac{m}{c_1}$, solve for ν in terms of t

$$e^{-T\nu} = \frac{\nu + \frac{mg}{c_1}}{\nu_0 + \frac{mg}{c_1}}$$

$$\nu = \left(\frac{\nu_0 + \frac{mg}{c_1}}{e^{-T\nu}} \right) - \frac{mg}{c_1}$$

$$\nu = \left(\nu_0 + \frac{mg}{c_1} \right)e^{-T\nu} - \frac{mg}{c_1}$$

As $t \to \infty$, velocity approaches the value

$$\nu_\infty = -\frac{mg}{c_1} \quad \text{known as the terminal velocity}$$

For an object falling from rest, $\nu_0 = 0$

$$\nu = \nu_0 \left(1 - e^{-t/T} \right)$$
For a small raindrop with \(D = 0.5 \text{ mm} \)

we get \(C_1 = (1.55 \times 10^{-4}) (0.5 \times 10^{-3}) = 0.775 \times 10^{-7} \)

\[
\begin{align*}
m &= \frac{4}{3} \pi \left(\frac{D}{2} \right)^3 \left(\frac{k \rho \alpha}{10^6} \right) = 6.54 \times 10^{-8} \text{ kg} \\
\frac{l}{g} &= 19/\text{cm}^3
\end{align*}
\]

\[
\begin{align*}
c &= \frac{m}{C_1} = \frac{6.54 \times 10^{-8}}{0.775 \times 10^{-4}} = 0.84 \text{ sec}
\end{align*}
\]

\[
\begin{align*}
v_0 &= \frac{mg}{C_1} = (0.84 \text{ sec}) (9.8 \text{ m/s}^2) = 8.3 \text{ m/s}
\end{align*}
\]

So raindrops reach terminal velocity of 8.3 m/s in less than one second!

Compare this to the speed of a raindrop in free fall.

\[
\begin{align*}
\text{Without air resistance, the speed } v(t) = -gt + v(0) \\
x(t) &= -\frac{1}{2} gt^2 + v(0)t + x(0)
\end{align*}
\]

If dropped from \(x(0) = h \) at \(v(0) = 0 \), then after \(t \) sec, it goes a distance \(d \) given by

\[
\begin{align*}
t &= \sqrt{\frac{2h}{g}} \\
\text{speed at the time is } |v(t)| = gt = \sqrt{2gh}
\end{align*}
\]

(can have gotten above by energy conservation)

\[
\begin{align*}
\frac{1}{2}mv^2 &= mg \cdot h \\
\implies v &= \sqrt{2gh}
\end{align*}
\]
For a rain drop falling from 2000 m, the terminal speed is

\[\nu = \sqrt{2(9.8)(2000)} \text{ m/s} = 198 \text{ m/s} \]

\[= 198 \left(\frac{\text{m}}{\text{s}} \right) \left(\frac{100 \text{ cm}}{\text{m}} \right) \left(\frac{\text{in}}{2.54 \text{ cm}} \right) \left(\frac{\text{ft}}{12 \text{ in}} \right) \left(\frac{\text{mi}}{5280 \text{ ft}} \right) \left(\frac{\text{hr}}{3600 \text{ s}} \right) \]

\[= 450 \text{ mph} \]

\[\nu_0 = \frac{mg}{C_1} \text{ terminal speed in m increases for larger raindrops or hailstones} \]

\(\text{v} \) terminal fall, higher velocities \(F_d \propto v^2 \) \(C_1 \ll C_2 \)

in general: \(\frac{mdv}{dt} = -mg + C_2 v^2 \)

where \(+ \) is for falling \(- \) is for rising

since \(F_d \) is opposite
to \(v \)

\[m \int \frac{dv}{v^2 - \frac{mg}{C_2}} = \int dt = t \]

\[\frac{m}{C_2} \int \frac{dv}{v^2 - \frac{mg}{C_2}} = \int dx = x \]

look up integral in handbook

\[t = \frac{v}{v_0} \left(\tanh \left(\frac{v_0}{v_0} \right) - \tanh \left(\frac{\nu}{v_0} \right) \right) \]

where \(\nu = \sqrt{\frac{mg}{C_2}} \) and \(\frac{v}{v_0} = \frac{v}{\nu} \)
for an object dropped from rest, \(v_0 = 0 \)

\[t = -t \tan^{-1}(\frac{v}{v_0}) \]

\[v(t) = v_\infty \tan(\frac{t}{\tau}) \]

\[\tau = \sqrt{\frac{m}{C_2 g}} = \sqrt{\frac{0.6}{(0.22)(9.8)}} = 0.4677 \text{ s} \]

\[v_\infty = \tau g = (0.67)(9.8) \text{ m/s} = 65 \text{ m/s} \]

(3) Projectile motion in air

For English, assume \(F_d = -k \cdot v \)
(although it is not really true)

\[\text{horizontal:} \quad m \frac{d^2 x}{dt^2} = -k m \frac{dx}{dt} \]

\[\text{vertical:} \quad m \frac{d^2 y}{dt^2} = -k m \frac{dy}{dt} - mg \]

Solve in horizontal direction

\[\frac{d^x}{dt} = -k \cdot v_x \Rightarrow v_x(t) = v_{x0} e^{-kt} \]
\[y = \frac{v_y}{g} x \]

Where \(v_{0x} = v_0 \cos \theta \)

Horizontal distance traveled from \(x(0) = 0 \)

\[
x(t) = \int_0^t \frac{dx}{v_x(t)} = \int_0^t \frac{v_{0x}}{v_x(t)} e^{-\frac{gt}{v_{0x}}} dt
\]

\[
= \frac{v_{0x}}{k} \left(1 - e^{-\frac{kt}{v_{0x}}} \right)
\]

The range of the projectile is defined by solving for \(y(t) = 0 \) (can't do analytically - need perturbation or numerical solution - see text)

Find time \(t_f \) where \(y = 0 \) - this is time projectile hits from range, \(x(0) \) then \(x(t_f) \).

But note, although we can't easily do above calculation, we can say that the range can never be greater than \(\frac{v_{0x}}{k} \).

\[\frac{\varepsilon}{k} \]

Compare this to case where there is no drag force.

Then \(v_x(t) = v_{0x} \) is constant

See Fig 2.8 of text for graph of more complete computation of range.