Hall effect (1879) - determines the sign of the charges that carry the electric current in a metal.

Electron motion in combined static electric and magnetic fields.

Electric field E_x applied in \hat{x} direction produces flowing electric current j_x in \hat{x} direction. Magnetic field H in \hat{z} direction exerts Lorentz force $\hat{F}_L = \hat{v} \times \hat{H}$ on the moving charges carrying the current j. For \hat{v} in \hat{x} direction and \hat{H} in \hat{z} direction, the Lorentz force \hat{F}_L is in the $-\hat{y}$ direction. \hat{F}_L deflects the charge carriers to the side wall of the wire (the shaded wall in the figure) where they build up and create a surface charge density. The surface charge density produces an electric field E_y in \hat{y} direction. For a steady state situation, the force from E_y will exactly cancel out the Lorentz force \hat{F}_L.

If W is the width of the wire, then measuring the "Hall voltage" $V_y = E_y \cdot W$ allows one to determine the sign of the charges that carry the electric current.
If current is carried by negative charges $-q$, then

\[\vec{j}_x = -q m \vec{v}_x \Rightarrow v_x < 0 \]

E_y deflects the mobile negative charges carrying the current and negative charges build up on shaded surface.

Neutralization of system ⇒ absence of negative charge, i.e., positive charge builds up on opposite surface.

The electric field E_y is in $-\hat{y}$ direction and Hall voltage is negative.

If current is carried by positive charges $+q$, then

\[\vec{j}_x = q m \vec{v}_x \quad v_x > 0 \]

E_y deflects the mobile positive charges carrying the current and positive charge builds up on the shaded E_y.

The electric field E_y is in the $+\hat{y}$ direction and the Hall voltage is positive.
For most (but not all) metals one finds a negative Hall voltage. This established that it was negatively charged electrons that carry the electric current in most metals.

Quantities to measure

Hall coefficient \(R_H = \frac{E_y}{j_x H} \)

since we expect force from \(E_y \) to exactly balance out Lorentz force \(F_L \) in steady state, we expect \(R_H \) to be independent of \(H \)

Magnetoresistance \(\rho(\gamma) = \frac{E_x}{j_x} \)

We can compute both \(R_H \) and \(\rho \) using the Drude model.

\[
\frac{dp}{dt} = -e \left(E + \frac{p \times H}{mc} \right) - \frac{p}{\tau} = 0 \text{ in steady state}
\]

for \(x \) and \(y \) components

\[
0 = -eEx - \frac{eH}{mc} p_y - \frac{p_x}{\tau}
\]

\[
0 = -eEy + \frac{eH}{mc} p_x - \frac{p_y}{\tau}
\]

\(\omega_c = \frac{eH}{mc} \) cyclotron frequency = angular frequency of a charged particle in circular motion in uniform \(H \)
(1) \[eE_x = -w_e p_y - \frac{p_y}{c} \]

(2) \[eE_y = w_e p_x - \frac{p_y}{c} \]

In steady state, current flows only in \(x \) direction. No current flows out the side walls of the wire ⇒ \(p_y = 0 \).

with \(p_y = 0 \),

\[p_x = -eE_x t \]

\[j_x = -meu_x = -me \frac{p_x}{m} = \frac{me^2 c}{m} E_x \]

\[\frac{E_x}{j_x} = \frac{m}{me^2 c} = \frac{1}{\sigma} \]

\[\frac{E_x}{j_x} = \frac{m}{me^2 c} = \frac{1}{\sigma} \]

Magnetoresistance \(\sigma(H) = \frac{1}{\sigma} = \frac{m}{me^2 c} \)

same as ordinary d.c. resistance \(\sigma \) when \(H = 0 \).

In Drude model, \(\sigma(H) \) is independent of \(H \).

Agreed with early measurements by Drude.

more modern results however do find \(\sigma \) can vary with \(H \).

(2) \[E_y = \frac{we^2}{e} p_x = -\frac{we^2}{e} E_x \]

Hall coefficient \(R_H = \frac{E_y}{d_x H} = \frac{(\frac{we^2}{e} p_x)}{(-me \frac{p_x}{m})} = -\frac{we^2}{me^2 H} \)

Use \(\frac{we}{mc} = R_H = -\frac{(eH/mc)^2}{me^2 H} = -\frac{1}{me^2 mc} \)
\[R_H = -\frac{1}{me} \] \hspace{1cm} \text{Hall coefficient independent of } H

But also, \(R_H \) is independent of our phenomenological parameter \(T \), the relaxation time.

\(R_H \) is something we can directly test against experiments, since it only depends on the electron density \(n \), which can be easily calculated.

In practice, \(R_H \) is found to depend on \(H \) and \(T \) and also on sample preparation. But at low \(T \), high \(H \) (\(\sim 10^4 \text{G} \)), and very pure samples, \(R_H \) is found to approach a constant value, often very close to the Drude value.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Charge</th>
<th>(-\frac{1}{R_H \text{mcc}})</th>
<th>((=) for Drude)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>1</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td>2</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>2</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>In</td>
<td>3</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>3</td>
<td>-0.3</td>
<td></td>
</tr>
</tbody>
</table>

Drude prediction very good for alkali metals which have single \(s \) shell electron as valence electron

Sign is negative! \(\Rightarrow \) current is carried by objects with positive sign
a.c. electric conductivity

\[E(t) = \text{Re} \left[E_0 e^{-i\omega t} \right] \]
harmonic oscillating electric field

\[\frac{d\vec{p}}{dt} = -\frac{\vec{p}}{\tau} - e\vec{E}(t) \]
Dufay's eq. of motion

assume solution is also harmonic oscillation

\[\vec{p}(t) = \text{Re} \left[P_0 e^{-i\omega t} \right] \]

\[-i\omega \vec{p}_0 = -\frac{\vec{p}_0}{\tau} - e\vec{E}_0 \]

\[(\frac{1}{\tau} - i\omega) \vec{p}_0 = -e\vec{E}_0 \]

\[\vec{p}_0 = -\frac{e}{\frac{1}{\tau} - i\omega} \vec{E}_0 = -\frac{e\tau}{1 - i\omega} \vec{E}_0 \]

current

\[\vec{j}(t) = \text{Re} \left[j_0 e^{-i\omega t} \right] \]

\[\vec{j} = -en \vec{V} \]

\[\vec{j}_0 = -en \frac{\vec{p}_0}{m} \]

\[\vec{j}_0 = -\frac{me^2}{m(1 - i\omega\tau)} \vec{E}_0 \]

a.c. conductivity

\[\vec{j}_0 = \sigma(\omega) \vec{E}_0 \]

\[\Rightarrow \sigma(\omega) = \frac{me^2}{m(1 - i\omega\tau)} = \frac{\sigma_{dc}}{1 - i\omega\tau} \]
where \(\sigma_{dc} = \frac{me^2c}{m} \) is dc. Drude conductivity.

As \(\omega \to 0 \), \(\sigma(\omega) \to \sigma_{dc} \)

As \(\omega \to \infty \), \(\sigma(\omega) \to \frac{me^2c}{i\omega mc} \) and \(\sigma(\omega) \) for \(\omega \gg 1 \), i.e. \(\omega \gg \frac{1}{c} \), oscillation is fast compared to collision rate, so \(\sigma(\omega) \) becomes independent of \(\omega \).

Electromagnetic wave propagation in a metal

Approx 1) In cgs units, for a propagating electromagnetic plane wave \(|E| = |H| \).

So for the forces the EM wave exerts on a conduction electron

\[
\frac{|F_{mag}|}{|F_{elec}|} = \frac{e|\vec{H} \times \vec{H}|}{e|E|} \approx 1 \quad \omega \ll 1
\]

So we will ignore the force that the \(\vec{H} \) component of the wave exerts on the electron.

Approx 2) When wavelength \(\lambda \) of EM wave is much larger than mean free path \(l \) of collisions, \(\lambda \gg l \), the electric field that an electron sees over the time between collisions is roughly uniform in space. Good for waves in visible spectrum where \(\lambda \approx 5000 \text{ Å} \), \(l \approx 10 \text{ Å} \).

(1) + (2) \(\Rightarrow \) we can use the above computed a.c. conductivity \(\sigma(\omega) \) to find the relation...