Motion in uniform \vec{E} and \vec{H} fields

Hall effect and magnetoresistance

\[\vec{t} \dot{\vec{r}} = -e \left[\vec{E} + \frac{\vec{E} \cdot \vec{E}}{c^2} \times \vec{H} \right] \]

\[\Rightarrow \vec{H} \times \vec{t} \dot{\vec{r}} = -e \vec{H} \times \vec{E} - \frac{eH}{c} \vec{E} \]

\[\vec{E} \perp = -\frac{te}{eH} \vec{H} \times \vec{t} \dot{r} + \vec{w} \]

\[\vec{w} = \frac{cE}{H} (\vec{E} \times \vec{H}) \]

Motion is as before, but with drift velocity \vec{w} added.

To determine orbits in k space mode:

\[\vec{t} \dot{\vec{k}} = -e \vec{E} - \frac{e}{c} \frac{1}{k} \frac{\partial E}{\partial k} \times \vec{H} \]

Write $\vec{E} = - (\vec{E} \times \vec{H}) \times \vec{H}$

True when $\vec{E} \perp \vec{H}$

\[\Rightarrow \vec{E} = - \frac{e}{c} \frac{\partial E}{\partial k} \times \vec{H} \]

Same as if \vec{E} was absent and band structure replaced by

\[E(k) = E(\vec{k}) - \frac{k\vec{k} \cdot \vec{w}}{c} \]

Orbits are intersections of surfaces of constant E with planes $\perp \vec{H}$

We will assume that $-\frac{k\vec{k} \cdot \vec{w}}{c}$ small enough so that E the constant $E(k)$ surface is closed (open) so is the constant $\vec{E}(k)$ surface. Good approx in most cases - see text for estimate of numbers.
In nearly free electron model

\[\varepsilon(k^2) = \frac{\hbar^2 k^2}{2m} \]

Surface of constant energy \(\varepsilon \) is sphere of radius

\[\sqrt{\frac{2m \varepsilon}{\hbar^2}} = k \] in \(k \)-space

\[\varepsilon(k^2) = \frac{\hbar^2 k^2}{2m} - \hbar \bar{w} \cdot \vec{k} \]

Surface of constant \(\varepsilon \) is given by

\[\frac{\hbar^2}{2m} (k - \frac{\bar{w}}{\hbar})^2 = \varepsilon + \frac{1}{2} m \bar{w}^2 \]

Sphere in \(k \)-space of radius

\[k = \sqrt{\frac{2m}{\hbar^2} (\varepsilon + \frac{1}{2} m \bar{w}^2)} \]

centered about \(\bar{k}_0 = \frac{\bar{w}}{\hbar} \)

Surface of constant \(\varepsilon \) is shifted by \(\frac{\bar{w}}{\hbar} \) term in direction \(\bar{w} \)
Hall effect: \[
\mathbf{j} = -\frac{e}{c} \mathbf{v} \times \mathbf{B} + \mathbf{w}, \quad \mathbf{w} = \frac{eE}{H} (\mathbf{E} \times \mathbf{B})
\]

Current in plane \(\perp \) to \(\mathbf{H} \) is

\[
\mathbf{j} = n_e e \mathbf{c} \mathbf{v} - n_e \mathbf{c} \langle \mathbf{v}_\perp \rangle\]

where \(\langle \mathbf{v}_\perp \rangle \) is steady state average over all occupied electron orbits and over collisions.

\[
\mathbf{j} = -ne \mathbf{c} \mathbf{v} + ne \mathbf{c} \mathbf{E} \times \langle \mathbf{c} \rangle
\]

Case (1) All occupied (or unoccupied) orbits are closed.

Then for large enough \(H \) so that \(\omega_c \tau \gg 1 \)
(where \(\tau \) is collision time, and \(\omega_c = \frac{eH}{m^*c} \)), electron makes many periods of its closed orbits between successive collisions.

We can estimate \(\langle \mathbf{c} \rangle \) in this large \(H \) case as follows:

Averaging over electron motion between two successive collisions at \(t=0 \) and \(t=t_0 \) we get

\[
\langle \mathbf{c} \rangle = \frac{1}{t_0} \int_0^{t_0} \mathbf{c}(t) \, dt = \frac{\mathbf{c}(t_0) - \mathbf{c}(0)}{t_0}
\]

where \(\mathbf{c}(0) \) is wave vector of electron as it emerges from the first collision at \(t=0 \), and \(\mathbf{c}(t_0) \) is wave vector of electron just before second collision at \(t=t_0 \).

As in the Drude model, we may assume that electrons emerge from a collision with an equilibrium distribution determined by the local temperature and chemical potential. Since the Fermi distribution

\[
f(E(k)) = \frac{1}{\exp \left(\frac{E(k)}{k_T} \right) + 1}
\]

depends on \(k \) only via energy \(E(k) \), and \(E(k) = E(-k) \),
we have, after averaging over the electron energy, from the collision at \(t = 0 \), \(\langle \hat{\mathbf{r}}(0) \rangle = 0 \). So \(\langle \hat{\mathbf{r}} \rangle = \hat{\mathbf{r}}(t_0)/t_0 \).

We now average over the time until the second collision, \(\langle t_0 \rangle = T \) (the time is distributed randomly with average equal to \(T \)). Since \(\omega_c T \gg 1 \), the electron makes many orbits between collisions, \(\hat{\mathbf{r}}(t_0) \) when averaged over collision time \(t_0 \), is equally likely to lie anywhere along the closed orbit.

\[\Rightarrow \langle \hat{\mathbf{r}}(t_0) \rangle = \text{ (average } \hat{\mathbf{r}} \text{ on orbit)} \].

If electric field \(\mathbf{E} \neq 0 \), then (average \(\hat{\mathbf{r}} \) on orbit) = 0 also. But when \(E \neq 0 \), (average \(\hat{\mathbf{r}} \) on orbit) \(\sim m^* \hat{\mathbf{w}} / \kappa \). To see this, use effective mass approximation,

\[e^* (k) = \frac{k^2 \rho^2}{2m^*} \]

Then orbit lies on curve of constant

\[E(k) = E(k) - \mathbf{k}, \hat{\mathbf{w}} \text{, which lies on sphere centered at } \hat{\mathbf{k}}_0 = \frac{m^* \hat{\mathbf{w}}}{\kappa} \]. So (average \(\hat{\mathbf{r}} \) on orbit) = \(\langle \hat{\mathbf{r}}(t_0) \rangle = \hat{\mathbf{k}}_0 \)

\[\Rightarrow \langle \hat{\mathbf{r}} \rangle = \left(\frac{\langle \hat{\mathbf{r}}(t_0) \rangle}{t} \right) = \frac{\hat{\mathbf{k}}_0}{T} = \frac{m^* \hat{\mathbf{w}}}{\kappa T} \].

So contribution of \(\langle \hat{\mathbf{r}} \rangle \) term to current is

\[\frac{n e^* c}{\hbar} \hat{\mathbf{x}} \frac{m^* \hat{\mathbf{w}}}{\kappa T} = \frac{n e}{\omega_c} \hat{\mathbf{x}} \hat{\mathbf{w}} \]

smaller than drift contribution to current

\[\hat{\mathbf{j}} = -n \mathbf{e} \hat{\mathbf{v}} \text{ by a factor } \frac{1}{\omega_c} \ll 1 \]

So \(\hat{\mathbf{j}} = -n \mathbf{e} \hat{\mathbf{v}} \) given just by drift velocity \(\hat{\mathbf{w}} \) in high field limit.
In this case \(\vec{j} \) is \(\perp \) to \(\vec{H} \) \(\Rightarrow \) \(\vec{j} \) is \(\perp \) to \(\vec{E} \) and \(\vec{H} \)

\(\Rightarrow \) Lorentz force so strong that electrons move \(\perp \) to \(\vec{E} \) and do not acquire any energy from the \(\vec{E} \)-field.

The Hall coefficient in this limit is just \(\frac{E}{j \cdot H} \)

\[R_{H \rightarrow \infty} = \frac{E}{j \cdot H} \]

but \(\vec{E} = \frac{cE}{H} (\vec{E} \times \vec{H}) \)

\(\Rightarrow \)

\[R_{H \rightarrow \infty} = \frac{E}{-n_e c E H} = -\frac{1}{n_e c} \]

\(\text{(Drude value)} \)

The above was for closed occupied orbitals.

If we had closed unoccupied orbitals we would use the hole picture to get

\[R_{H \rightarrow \infty} = \frac{1}{n_h \cdot c} > 0 \]

\((n_h \) is density of holes, each hole has charge \(+e \))

If there is more than one partially full band with only closed occupied or unoccupied orbitals then

\(\vec{j} = -n_{\text{eff}} \frac{e}{c} (\vec{E} \times \vec{H}) \) where \(n_{\text{eff}} = n - n_h \)

\[R_{H \rightarrow \infty} = -\frac{1}{n_{\text{eff}} \cdot c} \]

The effects of holes explains why \(R_0 \) can have non-Drude values, and even be \(> 0 \).
See text for what happens when $\text{Meff} = 0$. This is the case for undoped semiconductor.

Another way to view things is to do it in terms of conductivity tensor. Keeping contribution to \mathbf{j} from the \mathbf{k}-ten gives

$$\mathbf{j} = -ne\mathbf{v} + \frac{ne}{\text{Meff}} \mathbf{A} \times \mathbf{v}, \quad \mathbf{v} = \frac{\mathbf{E} \times \mathbf{A}}{H}$$

for $\mathbf{A} = \mathbf{z}$ direction we have

$$\mathbf{j} = \frac{neC}{H} (\mathbf{z} \times \mathbf{E} + \frac{1}{\text{Meff}} \mathbf{z} \cdot \mathbf{E}) = \mathbf{\sigma} \cdot \mathbf{E}$$

with $\mathbf{\sigma} = \frac{neC}{H} \begin{pmatrix} \frac{1}{\text{Meff}} & -1 \\ 1 & \frac{1}{\text{Meff}} \end{pmatrix}$

or writing $\frac{\sigma_0}{\text{Meff}} = \frac{ne^2C}{m^*eHc} \frac{m^*e}{eHc} = \frac{neC}{H}$ where

σ_0 Dunde conductivity $\Rightarrow \mathbf{\sigma} = \sigma_0 \begin{pmatrix} \frac{1}{(\text{Meff})^2} & -1 \\ 1 & \frac{1}{(\text{Meff})^2} \end{pmatrix}$

σ_0 (compare with prob #1 on HW #1!!)

\Rightarrow resistivity tensor $\mathbf{\rho} = \mathbf{\sigma}^{-1} = \frac{1}{\sigma_0} \begin{pmatrix} \frac{1}{(\text{Meff})^2} & -1 \\ 1 & \frac{1}{(\text{Meff})^2} \end{pmatrix}$

\Rightarrow bulk coefficient $\rho = \rho_{xx} = \frac{\rho_{yy}}{\rho_{zz}}$ as $(\text{Meff}) < 1$

$$\mathbf{\rho} = \frac{1/\sigma_0}{1 + \frac{1}{(\text{Meff})^2}} \begin{pmatrix} 1 & -\text{Meff} \text{Meff} \\ -\text{Meff} & 1 \end{pmatrix} \Rightarrow \frac{1}{\sigma_0} \begin{pmatrix} 1 & -\text{Meff} \\ -\text{Meff} & 1 \end{pmatrix} = \begin{pmatrix} \rho_{xx} & \rho_{xy} \\ \rho_{yx} & \rho_{yy} \end{pmatrix}$$
\[\mathbf{f} = \sigma \mathbf{E} \]

\[\sigma = \frac{\sigma_0}{\omega_c T} \begin{pmatrix} \frac{1}{\omega_c T} & -1 \\ 1 & -\frac{1}{\omega_c T} \end{pmatrix} \]

\[\sigma_0 = \frac{ne^2 c}{m^*} \]

\[\omega_c T = \frac{eH}{mc} \gg 1 \]

Then \[\mathbf{E} = \mathbf{p} \cdot \mathbf{f} \]

where \[\mathbf{p} = \frac{1}{\sigma_0} \begin{pmatrix} -\omega_c T & 1 \\ -1 & \omega_c T \end{pmatrix} \begin{pmatrix} p_x x \\ p_y y \end{pmatrix} = \begin{pmatrix} p_x x + p_y y \\ p_x y - p_y x \end{pmatrix} \]

For \[\mathbf{f} = \mathbf{j} x \] then \[\mathbf{E}_y = p_x x \mathbf{j} = -p_y y \mathbf{j} \]

Hall coeff: \[R = \frac{E_y}{j H} = \frac{-p_y y}{\sigma_0 H} = -\frac{\omega_c T}{m^* c} \frac{m^*}{ne^2 c} \frac{1}{H} \]

\[= -\frac{1}{m^* c} \text{ (true value)} \]

For holes, \[\mathbf{j} = m^* \mathbf{w} \]

For electrons we used \[\mathbf{j} = -me \mathbf{w} + me \mathbf{H} \times \mathbf{w} \]

For holes we use instead \[\mathbf{j} = +m^* \mathbf{w} - m^* \mathbf{H} \times \mathbf{w} \]

Since charge carriers have charge \(e \).

All results carry through except take \(e \rightarrow -e \)

\[\Rightarrow R = \frac{1}{m^* c} \]