Lattice vibrations, phonons, and the speed of sound

Assume Hamiltonian of coninc degrees of freedom looks like

$$H = \sum \frac{\mathbf{p}_i^2}{2m} + U_{\text{ion}}(\{\mathbf{R}_i\})$$

where the potential due to ion-ion interactions is at positions \mathbf{R}_i, momentum \mathbf{p}_i, mass M

Write $\mathbf{R}_i = \mathbf{R}_i^0 + \mathbf{u}_i$

position in periodic BL
small displacement due to elastic distortions

If \mathbf{u}_i is small, expand U_{ion} about the BL positions \mathbf{R}_i^0. Since the positions \mathbf{R}_i^0 are assumed to be positions of mechanical equilibrium, the linear term in the expansion must vanish, and the quadratic term is the leading order term.

$$U_{\text{ion}}(\{\mathbf{u}_i\}) = U_{\text{ion}}^0 + \frac{1}{2} \sum \sum_{ij} D_{ij}^{\alpha\beta} u_i^\alpha u_j^\beta$$

i, j label BL sites
α, β label components x, y, z of the displacement

$$D_{ij}^{\alpha\beta} = \left. \frac{\partial^2 U_{\text{ion}}}{\partial u_i^\alpha \partial u_j^\beta} \right|_{\{\mathbf{R}_i^0\}}$$

the dynamical matrix
The classical equations of motion for the ions are then

\[M \ddot{U}_i = -\frac{\partial U_{ion}}{\partial U_i} \Rightarrow M \ddot{U}_{id} = -\sum D_{ij}^{\alpha \beta} U_{j \beta} \]

Now by translational invariance of the Bravais lattice, \(D_{ij} \) depends only on \(\vec{R}_i - \vec{R}_j \).

We can define the Fourier transforms

\[\tilde{U}_i(t) = \int d^3\vec{q} \int \frac{d\omega}{2\pi} e^{i \vec{q} \cdot \vec{R}_i} e^{-i\omega t} \tilde{U}(\vec{q}, \omega) \]

\(\vec{q} \in 1^{st} \text{ BZ} \)

\[D_{ij}^{\alpha \beta} = \int d^3\vec{q} e^{i(\vec{q} \cdot (\vec{R}_i - \vec{R}_j))} D_{ij}(\vec{q}) \]

\(\vec{q} \in 1^{st} \text{ BZ} \)

Note: In defining Fourier transform of a function that exists only on the discrete sites of a B.C., the only wave vectors we need to consider are those \(\vec{q} \) in the \(1^{st} \text{ BZ} \). This is because any wavevector \(\vec{k} \) can always be written as \(\vec{k} = \vec{q} + \vec{R} \) with \(\vec{R} \) a unique reciprocal vector and \(\vec{q} \) in the \(1^{st} \text{ BZ} \). Then the plane wave factor would be

\[e^{i \vec{k} \cdot \vec{R}_i} = e^{i(\vec{q} + \vec{k}) \cdot \vec{R}_i} = e^{i \vec{q} \cdot \vec{R}_i} e^{i \vec{k} \cdot \vec{R}_i} \]

so we still only get oscillations at \(\vec{q} \) in \(1^{st} \text{ BZ} \).
Substitute these into the equation of motion

\[\int d^3q \int d\omega \ e^{i \mathbf{q} \cdot \mathbf{k} - i \omega t} (-\omega^2) M \mathbf{U}(\mathbf{q}, \omega) \]

\[= \int d^3q \int d^3q' \int d\omega \ e^{i \mathbf{q} \cdot \mathbf{k}'} e^{i \mathbf{q} \cdot \mathbf{k} - i \omega t} \mathbf{D}(\mathbf{q}) \cdot \mathbf{U}(\mathbf{q}, \omega) \]

Do the collective summation over coordinates

\[\sum \ e^{i (\mathbf{q}' - \mathbf{q}) \cdot \mathbf{s}} = \delta (\mathbf{q}' - \mathbf{q}) \]

\[\Rightarrow \mathbf{q} - \mathbf{q}' \]

\[\Rightarrow \mathbf{q} - \mathbf{q}' = \mathbf{R} \]

\[\Rightarrow \mathbf{q} - \mathbf{q}' = \mathbf{R} \text{ in } \mathbb{R}, \mathbb{L} \]

But since \(\mathbf{q}, \mathbf{q}' \) both \(\mathbf{R}^* \) the sum must vanish.
\[\int d^3q \int dw \, e^{i(q \cdot \vec{R}_e - \omega t)} \left\{ (-\omega^2)M \, \vec{u}(\vec{q}, \omega) \right\}_{1^\text{st} \, b2} + \omega^2 M \, \vec{u}(\vec{q}, \omega) = \vec{D}(\vec{q}) \cdot \vec{u}(\vec{q}, \omega) \]

Equate Fourier amplitudes to get

\[+ \omega^2 M \, \vec{u}(\vec{q}, \omega) = \vec{D}(\vec{q}) \cdot \vec{u}(\vec{q}, \omega) \]

If the eigen vectors are eigen values of \(\vec{D}(\vec{q}) \)

are \(\vec{E}_1(\vec{q}), \vec{E}_2(\vec{q}), \vec{E}_3(\vec{q}) \) and \(\lambda_1(\vec{q}), \lambda_2(\vec{q}), \lambda_3(\vec{q}) \)

Then

\[+ \omega^2 M = \lambda_\varepsilon(\vec{q}) \quad \varepsilon = 1, 2, 3 \]

\[\omega = \sqrt{\frac{\lambda_\varepsilon(\vec{q})}{M}} \]

dispersion relation for elastic vibrations at wave vector \(\vec{q} \),

polarization \(\vec{E}_\varepsilon(\vec{q}) \)

We expect that in the long wave length limit

we can expand

\[\vec{D}(\vec{q}) = \sum \, e^{-i\vec{q} \cdot \vec{R}_i} \vec{D}(\vec{R}_i) \]

\[= \sum \, \left\{ 1 - i \frac{\vec{q} \cdot \vec{R}_i}{2} + \frac{1}{2}(\vec{q} \cdot \vec{R}_i)^2 \dot{\vec{D}}(\vec{R}_i) \right\} \]
\[\sum_i \tilde{D}(\tilde{r}_i) = 0 \quad \text{because at all } \tilde{u}_i = \tilde{u}_0 \]
a uniform displacement, then
met force on con \& must vanish

\[\sum_i \tilde{r}_i \tilde{D}(\tilde{r}_i) = 0 \quad \text{by inversion symmetry } \tilde{r}_i \rightarrow -\tilde{r}_i \]
\[\tilde{D}(\tilde{r}) = \tilde{D}(-\tilde{r}) \]

So

\[\tilde{D}(\tilde{q}) = -\frac{q^2}{2} \sum_i (\tilde{q} \cdot \tilde{r}_i)^2 \tilde{D}(\tilde{r}) \]

we assume this

\[\tilde{D}(\tilde{q}) \propto q^2 \]

sum converges

so

\[\lambda_s (\tilde{q}) \propto q^2 \quad \text{or} \quad \lambda_s (\tilde{q}) = \frac{A_s}{\lambda} q^2 \]

for small \(\tilde{q} \)

\[\Rightarrow \quad \omega_s = \sqrt{\frac{A_s}{\lambda}} q \quad \text{with} \]

\[c_s = \sqrt{\frac{A_s}{\lambda}} \quad \text{the speed of sound} \]

for polarization \(s \).

\[\omega_s = c_s q \quad \text{for small } \tilde{q} \]

Also at small \(\tilde{q} \), we expect the spatial orientation
of the B.c. to get "averaged over" and so the
only directions of \(\tilde{q} \) and \(\tilde{2} \) to \(\tilde{q} \). We thus
expect the polarization vectors to become as \(\tilde{q} \rightarrow 0 \)

\[\tilde{\varepsilon}_1 (\tilde{q}) = \hat{\tilde{q}} \quad \text{longitudinal sound mode, speed } c_1 \]

\[\tilde{\varepsilon}_2 (\tilde{q}) \perp \hat{\tilde{q}} \quad \text{transverse sound modes, speed } c_{12} \]
When we treat the elastic vibrations of the solid quantum mechanically, these "normal modes" of elastic vibration, i.e., the independent modes of harmonic oscillation, get quantized just like harmonic oscillators. Each degree of excitation of a given mode of oscillation is called a "phonon".

For example, if the vibration at wave vector \(\vec{q} \) polarized \(\vec{z} \) has energy

\[E(\vec{q}, \vec{z}) (n + \frac{1}{2}) \]

We say there are \(n \) phonons of wave vector \(\vec{q} \) polarized \(\vec{z} \).

As with excitations of any harmonic oscillator, phonons behave as bosons, and their number is not conserved (chemical potential \(\mu_{\text{phonon}} = 0 \)).

Electrons can scatter by absorbing or emitting phonons, while conserving energy and crystal momentum, i.e., for absorption

\[E(\vec{k}_f) = E(\vec{k}_i) + h \omega_0 (\vec{q}) \]

\[\vec{k}_f = \vec{k}_i + \vec{\omega}_0 \vec{q} + \vec{k}_0 \]

where \(\vec{k}_f \) final electron crystal momentum

\(\vec{k}_0 \) initial crystal momentum

\(h \omega_0 \vec{q} \) phonon crystal momentum
But, Suppose we consider the conduction and uniform electrons as frozen and the ion-ion interaction therefore is Coulomb.

In our discussion of plasma oscillations we saw that the only longitudinal mode of oscillation of a Coulomb interaction set of charges \(q \), as \(q \rightarrow 0 \), at the plasma frequency. For ions of mass \(M \) and density \(\rho_{\text{ion}} \), the would be

\[
\omega_q = \sqrt{\frac{4\pi \rho_{\text{ion}} q^2}{M}} \quad \rho_{\text{ion}} = \text{charge of ion}
\]

This does not agree with the expectation above that the frequency of oscillation for a longitudinally polarized elastic vibration should be \(\omega_q = c \frac{q}{R} \), vanishing as \(q \rightarrow 0 \).

Why? Because if interaction between ions is purely Coulomb, then the sum \(\sum (\hat{q}, \vec{R})^2 \delta (\vec{R}) \) does not converge, as we had assumed in the previous discussion!

But we know from experiment and experience that longitudinal (acoustic) sound waves do exist with \(\omega_q = c \frac{q}{R} \), hence dispersion relation! What is the resolution of this paradox?
The answer is screening! We make the adiabatic approximation and assume that conduction electrons move so much faster than ions that they always relax to their minimum energy configuration corresponding to the instantaneous positions of the ions, as the ions move. The electrons will then screen the Coulombic ion-ion interaction and make it short ranged. The sum $\sum (g \cdot \vec{R}_i)^2 \vec{D}(\vec{R}_i)$ now converges and we get the longitudinal elastic modes with $\omega^2 = \frac{e^2}{\varepsilon_0} q^2$. Moreover we can use this argument to estimate the speed of sound c_0.

The phonon freq. for polarization \vec{s}, wave vector \vec{q} was determined by

$$\omega^2 M \vec{\varepsilon}_s = \vec{D}(\vec{q}) \cdot \vec{\varepsilon}_s$$

If we let $\vec{D}^0(\vec{q})$ be the dynamical matrix due to bare Coulombic ion-ion interactions, the we expect for the longitudinal mode that

$$\omega^2 M \vec{\varepsilon}_l = \vec{D}^0(\vec{q}) \cdot \vec{\varepsilon}_l$$
Now a longitudinal conic vibration of wave vector \vec{q} sets up a charge density of wave vector \vec{q}, which sets up an electric field of wave vector \vec{q}. The electrons screen this field by a factor $\frac{1}{\varepsilon(q)}$ where $\varepsilon(q)$ is the electron dielectric function.

Since $\varepsilon(q)$, the dynamical matrix, is α to the con-ion forces (effective con-ion spring constant in the harmonic approx.), we expect that these forces will get screened by the electrons and so the screened dynamical matrix $\tilde{D}(q)$ is related to the bare $D^0(q)$ by

$$\tilde{D}(q) = \frac{D^0(q)}{\varepsilon(q)}$$

Hence we expect that

$$\sum_{\mu} M \varepsilon_{\mu} = \tilde{D}(q) \cdot \vec{E}_e \Rightarrow \sum_{\mu} M \varepsilon_{\mu} = \frac{D^0(q)}{\varepsilon(q)} \cdot \vec{E}_e$$

$$\Rightarrow \sum_{\mu} \frac{M}{\varepsilon(q)} \varepsilon_{\mu} = \tilde{D}(q) \cdot \vec{E}_e$$

so the freq of oscillation is now

$$\omega_e(q) = \frac{\sqrt{2 \mu}}{\varepsilon(q)}$$
For small $\frac{q}{q_0}$ we can use the Thomas-Fermi approx

$$\varepsilon(q) = 1 + \frac{q^2}{q_0^2} \quad \text{where} \quad q_0 = \frac{4 \pi e^2 q}{\varepsilon_F}$$

So

$$\omega_e^2(q) = \frac{\varepsilon(q)}{1 + \frac{q^2}{q_0^2}} = \frac{\varepsilon(q) q^2}{q_0^2 + q^2} = \frac{\varepsilon(q) q^2}{q_0^2} \quad \text{for} \quad q \ll q_0$$

$$\omega_e(q) = \left(\frac{\varepsilon(q)}{q_0} \right)^{\frac{1}{2}} \Rightarrow \text{speed of sound}$$

$$C_e = \frac{q_0}{\varepsilon(q)}$$

$$\Rightarrow C_e^2 = \frac{4 \pi n_i \bar{m}}{M} \left(\frac{\varepsilon(q)}{\varepsilon_F}\right)$$

if n_i is conduction electron density and \bar{m} the effective mass of conduction electrons, then

$$n_i = \frac{n}{Z}, \quad \bar{m} = Ze$$

$$C_e^2 = \frac{n Z}{M \varepsilon(q) \varepsilon_F}$$

So

$$C_e^2 = \frac{n \bar{m}}{M \left(\frac{3}{2} \frac{n}{\varepsilon_F}\right)} = \frac{2 \frac{Z}{2} \varepsilon_F}{3 M} = \frac{2}{3} \frac{Z}{2} \frac{1}{2} m v_F^2$$

$$C_e^2 = \frac{2 \frac{Z}{2} \varepsilon_F}{3 M} \frac{1}{2} m v_F^2$$

$$C_e = \sqrt{\frac{2 \frac{Z}{2} \varepsilon_F}{3 M} v_F}$$
For wide (\(\frac{\text{meec}}{\text{m proton}} \sim \frac{1}{2000} \)) we expect

\[
\frac{c_e}{v_F} = \sqrt{\frac{2}{3}} \frac{m}{M} \sim 0.01
\]

Our result that \(c_e \sim 0.01v_F \) is consistent with the adiabatic approx that electrons move with speeds \((v_F) \) much greater than the ions \((c_e) \).

The above result is known as the Bohn-Stoney relation.

It gives results in correct order of magnitude agreement with experiment. For typical metals

\[
v_F \sim 10^8 \text{ cm/sec}
\]

\[
c_e \sim 10^6 \text{ cm/sec}
\]