Electrostatic energy of interaction

\[E = \frac{1}{8\pi} \int d^3r \ E^2 \]

Suppose the charge density \(\rho \) that produces \(E \)
can be broken into two pieces, \(\rho = \rho_1 + \rho_2 \)
with \(E = E_1 + E_2 \) where \(\nabla \cdot E_1 = 4\pi \rho_1 \) and \(\nabla \cdot E_2 = 4\pi \rho_2 \)
Then

\[E = \frac{1}{8\pi} \int d^3r \left[E_1^2 + E_2^2 + 2E_1 \cdot E_2 \right] \]

\[\text{"self-energy"} \quad \text{"self-energy"} \quad \text{"interaction" energy} \]

\[\rho_1 \quad \rho_2 \quad \rho_1 \text{ with } \rho_2 \]

\[E_{\text{int}} = \frac{1}{4\pi} \int d^3r \ \vec{E}_1 \cdot \vec{E}_2 \]

\[= \int d^3r \ \rho_1 \phi_2 = \int d^3r \ \rho_2 \phi_1 \]

where \(\vec{E}_1 = -\nabla \phi_1, \vec{E}_2 = -\nabla \phi_2 \), by similar manipulations

as earlier

integrals are over all space

Apply to the interaction energy of a dipole in
an external \(\vec{E} \) field

\[E_{\text{int}} = \int d^3r \ \rho_1 \phi_2 \]

\(\phi \) potential of external \(\vec{E} \) field

charge distribution of dipole
Assuming Φ_2 varies on length scale of ρ_1, then we can expand $\Phi_2(\mathbf{r}) = \Phi_2(\mathbf{r}_0) + (\mathbf{r} - \mathbf{r}_0) \cdot \nabla \Phi_2(\mathbf{r}_0)$ where \mathbf{r}_0 is the center of mass or any other convenient reference position within ρ_1.

\[
E_{\text{int}} = \int d^3r \, \rho(\mathbf{r}) \left[\Phi_2(\mathbf{r}_0) + (\mathbf{r} - \mathbf{r}_0) \cdot \nabla \Phi_2(\mathbf{r}_0) \right]
\]

\[
= g \, \Phi_2(\mathbf{r}_0) + \left[\int d^3r \, \rho(\mathbf{r}) (\mathbf{r} - \mathbf{r}_0) \right] \cdot \nabla \Phi_2(\mathbf{r}_0)
\]

\[
= g \, \Phi_2(\mathbf{r}_0) - \mathbf{p} \cdot \mathbf{E}
\]

where g is total charge in ρ_1 and \mathbf{p} is dipole moment with respect to \mathbf{r}_0. $\mathbf{E} = -\nabla \Phi_2$ is external E-field.

For a neutral charge distribution $g = 0$, and \mathbf{p} is independent of the origin about which it is computed, so

\[
E_{\text{int}} = -\mathbf{p} \cdot \mathbf{E}
\] \(\leftarrow\) does not include the energy needed to make the dipoles or to make \mathbf{E}.

E_{int} is lowest when $\mathbf{p} \parallel \mathbf{E}$

\Rightarrow in thermal ensemble, dipoles tend to align parallel to an applied \mathbf{E}.
Energy of magnetic dipole in external field

We had that the force on the dipole was

\[\mathbf{F} = -\nabla (\mathbf{m} \cdot \mathbf{B}) \]

if we regard the force as coming from the gradient of a potential energy \(U \) then \(\mathbf{F} = -\nabla U \Rightarrow \)

\[U = -\mathbf{m} \cdot \mathbf{B} \]

or equivalently, energy = work done to move dipole into position from \(\mathbf{r} \)

\[W = -\int_{\mathbf{F} \cdot d\mathbf{r}} = -\int_{\nabla U} \mathbf{d\mathbf{r}} = -\mathbf{m} \cdot \mathbf{B} \]

This is the correct energy to use in cases where \(\mathbf{m} \) is due to intrinsic magnetic moments of atom or molecule - say from electron or nuclear spin. For a thermal ensemble magnetic moments tend to align \(\parallel \) to \(\mathbf{B} \).

The answer comes out quite differently if we are talking about a magnetic moment produced by a classical current loop. To see this, consider what we would get if we tried to do the calculation in a similar way to how we did for the energy of an electric dipole in an electric field...
Magnetic energy of interaction

\[\mathcal{E} = \frac{1}{8\pi} \int d^3r \, B^2 \]

Suppose current \(\mathbf{j} \) that produces \(\mathbf{B} \) can be divided \(\mathbf{j} = \mathbf{j}_1 + \mathbf{j}_2 \) with \(\mathbf{B} = \mathbf{B}_1 + \mathbf{B}_2 \) where \(\mathbf{\nabla} \times \mathbf{B}_1 = \frac{4\pi}{c} \mathbf{j}_1 \) and \(\mathbf{\nabla} \times \mathbf{B}_2 = \frac{4\pi}{c} \mathbf{j}_2 \). Then

\[\mathcal{E} = \frac{1}{8\pi} \int d^3r \left[\mathbf{B}_1^2 + \mathbf{B}_2^2 + 2 \mathbf{B}_1 \cdot \mathbf{B}_2 \right] \]

Self energy, self energy, interaction energy

\[\mathcal{E}_{\text{int}} = \frac{1}{4\pi} \int d^3r \, \mathbf{B}_1 \cdot \mathbf{B}_2 \]

\[= \frac{1}{c} \int d^3r \, \mathbf{A}_1 \cdot \mathbf{A}_2 = \frac{1}{c} \int d^3r \, \mathbf{\dot{A}}_2 \cdot \mathbf{\dot{A}}_1 \]

where \(\mathbf{\dot{B}}_1 = \mathbf{\nabla} \times \mathbf{A}_1 \), \(\mathbf{\dot{B}}_2 = \mathbf{\nabla} \times \mathbf{A}_2 \), by similar manipulations as earlier.

Integrals are over all space.

Apply to the interaction energy of a magnetic dipole in an external \(\mathbf{B} \) field.

\[\mathcal{E}_{\text{int}} = \frac{1}{c} \int d^3r \, \mathbf{\dot{A}}_1 \cdot \mathbf{\dot{A}}_2 \]

\(\mathbf{\dot{A}} \) vector potential of external \(\mathbf{B} \) field

Current distribution of dipole
Assuming \(\vec{A} \) varies slowly on length scale of \(\ell \), then expand \(A_i(r) = A_i(r_0) + (\vec{r} - \vec{r}_0) \cdot \nabla A_i(r_0) \)

\[
\mathcal{E}_{\text{int}} = \frac{1}{c} \int d^3r \frac{\vec{r}}{r^3} \cdot \vec{A}(\vec{r}_0)
+ \frac{1}{c} \int d^3r \sum \frac{\hat{\epsilon}_{ij}}{2} (r - r_0)_i \cdot \partial_j A_i(\vec{r}_0)
\]

Superscript and subscript notation:

From magnetostatic computation of magnetic dipole moment, we had \(\int d^3r \frac{\vec{r}}{r^3} = 0 \)

for magnetostatics

\(\Rightarrow \) 1st term above vanishes. So does the piece of 2nd term \((\int d^3r \hat{\epsilon}_{ij}) \) \(r_0 \cdot \partial_j A_i(\vec{r}_0) \)

We are left with

\[
\mathcal{E}_{\text{int}} = \left[\frac{1}{c} \int d^3r \hat{\epsilon}_{ij} \frac{r_j}{r^3} \right] \partial_j A_i(\vec{r}_0)
\]

From computation of magnetic dipole approxim we had

\[
\int d^3r \hat{\epsilon}_{ij} \frac{r_j}{r^3} = - \int d^3r \hat{\epsilon}_{ij} \frac{r_j}{r^3}
= \frac{1}{2} \int d^3r \left[\hat{\epsilon}_{i}^{\kappa} \frac{r_j}{r^3} - \hat{\epsilon}_{i}^{\kappa} \frac{r_j}{r^3} \right]
= \frac{1}{2} \varepsilon_{kij} \int d^3r \left(\frac{\vec{r} \times \vec{r}}{r^2} \right)_k
\]

Recall:

\[
\vec{m} = \frac{1}{2c} \int d^3r \frac{\vec{r}}{r^3} \times \vec{r}
\]

\(\Rightarrow \) \(\hat{\epsilon}_{ij} \frac{r_j}{r^3} = - \varepsilon_{kij} m_k \) \(- \) mag dipole moment
\[E_{\text{int}} = -m_k \varepsilon_{kij} \partial_j A_i = m_k \varepsilon_{kij} \partial_j A_i \]

\[= \vec{m} \cdot (\vec{\nabla} \times \vec{A}) = \vec{m} \cdot \vec{B} = E_{\text{int}} \]

This is opposite in sign to what we found earlier!

Why the difference?

1. When we integrate the work done against the magnetostatic force to move \(\vec{m} \) into position from infinity, we found the energy:

\[U = -m \cdot \vec{B} \]

2. When we compute the interaction energy from

\[E_{\text{int}} = \frac{1}{2} \int d^3r \frac{\vec{A}_1 \cdot \vec{A}_2}{c^2} = \frac{1}{2} \int d^3r \int d^3r' \frac{\vec{F}_1(r) \cdot \vec{F}_2(r')}{(r-r')^2} \]

we found the energy \(E_{\text{int}} = +m \cdot \vec{B} \)

To see which is correct, let us consider computing the interaction energy \(\delta \) directly via method 1.
Consider two loops with currents I_1 and I_2.

What is the work done to move loop 2 in from infinity to its final position with respect to loop 1?

Magnetostatic force on loop 2 due to loop 1 is

$$ F = \frac{I_2}{C} \oint \mathbf{dl}_2 \times \mathbf{B}_1 $$
Lorentz force

$$ \mathbf{B}_1(r) = \frac{I_1}{C} \oint \mathbf{dl}_1 \times \frac{(\mathbf{r} - \mathbf{r}_1)}{\lvert \mathbf{r} - \mathbf{r}_1 \rvert^3} $$

Biot-Savart law

$$ F = \frac{I_1 I_2}{C^2} \oint \oint \mathbf{dl}_2 \times \left(\frac{\mathbf{dl}_1 \times (\mathbf{r}_2 - \mathbf{r}_1)}{\lvert \mathbf{r}_2 - \mathbf{r}_1 \rvert^3} \right) $$

Use triple product rule

$$ \mathbf{dl}_2 \times \left[\mathbf{dl}_1 \times (\mathbf{r}_2 - \mathbf{r}_1) \right] = \mathbf{dl}_1 \left[\mathbf{dl}_2 \cdot (\mathbf{r}_2 - \mathbf{r}_1) \right] - (\mathbf{r}_2 - \mathbf{r}_1) \left(\mathbf{dl}_1 \cdot \mathbf{dl}_2 \right) $$

from the 1st term

$$ \oint \mathbf{dl}_2 \cdot \frac{(\mathbf{r}_2 - \mathbf{r}_1)}{\lvert \mathbf{r}_2 - \mathbf{r}_1 \rvert^3} = -\oint \mathbf{dl}_2 \cdot \mathbf{V}_2 \left(\frac{1}{\lvert \mathbf{r}_2 - \mathbf{r}_1 \rvert} \right) = 0 $$

as integral of gradient around closed loop always vanishes!
\[\mathbf{F} = \frac{-I_1 I_2}{c^2} \oint \oint d\mathbf{\ell}_1 \cdot d\mathbf{\ell}_2 \frac{(\mathbf{r}_2 - \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^3} \]

Write \(\mathbf{r}_2 = \mathbf{R} + \delta \mathbf{r}_2 \) where \(\mathbf{R} \) is center of loop \(\mathcal{C} \).

Use \(\frac{\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1|^3} = \frac{\mathbf{\nabla}_R}{|\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1|} \)

\[\mathbf{F} = \frac{I_1 I_2}{c^2} \oint \oint d\mathbf{\ell}_1 \cdot d\mathbf{\ell}_2 \mathbf{\nabla}_R \left(\frac{1}{|\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1|} \right) \]

To move loop \(\mathcal{C} \) we need to apply a force equal and opposite to the above magnetostatic force.

The work we do in moving loop \(\mathcal{C} \) from infinity to its final position at \(\mathbf{R}_0 \) is

\[W_{\text{mech}} = -\int_{\infty}^{\mathbf{R}_0} \mathbf{F} \cdot d\mathbf{R} = -\frac{I_1 I_2}{c^2} \oint \oint d\mathbf{\ell}_1 \cdot d\mathbf{\ell}_2 \int_{\mathbf{R}_0} d\mathbf{R} \mathbf{\nabla}_R \left(\frac{1}{|\mathbf{R} + \delta \mathbf{r}_2 - \mathbf{r}_1|} \right) \]

\[= -\frac{I_1 I_2}{c^2} \oint \oint d\mathbf{\ell}_1 \cdot d\mathbf{\ell}_2 \frac{d^3 \mathbf{r}_2}{|\mathbf{r}_2 - \mathbf{r}_1|^3} \]

where \(\mathbf{r}_2 = \mathbf{R}_0 + \delta \mathbf{r}_2 \)

Note the minus sign!

\[= -\frac{I_1 I_2}{c^2} \int d^3 \mathbf{r} \int d^3 \mathbf{r}_2 \frac{\mathbf{f}_1(\mathbf{r}) \cdot \mathbf{f}_2(\mathbf{r}_2)}{|\mathbf{r}_2 - \mathbf{r}_1|} \]

This is just the negative of the interaction energy!!

\[= -M_{12} I_1 I_2 \]

\(M_{12} \) mutual inductance

Why the minus sign!
The minus sign we have here is the same minus sign we get when we found \(U = -\mathbf{m} \cdot \mathbf{B} \) by integrating the force on the magnetic dipole.

Why don't we get \(+ \frac{1}{c^2} \int d^3r_1 \int d^3r_2 \frac{\mathbf{J}_1(r_1) \cdot \mathbf{J}_2(r_2)}{|r_2 - r_1|} \) with the plus sign we expect from \(E = \frac{1}{8\pi} \int d^3r \mathbf{B}^2 \)?

Answer: we have left something out.

Faraday's law — when we move loop 2, the magnetic flux through loop 2 changes. This \(\frac{d\Phi}{dt} \) creates an emf \(\oint \mathbf{E} \cdot d\mathbf{l} \) around the loop that would tend to change the current in the loop.

If we are to keep the current fixed at constant \(I_2 \), then there must be a battery in the loop that does work to counter this induced emf (electromotive force).

Similarly, the flux through loop 1 is changing and a battery does work to keep \(I_1 \) constant. We need to add the work done by the batteries to the mechanical work computed above.

Faraday

\[
\begin{align*}
\mathcal{E}_1 &= -\frac{d\Phi_1}{c \, dt} \\
\mathcal{E}_2 &= -\frac{d\Phi_2}{c \, dt}
\end{align*}
\]

\(\Phi_1 = \) flux through loop 1

\(\Phi_2 = \) flux through loop 2
To keep the current constant, the batteries need to provide an emf that counters these Faraday induced emfs. The work done by the battery per unit time is therefore

\[\frac{dW_{\text{battery}}}{dt} = -\varepsilon_1 I_1 - \varepsilon_2 I_2 \]

(check units: \(\varepsilon I \) is [length] \([\varepsilon] \cdot [B/s] \) = [length] \cdot [force/s] = energy/s)

\[\frac{dW_{\text{battery}}}{dt} = \frac{d\Phi_1}{cdt} I_1 + \frac{d\Phi_2}{cdt} I_2 \]

\[W_{\text{battery}} = \int_0^T \left(\frac{d\Phi_1}{cdt} I_1 + \frac{d\Phi_2}{cdt} I_2 \right) dt \]

where \(t = 0 \) loop 2 is at infinity
\(t = T \) loop 2 is at final position
\(I_1, I_2 \) kept constant as loop moves

\[W_{\text{battery}} = \frac{1}{c} \Phi_1 I_1 + \frac{1}{c} \Phi_2 I_2 \]

where \(\Phi_1 \) and \(\Phi_2 \) are fluxes in final position, and are assumed that fluxes = 0 at infinity

\[\Phi_1 = CM_{12} I_2 \]
\[\Phi_2 = CM_{21} I_1 = CM_{12} I_1 \]

as \(M_{12} = M_{21} \)

\[\Rightarrow W_{\text{battery}} = 2M_{12} I_1 I_2 \]
add this to the mechanical work

\[W_{\text{total}} = W_{\text{mech}} + W_{\text{battery}} = -M_{12} I_1 I_2 + 2M_{12} I_1 I_2 \]

\[= M_{12} I_1 I_2 \]

\[= + \frac{1}{c^2} \int \frac{d^3 r_1 \cdot d^3 r_2}{\mid r_1 - r_2 \mid} \quad \frac{\vec{f}_1(r_1) \cdot \vec{f}_2(r_2)}{\mid r_1 - r_2 \mid} \]

we get back the correct interaction energy!

Conclusion: The magnetostatic interaction energy

\[\frac{1}{c^2} \int d^3 r_1 \cdot d^3 r_2 \quad \frac{\vec{f}_1(r_1) \cdot \vec{f}_2(r_2)}{\mid r_1 - r_2 \mid} \]

includes the work done to maintain the currents stationary as the current distributions move.

When we computed the interaction energy of a current loop dipole \(\vec{m} \) and find

\[E_{\text{int}} = + \vec{m} \cdot \vec{B} \]

this includes the energy needed to maintain the constant current producing the constant \(\vec{m} \).

When we integrated the force on the dipole to find the potential energy

\[U = -\vec{m} \cdot \vec{B} \]

this did not include the energy needed to maintain the constant current that creates \(\vec{m} \).

This is the correct energy expression to use when \(\vec{m} \) comes from intrinsic magnetic moments due to particles intrinsic spin, which cannot be viewed as arising from a current loop!
Electromagnetic Waves in a Vacuum

No sources \(\mathbf{f} = 0, \mathbf{q} = 0 \)

1) \(\nabla \cdot \mathbf{E} = 0 \)
2) \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{c \partial t} \)
3) \(\nabla \cdot \mathbf{B} = 0 \)
4) \(\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \)

\(\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\frac{2}{c^2} \left(\frac{\partial \mathbf{E}}{\partial t} \right) \)

\(\Rightarrow \quad -\nabla^2 \mathbf{E} = -\frac{2}{c^2} \left(\nabla \times \mathbf{B} \right) = -\frac{2}{c^2} \left(\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \right) \)

\(\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \)

Similarly
\(\nabla^2 \mathbf{B} = \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0 \)

\(\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0 \)

\(\nabla^2 \mathbf{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \)

Note: In MKS units, above wave equation looks like

It was noticed that the speed of electromagnetic waves,
\(\sqrt{\varepsilon_0 \mu_0} = 3 \times 10^8 \text{ m/s} \), was the same as the speed of light! This observation was a key element in showing that light was in fact electromagnetic waves.
Harmonic

Plane waves

\[\vec{E}(\vec{r}, t) = \text{Re} \left[\vec{E}_k e^{i(k \cdot \vec{r} - \omega t)} \right] \]
\[\vec{B}(\vec{r}, t) = \text{Re} \left[\vec{B}_k e^{i(k \cdot \vec{r} - \omega t)} \right] \]

\(\vec{k} \) is wave vector
\(\omega \) is angular frequency
\(v = \frac{\omega}{2\pi} \) is frequency
\(\nu = \frac{1}{T} \) is period
\(\lambda = \frac{2\pi}{|k|} \) is wavelength

\(\frac{|\vec{E}_k|}{|\vec{B}_k|} \) is amplitude

\[\vec{E}(\vec{r} + \lambda \hat{k}, t) = \vec{E}(\vec{r}, t) \] periodic in space with period \(\lambda \)

\[\vec{E}(\vec{r}, t + T) = \vec{E}(\vec{r}, t) \] periodic in time with period \(T \)

"plane wave" \(\Rightarrow \vec{E}(\vec{r}, t) \) is constant on space or planes with constant \(\vec{m} \parallel \hat{k} \)

Properties of EM plane waves

\[\nabla \cdot \vec{E} = 0 \] \(\Rightarrow \text{Re} \left[\vec{E}_k \cdot \nabla \vec{E} \right] \]
\[= \text{Re} \left[i \vec{E}_k \cdot \hat{k} e^{i(k \cdot \vec{r} - \omega t)} \right] \]
\[= 0 \]
\[\Rightarrow \vec{E}_k \cdot \hat{k} = 0 \]

Amplitude is orthogonal to \(\vec{k} \)

\[\nabla \cdot \vec{B} = 0 \] \(\Rightarrow \vec{B}_k \cdot \hat{k} = 0 \)

Amplitude orthogonal to \(\vec{k} \)
\[\nabla \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} \]

\[\Rightarrow \text{Re} \left[\nabla \times \vec{B}_h e^{i(k \cdot r - wt)} \right] = \text{Re} \left[\frac{1}{c} \vec{E}_h \frac{\partial}{\partial t} e^{i(k \cdot r - wt)} \right] \]

\[\Rightarrow \text{Re} \left[-\vec{B}_k \times \vec{E} e^{i(k \cdot r - wt)} \right] = \text{Re} \left[-i \omega \vec{E}_k e^{i(k \cdot r - wt)} \right] \]

\[\Rightarrow \text{Re} \left[i \vec{k} \times \vec{B}_h e^{i(k \cdot r - wt)} \right] = \text{Re} \left[-i \omega \vec{E}_k e^{i(k \cdot r - wt)} \right] \]

\[\Rightarrow \vec{k} \times \vec{B}_h = -\frac{\omega}{c} \vec{E}_k \]

\[\vec{k} \times \vec{k} \times \vec{B}_h = -k^2 \vec{B}_h = -\frac{\omega}{c} \vec{k} \times \vec{E}_k \]

\[\vec{B}_h = \frac{\omega}{ck^2} \vec{k} \times \vec{E}_k \]

Finally,

\[\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \]

\[\Rightarrow \text{Re} \left[\vec{E}_k \nabla^2 e^{i(k \cdot r - wt)} - \frac{k^2}{c^2} \frac{\partial^2}{\partial t^2} e^{i(k \cdot r - wt)} \right] = 0 \]

\[\Rightarrow k^2 \left[\vec{E}_k (-k^2) e^{i(k \cdot r - wt)} + \frac{\omega^2}{c^2} \vec{E}_k e^{i(k \cdot r - wt)} \right] = 0 \]

\[\Rightarrow k^2 = \frac{\omega^2}{c^2} \]

\[\omega = \pm kc \]

\[\text{Dispersion relation} \]

Consistent with above,

\[\vec{B}_h = \hat{k} \times \vec{E}_h \]

\[\hat{k} = \frac{\vec{E}_h}{|\vec{E}_h|} \]

\[|\vec{B}_h| = |\vec{E}_h| \]