We want to show that the boundary value problem we described is well posed - i.e. there is a unique solution. We start by deriving Gauss' Theorems.

Consider \(\int \limits_{\mathcal{S}} d^3 \mathbf{r} \ \nabla \cdot \mathbf{A} = \oint_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{l} \) \quad \text{Gauss theorem}

Let \(\mathbf{A} = \phi \mathbf{\nabla} \psi \) \quad \phi, \psi \text{ any two scalar functions}

\[\Rightarrow \quad \nabla \cdot \mathbf{A} = \phi \Delta^2 \psi + \nabla \phi \cdot \nabla \psi \]

\[\phi \nabla \psi \cdot \hat{\mathbf{n}} = \phi \frac{\partial \psi}{\partial m} \]

\[\Rightarrow \quad \int \limits_{\mathcal{V}} d^3 r \left(\phi \Delta^2 \psi + \nabla \phi \cdot \nabla \psi \right) = \frac{1}{2} \int \limits_{\mathcal{S}} d\mathbf{a} \phi \frac{\partial \psi}{\partial m} \] \quad \text{Green's 1st identity}

Let \(\phi \leftrightarrow \psi \)

\[\int \limits_{\mathcal{V}} d^3 r \left(\psi \Delta^2 \phi + \nabla \phi \cdot \nabla \psi \right) = \frac{1}{2} \int \limits_{\mathcal{S}} d\mathbf{a} \psi \frac{\partial \phi}{\partial m} \]

Subtract

\[\int \limits_{\mathcal{V}} d^3 r \left(\phi \Delta^2 \psi - \psi \Delta^2 \phi \right) = \frac{1}{2} \int \limits_{\mathcal{S}} d\mathbf{a} \left(\phi \frac{\partial \psi}{\partial m} - \psi \frac{\partial \phi}{\partial m} \right) \] \quad \text{Green's 2nd identity}

Apply Green's 2nd identity with \(\psi = \frac{1}{r - r'} \), \(r' \) in integration variable, \(\phi \) is the scalar potential, with \(\Delta^2 \phi = -4\pi \rho \). Use \(\Delta^2 \psi = \Delta^2 \phi = -4\pi \delta(r - r') \)

\[\int \limits_{\mathcal{V}} d^3 r' \left[\phi(r') \left(-4\pi \delta(r - r') \right) \right] \]

\[= \frac{1}{2} \int \limits_{\mathcal{S}} d\mathbf{a'} \left[\phi \frac{\partial}{\partial m'} \left(\frac{1}{|r - r'|} \right) - \frac{1}{|r - r'|} \frac{\partial \phi}{\partial m'} \right] \]
If \(\vec{r} \) lies within the volume \(V \), then

\[
(\star) \quad \phi(\vec{r}) = \frac{\int d^3r' \, \rho(\vec{r}')}{V} + \oint_{S} \, d\vec{a}' \left[\frac{1}{|\vec{r} - \vec{r}'|} \frac{\partial \phi}{\partial m'} - \frac{\phi}{4\pi} \frac{\partial}{\partial m'} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) \right]
\]

Note: if \(\vec{r} \) lies outside the volume \(V \), then

\[
0 = \frac{\int d^3r' \, \rho(\vec{r}')}{V} + \oint_{S} \, d\vec{a}' \left[\frac{1}{|\vec{r} - \vec{r}'|} \frac{\partial \phi}{\partial m'} - \frac{\phi}{4\pi} \frac{\partial}{\partial m'} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) \right]
\]

potential from a

potential from a

surface charge density

surface dipole layer of

\[\sigma = \frac{1}{4\pi} \frac{\partial \phi}{\partial m'} \]

dipole strength density

\[\Phi \]

From (\(\star \)), if \(S \to \infty \) and \(E \sim \frac{\partial \phi}{\partial m} \to 0 \) faster than \(\frac{1}{r} \),

then the surface integral vanishes and we recover

Coulomb's law

\[\phi(\vec{r}) = \int d^3r' \, \Phi(\vec{r}') / |\vec{r} - \vec{r}'| \]

(\(\star \)) gives the generalization of Coulomb's law to a system

with a finite boundary

For a charge free volume \(V \), i.e. \(\varphi(r) = 0 \) in \(V \),

the potential everywhere is determined by the

potential and its normal derivative on the surface.

But one cannot in general specify both

\[\phi \] and \[\frac{\partial \phi}{\partial m} \] on the boundary surface, since the

resulting \(\phi \) from (\(\star \)) would not in general obey

Laplace's equation

\[\nabla^2 \phi = 0. \]
Specifying both \(\phi \) and \(\phi' \) on surface is known as "Cauchy" boundary conditions — for Laplace's eqn, Cauchy b.c. over-specify the problem, and a solution cannot in general be found.

Uniqueness

If we have a system of charges in vol \(V \), and either the potential \(\phi \), or its normal derivative \(\phi'_n \), is specified on the surface of \(V \), then there is a unique solution to Poisson's equation inside \(V \). Specifying \(\phi \) is known as Dirichlet boundary conditions. Specifying \(\phi'_n \) is known as Neumann boundary conditions.

Proof: Suppose we had two solutions \(\phi_1 \) and \(\phi_2 \), both with \(-\nabla^2 \phi = \rho \) inside \(V \), and obeying specified b.c. on surface of \(V \).

Define \(U = \phi_2 - \phi_1 \), then \(\nabla^2 U = 0 \) inside \(V \)

and \(U = 0 \) on surface \(S \) — for Dirichlet b.c.,
or \(\frac{\partial U}{\partial n} = 0 \) on surface \(S \) — for Neumann b.c.

Use Green's 1st identity with \(\phi = \psi = U \)

\[
\oiint_{V} \left(\nabla^2 U + \nabla U \cdot \nabla U \right) \, d^3r = \oiint_{S} \left(\frac{\partial U}{\partial n} \right) \, d^2s
\]

as \(\nabla^2 U = 0 \), and \(U \) \(\frac{\partial U}{\partial n} = 0 \).
\[\int dV |\nabla u|^2 = 0 \quad \Rightarrow \quad \nabla u = 0 \quad \Rightarrow \quad u = \text{const} \]

For Dirichlet b.c., \(u = 0 \) on surface \(S \), so const = 0 and \(\phi_1 = \phi_2 \). Solution is unique.

For Neumann b.c., \(\phi_1 \) and \(\phi_2 \) differ only by an arbitrary constant. Since \(\vec{E} = -\nabla \phi \), the electric fields \(E_1 = -\nabla \phi_1 \) and \(E_2 = -\nabla \phi_2 \) are the same.

Additionally, if boundary surface \(S \) consists of several disjoint pieces, then solution is unique if specify \(\phi \) on some pieces and \(\frac{\partial \phi}{\partial n} \) on other pieces.

Solution of Poisson's equation with both \(\phi \) and \(\frac{\partial \phi}{\partial n} \) specified on the same surface \(S \) (Cauchy b.c.) does not in general exist, since specifying either \(\phi \) or \(\frac{\partial \phi}{\partial n} \) alone is enough to give a unique solution.
Green's function - part II

Greens 2nd identity

\[\int_V d^3 r' \left(\phi \nabla'^2 - 4 \frac{\partial^2 \phi}{\partial m'^2} \right) = \oint_S \left(\phi \frac{\partial \phi}{\partial m'} - 4 \frac{\partial \phi}{\partial m'} \right) \]

Apply above with \[\phi(r') \] electrostatic potential with \[\nabla'^2 \phi = -4 \pi \delta(r') \]
\[\phi(r') = G(r, r') \] the Green function satisfying

\[\nabla'^2 G(r, r') = -4 \pi \delta(r-r') \]

We saw one solution of above is \[G(r, r') = \frac{1}{r-r'} \]

but a more general solution is

\[G(r, r') = \frac{1}{r-r'} + F(r, r') \]

where \[\nabla'^2 F(r, r') = 0 \] for \[r' \] in volume \[V \]

we will choose \[F(r, r') \] to simplify solution of \[\phi \]

\[\Rightarrow \int_V d^3 r' \left(\phi(r') \nabla'^2 G(r, r') - G(r, r') \nabla'^2 \phi(r') \right) \]

\[= \int_V d^3 r' \left(\phi(r') \left[-4 \pi \delta(r-r') \right] - G(r, r') \left[-4 \pi \rho(r') \right] \right) \]

\[= -4 \pi \phi(r) + 4 \pi \int_V G(r, r') \rho(r') \]

\[= \oint_S d a' \left(\phi \frac{\partial G}{\partial m'} - G \frac{\partial \phi}{\partial m'} \right) \]
\[\phi(\vec{r}) = \frac{1}{V} \int d^3 r' \ G(\vec{r}, \vec{r}') \ f(\vec{r}') + \frac{1}{S} \int_{S_{B}} d\vec{a}' \ \left(\frac{\partial \phi(\vec{r}')}{\partial r^i_{B}} - \frac{\partial \phi(\vec{r})}{\partial r^j_{B}} \right) \delta_{iB} \delta_{jB} \]

Consider the *Dirichlet boundary problem*. If we can choose \(F(\vec{r}, \vec{r}') \) such that \(G(\vec{r}, \vec{r}') = 0 \) for \(\vec{r}' \) on the boundary surface \(S' \), then the above simplifies to

\[\phi(\vec{r}) = \frac{1}{V} \int d^3 r' \ G(\vec{r}, \vec{r}') \ f(\vec{r}') - \frac{1}{S} \int_{S_{B}} d\vec{a}' \ \phi(\vec{r}') \ \partial_{iB} \ G_{B}(\vec{r}, \vec{r}') \]

Since \(f(\vec{r}) \) is specified in \(V \), and \(\phi(\vec{r}) \) is specified on \(S' \), above then gives desired solution for \(\phi(\vec{r}) \) inside volume \(V \).

Finally, \(G_{B} \) is therefore equivalent to finding an \(F(\vec{r}, \vec{r}') \) such that

\[\nabla^2 F(\vec{r}, \vec{r}') = 0 \quad \text{for} \quad \vec{r}' \in V \] (solves Laplace eqn) and

\[F(\vec{r}, \vec{r}') = \frac{-1}{|\vec{r} - \vec{r}'|} \quad \text{for} \quad \vec{r}' \text{ on boundary surface } S' \]

Always exists unique solution for \(F \).
Next consider Neumann boundary problem.

One might think to find \(F(\vec{r}, \vec{r}') \) such that \(\frac{\partial G}{\partial m'} (\vec{r}, \vec{r}') = 0 \) on boundary surface. But this is not possible.

Consider \(\int V(r, r') d^3r' = \int V' \cdot \nabla' G(\vec{r}, \vec{r}') d^3r' \nabla' \cdot \vec{G} = -4\pi \delta(\vec{r} - \vec{r}') \)

So we can't have \(\frac{\partial G}{\partial m'} = 0 \) for \(\vec{r}' \) on \(S' \)

Simplest choice is then \(\frac{\partial G_N}{\partial m'} (\vec{r}, \vec{r}') = -4\pi \quad \text{for} \quad \vec{r}' \quad \text{on} \quad S' \quad \text{area of surface} \)

Then

\[
\phi(\vec{r}) = \int d^3r' \ G_N(\vec{r}, \vec{r}') \phi(\vec{r}') + \oint \frac{da'}{4\pi} \cdot \left[\phi(\vec{r}') + \frac{\partial \phi(\vec{r}')}{\partial m'} \cdot \nabla' \cdot \vec{G}(\vec{r}, \vec{r}') \frac{\partial G_N}{\partial m'} \right]
\]

Since \(\phi(\vec{r}) \) is specified in \(V \)

and \(\frac{\partial \phi}{\partial m} \) is specified on \(S' \)

This above gives solution \(\phi(\vec{r}) \) in \(V \) within additive constant \(\langle \phi \rangle_S \)

Since \(\vec{E} = -\nabla \phi \), the constant \(\langle \phi \rangle_S \) is of no consequence.
Finding \(G_\nu (\vec{r}, \vec{r}') \) is therefore equivalent to finding an \(F(\vec{r}, \vec{r}') \) such that

\[
\nabla^2 F(\vec{r}, \vec{r}') = 0 \quad \text{for } \vec{r}' \in V
\]

and \(\frac{\partial F(\vec{r}, \vec{r}')}{\partial n} = -\frac{\Phi}{\sigma} \) for \(\vec{r}' \) on surface \(S' \).

always exists a unique solution (within additive constant)

While \(G_D \) or \(G_N \) always exist in principle, they depend in detail on the shape of the surface \(S \) and are difficult to find except for single geometries.

In proceeding, we defined \(G \) by

\[
\nabla^2 G(\vec{r}, \vec{r}') = -\frac{\Phi}{\sigma} \delta(\vec{r} - \vec{r}')
\]

But our earlier interpretation of \(G(\vec{r}, \vec{r}') \) was that it was potential at \(\vec{r} \) due to point source at \(\vec{r}' \), i.e.

\[
\nabla^2 G(\vec{r}, \vec{r}') = -\frac{\Phi}{\sigma} \delta(\vec{r} - \vec{r}') \quad \text{Note, for general surface } S', \ G(\vec{r}, \vec{r}') \text{ is not in general a function of } |\vec{r} - \vec{r}'| \text{ but depends on } \vec{r} \text{ and } \vec{r}' \text{ separately. But the equivalence of the two definitions of } G \text{ above is obtained by noting that one can prove the symmetry property}
\]

\[
G(\vec{r}, \vec{r}') = G(\vec{r}', \vec{r})
\]

for Dirichlet b.c., and one can impose it as an additional requirement for Neumann b.c.

(see Jackson, end section 1.10)