Image Charge Method

For simple geometries, one can try to obtain \(G_D \) or \(G_N \) by placing a set of "image charges" outside the volume of interest \(V \), i.e., on the "other side" of the system boundary surface \(S \). Because these image charges are outside \(V \), they contribute to the potential inside \(V \) according to \(\nabla^2 \phi_{image} = 0 \), as necessary. Choose location of image charges so that total \(\phi \) has desired boundary condition.

1) Charge in front of infinite grounded plane

\[\begin{align*}
\nabla^2 \phi &= -4\pi g \delta(x) \delta(y) \delta(z-d) \\
\phi &= 0 \quad \text{for} \quad z = 0 \\
\phi &= 0 \\
\end{align*} \]

If we find a solution to above, it is the unique solution.

Solution: put fictitious image charge \(-g\) at \(z = -d\)

\[\phi(x, y, z) = \frac{g}{\sqrt{x^2 + y^2 + (z-d)^2}} - \frac{g}{\sqrt{x^2 + y^2 + (z+d)^2}} \]

\(\phi \) is potential from the real charge \(+g \) and the image \(-g\).

Above satisfies \(\phi(x, y, 0) = 0 \) as required.

Also, \(\nabla^2 \phi = -4\pi g \delta(r-d) - 4\pi g \delta(r+d) \)

\[= -4\pi g \delta(r-d) \quad \text{for region} \quad z > 0 \]
Can now find \vec{E} for $z=0$

$$\vec{E} = -\vec{\nabla} \phi$$

In particular $E_z = -\frac{\partial \phi}{\partial z} = \frac{q}{4\pi} \int \frac{\left(\frac{1}{2}\right) \frac{z}{\sqrt{x^2+y^2+(z-d)^2}}}{\left[\sqrt{x^2+y^2+(z-d)^2}\right]^{3/2}} - \left(\frac{1}{2}\right) \frac{z + d}{\sqrt{x^2+y^2+(z+d)^2}}^{3/2} \, dz$.

$$E_z = \frac{q}{4\pi} \int \left[\frac{(z-d)}{\sqrt{x^2+y^2+(z-d)^2}}^{3/2} - \frac{(z+d)}{\sqrt{x^2+y^2+(z+d)^2}}^{3/2} \right] \, dz$$

We can use above to compute the surface charge density $\sigma(x,y)$ induced on the surface of the conducting plane. At conductor surface

$$-\frac{\partial \phi}{\partial n} = 4\pi \sigma$$

$$\Rightarrow \sigma = -\frac{1}{4\pi} \frac{2\phi}{\partial z} = \frac{1}{4\pi} E_z \big|_{(x,y,z=0)}$$

$$\sigma(x,y) = \frac{q}{4\pi} \int \left[\frac{-d}{\sqrt{(x^2+y^2+d^2)^{3/2}}} - \frac{d}{\sqrt{(x^2+y^2+d^2)^{3/2}}} \right]$$

$$= -\frac{q}{2\pi} \frac{d}{\sqrt{(x^2+y^2+d^2)^{3/2}}} = \frac{-qd}{2\pi \sqrt{(x^2+y^2)^{3/2}} + 2\pi \sqrt{(x^2+y^2)^{3/2}}}$$

σ

$\frac{1}{r^3}$

$r_1 = \sqrt{x^2+y^2}$
Total induced charge \(q_{\text{induced}} \):

\[
q_{\text{induced}} = \iint_{s} \sigma(x,y) \, dxdy
\]

\[
= \frac{2\pi \int_{0}^{\infty} r_{1} \sigma(r_{1}) \, dr_{1}}{2\pi \left(r_{1}^{2} + d^{2} \right)^{3/2}}
\]

\[
= -gd \left[\frac{-1}{\left(r_{1}^{2} + d^{2} \right)^{1/2}} \right]_{0}^{\infty}
\]

\[
= -gd \left[0 - \frac{1}{d} \right]
\]

\[
q_{\text{induced}} = -q \quad \text{induced charge = image charge}
\]

Force on charge \(q \) in front of conducting plane is due to the induced \(\sigma \). The E field of this \(\sigma \) is, for \(q > 0 \), the same as the E field of the image charge.

\[
\Rightarrow F = -\frac{q^{2}}{(2d)^{2}} \hat{\mathbf{z}} = -\frac{q^{2}}{4d^{2}} \hat{\mathbf{z}} \quad \text{(attractive)}
\]

Work done to move \(q \) into position from infinity is

\[
W = \int_{\infty}^{d} \mathbf{F} \cdot d\mathbf{r} = -\int_{0}^{d} F_{z} \, dz
\]

we must oppose electrostatic force \(\mathbf{F} \).
\[W = \int_1^0 \frac{\frac{q^2}{4\pi \varepsilon_0}}{4\pi \varepsilon_0 r^2} \, dr = -\frac{q^2}{4d} \]

\[W < 0 \Rightarrow \text{energy released} \]

\text{Note: } W \text{ above is not the electrostatic energy that would be present if the image charge were real, i.e., } \Phi_{\text{image}}(\vec{r} = d\hat{z}) = -\frac{q^2}{2d}.

One way to see why is to note that as } q \text{ is moved quasi-statically in towards the conductor plane, the image charge also must be moving to stay equidistant on the opposite side.
2) Point charge in front of a grounded ($\phi = 0$) conducting sphere.

Charge q placed a distance s from center of grounded conducting sphere of radius R.

Place image charge q' inside sphere so that the combined ϕ from q and q' vanishes on surface of sphere.

By symmetry, q' should lie on the same radial line as q does. Call the distance s' from the origin "a."

Potential at position \mathbf{r} is

$$\phi(\mathbf{r}) = \frac{q}{|\mathbf{r} - s\mathbf{a}|} + \frac{q'}{|\mathbf{r} - a\mathbf{a}|}$$

$$= \frac{q}{(r^2 + s^2 - 2sr\cos\theta)^{1/2}} + \frac{q'}{(r^2 + a^2 - 2ra\cos\theta)^{1/2}}$$

Can we choose q' and a so that $\phi(r, \theta) = 0$ for all θ?
\[\phi(r, \theta) = \frac{q}{(r^2 + s^2 - 2rs \cos \theta)^{1/2}} + \frac{q'}{(r^2 + a^2 - 2ar \cos \theta)^{1/2}} \]

\[\text{make denominators look alike} \]

\[r^2 + a^2 - 2ar \cos \theta = \frac{a}{s} \left(\frac{s}{a} r^2 + sa - 2sr \cos \theta \right) \]

If choose \(S_a = R^2 \), ie \(a = \frac{R^2}{s} \), then \(\frac{S_r^2}{a} = s^2 \)

and then the denominator of the 2nd term is

\[\left[\frac{R^2}{s^2} (s^2 + R^2 - 2sr \cos \theta) \right]^{1/2} = \frac{R}{s} \left[3s^2 + R^2 - 2sr \cos \theta \right]^{1/2} \]

Then

\[\phi(r, \theta) = \frac{q}{(r^2 + s^2 - 2rs \cos \theta)^{1/2}} + \frac{q'(S/R)}{(R^2 + s^2 - 2sr \cos \theta)^{1/2}} \]

So choose \(q'(S/R) = -q \) \Rightarrow \(q' = -q \frac{R}{s} \)

to get \(\phi(r, \theta) = 0 \)

Solution is

\[\phi(r, \theta) = \frac{q}{(r^2 + s^2 - 2rs \cos \theta)^{1/2}} - \frac{qR/s}{(r^2 + \frac{R^2}{s^2} - 2r \frac{R^2}{s^2} \cos \theta)^{1/2}} \]

\[= \frac{q}{(r^2 + s^2 - 2rs \cos \theta)^{1/2}} - \frac{q}{\left(\frac{s^2r^2 + R^2 - 2rs \cos \theta}{R^2} \right)^{1/2}} \]

Can get induced surface charge on sphere by

\[4\pi \sigma = \vec{E} \cdot \hat{n} = -\frac{\partial \phi}{\partial r} \bigg|_{r=R} \]

see Jackson Eq (2.5) for result
\[\sigma(\theta) = -\frac{q}{4\pi RS} \frac{1 - (R/s)^2}{(1 + (R/s)^2 - 2(R/s)\cos\theta)^{3/2}} \]

\(\sigma(\theta) \) is greatest at \(\theta = 0 \), as one should expect.

Can integrate \(\sigma(\theta) \) to get total induced charge. One finds

\[
\pi \int_0^\pi d\theta \sin \theta R^2 \sigma(\theta) = q' = -\frac{qR^2}{s} \]

In general, total induced charge = sum of all nuage charges.

Force of attraction of charge to sphere

Force on \(q \) is due to electric field from induced charge \(\sigma \) which is the same as the electric field from the nuage charge \(q' \).

\[
\vec{F} = -\frac{qq'}{\epsilon} \frac{\hat{z}}{(s-a)^2} = -\frac{q^2(R/s)^2}{(s-R^2)^2} = -\frac{q^2R^2}{(s^2R^2)^2} \hat{z} \]

Close to the surface of the sphere, \(s \approx R \), so write \(s = R + d \) where \(d \ll R \). Then

\[
\vec{F} = -\frac{q^2Rs}{(s-R)^2(s+R)^2} = -\frac{q^2R(R+d)}{d^2(2R+d)^2} \approx -\frac{q^2}{4d^2} \]

get same result as for infinite flat grounded plane.

When \(q \) is so close to surface that \(d \ll R \), the charge does not "see" the curvature of the surface.
for from the surface, \(s \gg R \)

\[
F = \frac{g g' \hat{s}}{(s-a)^2} = -\frac{g^2 R s}{(s^2 - R^2)^2} \hat{s} = -\frac{g^2 R}{s^3} \hat{s}
\]

\[
F \sim \frac{1}{s^3}
\]

very different from flat plane
also different from point charge

Note: In proceeding two problems, what we found was a

\(\phi \) such that \(\nabla^2 \phi = -4\pi \delta (\mathbf{r} - \mathbf{r}_0) \), for a charge at \(\mathbf{r}_0 \)

and \(\phi = 0 \) on the boundary. Such a \(\phi \) is nothing

more than \(G_0 \) the corresponding Green function for

Dirichlet boundary conditions.

Suppose now that instead of a grounded sphere we
have a sphere with fixed net charge \(Q \).

We want to add new image charge to represent this case.

If we put \(g' = -g \frac{Q}{s} \) at \(a = R \) as before, the
boundary condition of \(\phi = \text{const on surface } \mathbf{r} = R \) is
met. But the net charge on the sphere is \(g' \) (the
induced charge) not the desired \(Q \). We therefore need
to add new image charge(s) of total charge \(Q - g' \)
(so total image charge is \(Q \)) in such a way that we
keep \(\phi \) constant on the surface of the sphere. The
way to do this is to put \(Q - g' \) at the origin!
Solution is:

\[\phi(r, \theta) = \frac{q + qR/s}{r} - \frac{q}{(r^2 + s^2 - 2rs \cos \theta)^{1/2}} \]

The force on the charge \(q \) is due to the \(\vec{E} \) field of the images.

\[\vec{F} = \vec{F}^\prime = \frac{q}{s^2} \frac{(q + qR/s) \hat{z}}{(s - a)^2} + \frac{q}{(s - a)^2} \frac{qR/s \hat{z}}{s^2} \]

\[F = \frac{qA}{s^2} + \frac{q^2R/s}{s^2} - \frac{q^2R/s}{(s - R^2/s)^2} \]

\[= \frac{qA}{s^2} + \frac{q^2R}{s^3} \left[\frac{1}{s^3} - \frac{1}{s^3 (1 - \frac{R^2}{s^2})^2} \right] \]

\[= \frac{qA}{s^2} + \frac{q^2R}{s^3} \left[1 - \frac{1}{(1 - \frac{R^2}{s^2})^2} \right] \]

\[F = \frac{qA}{s^2} - \frac{q^2R^3}{s} \frac{2 - \frac{R^2}{s^2}}{(s^2 - R^2)^2} \]

For large \(s \gg R \) far from surface

\[F \sim \frac{qA}{s^2} - \frac{2q^2R^3}{s^6} \]

leading term is first Coulomb force between \(q \) and \(A \) at origin

for \(A > 0 \), \(F \) is always repulsive for large enough \(s \)
For $s = R + d$, $d \ll R$ close to surface

\[
F = \frac{qQ}{(R+d)^2} - \frac{q^2R^3}{R+d} \frac{2 - \frac{R^2}{(R+d)^2}}{(R^2 + d^2 + 2Rd - R^2)^2} \\
\approx \frac{qQ}{R^2} - \frac{q^2R^3}{R} \frac{(2 - 1)}{4R^2d^2} \\
F \approx \frac{qQ}{R^2} - \frac{q^2R^3}{4d^2} \approx -\frac{q^2}{4d^2} \text{ for } d \text{ small enough}
\]

F is always attractive for small enough d, and is equal to the force in front of a grounded plane, no matter what is the value of Q. This is because the image charge Q' lies so much close to Q than does the $Q-Q'$ at the origin, that it dominates the force.

The crossover from attractive to repulsive occurs at a distance s that depends on Q. This distance is given by

\[
Q = \frac{r^3s}{g} \left(2 - \frac{R^2}{g^2} \right) - \frac{r^3}{s} \left(2 - \left(\frac{Rg}{s} \right)^2 \right) \frac{2 - \left(\frac{Rg}{s} \right)^2}{\left[1 - \left(\frac{Rg}{s} \right)^2 \right]^2}
\]

Let $x = \frac{Rg}{s} \in (0,1)$

\[
Q = \frac{x^3}{g} \left(2 - x^2 \right) \frac{2 - x^2}{(1-x^2)^2}
\]

gives 5^{th} order polynomial in x and analytic solution can be solved graphically.
For $A = 1$, crossover is at $\frac{R}{S} = 0.62$

$S = 1.6 R$

$A = 0.1$, crossover is at $\frac{R}{S} = 0.36$

$S = 2.8 R$