Alternate derivation of van der Waals' equation of state

(derived by van der Waals long before Mayer expansion)

In ideal gas law \(pV = Nk_BT \)

\(p \) is the pressure of the kinetic energy of the molecules
\(V \) is the volume that the molecules can move around in.

For an interacting gas, the total energy is kinetic plus interaction. The average interaction energy one expects to be \(\alpha - \frac{(N/N)}{V}N \) since each of the \(N \) particles interacts with every other particle within a certain distance \(r_0 \) of it. The number of such particles is proportional to the particle density \((N/V) \). The pressure is proportional to the energy per volume, hence the total pressure is

\[P = P_{\text{kinetic}} - \alpha \left(\frac{N}{V} \right)^2 \]

or \(P_{\text{kinetic}} = P + \alpha \left(\frac{N}{V} \right)^2 \)

The volume the particles can move in is the "free volume" which equals the total volume minus the volume the particles themselves occupy

\[V_{\text{free}} = V - Nb \]

\(b \) is volume occupied by one molecule

\(\uparrow \) excluded volume
Using Prandtl and V_{free} in ideal gas laws:

\[P \text{ Pruche } V_{\text{free}} = N k_B T \]

\[(P + a \left(\frac{N}{V} \right)^2)(V - N b) = N k_B T \]

\[(P + a \left(\frac{N}{V} \right)^2) \left(\frac{V}{N} - b \right) = k_B T \]

van der Waals equation of state
van der Waals Theory of Liquid-Gas phase transition

Phase diagram

\[p \begin{array}{c} \text{liquid} \rightarrow \text{gas} \\ \text{gas} \end{array} \]

\[T \]

Liquid-Gas phase transition

if one crosses the liquid-gas phase boundary, there is a discontinuous change in particle density. This change in density vanishes continuously at the point C is approached. C is called the liquid-gas "critical point". The liquid-gas phase boundary ends at C. For T or P above C, there is no distinction between liquid and gas.

van der Waals equation of state

\[(p + \frac{a}{v^2})(v-b) = k_B T \quad a, b > 0 \]

Isotherms (p-v curves at constant T) look like

There exists a critical isotherm \(T_c \) such that

For \(T > T_c \), \(\frac{dp}{dv} < 0 \) monotonic decreasing \(p(v) \)
At \(T = T_c \), the first appearance of a point on isotherm with \(\left(\frac{\partial^2 p}{\partial v^2} \right)_T = 0 \) will turn out to be the critical point.

For \(T < T_c \), isothers are not monotonic – there is a region where \(\left(\frac{\partial p}{\partial v} \right)_T > 0 \).

Recall: Isothermal compressibility

\[
K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = -\frac{1}{V} \left(\frac{\partial v}{\partial p} \right)_T = -\frac{1}{v} \frac{1}{\left(\frac{\partial p}{\partial v} \right)_T}
\]

For \(T > T_c \), \(K_T > 0 \) everywhere.

For \(T = T_c \), \(K_T \to \infty \) at the point \(C \).

For \(T < T_c \), \(K_T < 0 \) when \(\frac{\partial p}{\partial v} > 0 \) this is unphysical region – leads to thermodynamically unstable system. We will see that this region of phase coexistence between liquid and gas.

For \(T < T_c \) the van der Waals isotherm, when viewed as a true \(N(p, T) \) becomes multi-valued – i.e. three values of \(V \) for fixed \(p \) and \(T \) within some region of \(p \).

We will see that the physical system follows an isotherm that is given by the dashed line. It zooms from \(v_e \) to \(v_g \) at a given pressure \(p^*(T) \). Thus \(p^*(T) \).
will be the location of the liquid gas phase boundary. \(\bar{v}_L - \bar{v}_g \) gives the discontinuity in density at \(p^*(T) \). The great line between \(v_L \) and \(v_g \) is coexistence region where system can be a mixture of both liquid and gas phases, with average specific volume \(\bar{v} \). Let \(\bar{v}_L < \bar{v} < \bar{v}_g \).

As \(T \to T_c^- \), \(\left(\frac{1}{v_L} - \frac{1}{v_g} \right) \to 0 \), \(v_L, v_g \to v_c \) and \(p^*(T) \to p_c \)

\[\Rightarrow C \ is \ the \ critical \ end \ point \ of \ the \ liquid-gas \ phase \ boundary. \]

For \(T < T_c \) as \(T \to T_c^- \) we see that the local max and local min of \(p(v, T) \) both merge to the common \(\bar{v} = v_c \). \(\Rightarrow C \) is an inflection point. \(\frac{\partial^2 p}{\partial v^2} = 0 \) at \(C \).

Use \(\left(\frac{\partial^2 p}{\partial v^2} \right)_{T_c} = \left(\frac{\partial^2 p}{\partial v^2} \right)_{T} = 0 \) to determine the location of \(C \).

\[p = \frac{bT}{(v-b)} - \frac{a}{v^2} \]

\[\frac{dp}{dv} = -\frac{k_B T}{(v-b)^2} + \frac{2a}{v^3} = 0 \Rightarrow k_B T = 2a \frac{(v-b)^2}{v_c^3} \]

\[\frac{d^2p}{dv^2} = \frac{2k_B T}{(v-b)^3} - \frac{6a}{v^4} = 0 \Rightarrow k_B T = 3a \frac{(v-b)^3}{v_c^3} \]

\[2v_c = 3v_c - 3b \Rightarrow \bar{v}_c = \frac{3b}{2} \text{ critical specific volume} \]
\[k_B T_c = \frac{8}{27} \frac{a}{b} \]

\[P_c = \frac{k_B T_c}{v_c - b} - \frac{a}{v_c^2} = \frac{8}{27} \frac{a}{b} \left(\frac{1}{3b} - \frac{1}{b} \right) - \frac{a}{(3b)^2} \]

\[= \frac{8}{27} \frac{a}{b} \left(\frac{1}{2b} - \frac{a}{9b} \right) = \left(\frac{4}{27} - \frac{1}{9} \right) \frac{a}{6^2} \]

\[P_c = \frac{1}{27} \frac{a}{b^2} \]

Define \(\Phi = \frac{P}{P_c} \), \(\bar{T} = \frac{T}{T_c} \), \(\bar{v} = \frac{v}{v_c} \)

Then

\[(\Phi + \frac{a}{v^2}) (v - b) = k_B \bar{T} \]

\[\Rightarrow (p_c \bar{p} + \frac{a}{v_c^2 \bar{v}^2}) (v_c \bar{v} - b) = k_B T_c \bar{T} \]

\[\left(\frac{1}{27} \frac{a}{b^2} \frac{a}{\bar{v}^2} + \frac{a}{9b^2 \bar{v}^2} \right) (3b \bar{v} - b) = \left(\frac{8}{27} \frac{a}{b} \right) \bar{T} \]

\[\frac{1}{27} \frac{a}{b^2} \left(\bar{p} + \frac{3}{v^2} \right) (3b) (\bar{v} - \frac{1}{3}) = \frac{8}{27} \frac{a}{b} \bar{T} \]

\[\Rightarrow \left(\bar{p} + \frac{3}{v^2} \right) (\bar{v} - \frac{1}{3}) = \frac{8}{3} \bar{T} \]
Also: \[\frac{p_c v_c}{k_B T_c} = \frac{1}{2\pi} \frac{a}{b^2} \frac{3b}{(8\pi)^{1/2}} = \frac{3}{8} = 0.375 \]

universal for all gases 0.375

<table>
<thead>
<tr>
<th>Gas</th>
<th>(T_c) (K)</th>
<th>(\frac{p_c v_c}{k_B T_c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>44.8</td>
<td>0.305</td>
</tr>
<tr>
<td>Ar</td>
<td>150.7</td>
<td>0.292</td>
</tr>
<tr>
<td>Kr</td>
<td>209.4</td>
<td>0.290</td>
</tr>
<tr>
<td>Xe</td>
<td>289.8</td>
<td>0.288</td>
</tr>
<tr>
<td>(N_2)</td>
<td>126.0</td>
<td>0.292</td>
</tr>
<tr>
<td>(O_2)</td>
<td>154.3</td>
<td>0.292</td>
</tr>
<tr>
<td>CO</td>
<td>133.0</td>
<td>0.294</td>
</tr>
<tr>
<td>(CH_4)</td>
<td>199.3</td>
<td>0.289</td>
</tr>
</tbody>
</table>
Law of corresponding states: If scale p, v, T by values at critical point to get \bar{p}, \bar{v}, \bar{T}, then isotherms in terms of \bar{p}, \bar{v}, \bar{T} are independent of a and b — will be the same for any gas.

Now consider $T < T_c$ we want to determine the coexistence values of v_e ad v_g that the physical system will have.

Two ways to do this

1. **Maxwell Construction**

\[P \]

\[v_1 \quad v_2 \quad v \]

Gibbs free energy \(G(T,p,N) = \mu N \)

\[dG = -SdT + Vdp + \mu dN \]

\[= \mu dN + N d\mu \]

\[\Rightarrow d\mu = -\left(\frac{S}{N}\right) dT + Vdp \]

Gibbs-Duhem relation along isotherm $dT = 0$

\[\Rightarrow d\mu = Vdp \]

Now at liquid-gas coexistence, the condition for chemical equilibrium \(\Rightarrow M_e = M_g \)

\[\Rightarrow \int_1^2 d\mu = M_2 - M_1 = \int_1^2 Vdp = 0 \] if

\[v_1 \leftrightarrow v_2 \quad \text{and} \quad v_2 \leftrightarrow v_g \] for coexistence v_e ad v_g.
\[\text{graph of } \int v dp \rightarrow \mu = \frac{G}{N} \]

So \(\int_1^2 v dp = 0 \) determines \(v_0 = v_1 \), \(v_0 = v_2 \)

to see the geometric meaning of \(H \)

\[\int_1^2 v dp = \int_A^B v dp + \int_B^C v dp \]

\[+ \int_C^D v dp + \int_D^E v dp \]

\[= \text{area}_I - \text{area}_II \]

So we get condition of "equal areas".

\[v_e \text{ and } v_g \text{ determined by the } \]

cord at constant \(p^* \) such that

\[\text{area above cord} = \text{area below cord} \]

2. Consider Helmholtz free energy

\[A(T, V) \text{ fixed } N \]

\[dA = -SdT -p dV \]

\[A = -\int pdV \text{ along isotherm } \]

\[\frac{A}{N} = -\int pdV \]

\[p = -\frac{\partial A}{\partial V} = -\frac{\partial A}{N \partial V} \]

\(p \) must be const from \(v_e \) to \(v_g \)

\text{and } A \text{ should be convex}

\(\Rightarrow \text{coexistence is given by dashed line} \)
\[p^* = \frac{\left(\frac{A}{N}\right)_g - \left(\frac{A}{N}\right)_e}{v_g - v_e} \]

coeexistence pressure is slope of dashed line

\[p^* (v_g - v_e) = -\left(\frac{A}{N}\right)_g - \left(\frac{A}{N}\right)_e = \int p \, dv \]

The shaded area is \(\int p \, dv \)

Shaded area is \(p^* (v_g - v_e) \)

The two areas are equal only if

The shaded area above \(p^* \) equals shaded area below \(p^* \)

The locus of points \(v_e(T), v_g(T) \) in \(p - v \) plane as \(T \) varies is called the coexistence curve.