cases where \(N \) is held constant (as in all the above response functions) then there can only be only three independent second derivatives, for example

\[
\left(\frac{\partial^2 G}{\partial T^2} \right)_{p, N} = -c_p/T
\]

\[
\left(\frac{\partial^2 G}{\partial p^2} \right)_{T, N} = -\nu V K T
\]

\[
\left(\frac{\partial^2 G}{\partial T \partial p} \right)_{N} = \nu \lambda
\]

All the other second derivatives of the other potentials must be some combination of these three.

Consider \(C_V \), we will show how to write it in terms of the above.

Consider Helmholtz free energy \(A(T, V) \)

since \(N \) is kept constant, we will not write it

\[-S(T, V) = \left(\frac{\partial A}{\partial T} \right)_{V}\]

Viewing \(S \) as a function of \(T, \) and \(V \) we have

\[dS = \left(\frac{\partial S}{\partial T} \right)_{V} + \left(\frac{\partial S}{\partial V} \right)_{T} \, dV\]

\[\Rightarrow T \left(\frac{\partial S}{\partial T} \right)_{p} = T \left(\frac{\partial S}{\partial T} \right)_{V} + T \left(\frac{\partial S}{\partial V} \right)_{T} \left(\frac{\partial V}{\partial T} \right)_{p}\]
\[C_p = C_V + T \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_p \]

Now \[\left(\frac{\partial S}{\partial V} \right)_T = -\frac{\partial^2 A}{\partial T \partial V} = \left(\frac{\partial p}{\partial T} \right)_V \]

and \[\left(\frac{\partial p}{\partial T} \right)_V \left(\frac{\partial T}{\partial V} \right)_p \left(\frac{\partial V}{\partial p} \right)_T = -1 \quad \text{(see general result)} \]

So \[\left(\frac{\partial p}{\partial T} \right)_V = -\frac{1}{\left(\frac{\partial T}{\partial V} \right)_p \left(\frac{\partial V}{\partial p} \right)_T} = -\left(\frac{\partial V/\partial T}{\partial V/\partial p} \right)_T \]

\[C_p = C_V \leftrightarrow T \left(\frac{\partial V}{\partial T} \right)_p \left(\frac{\partial V/\partial T}{\partial V/\partial p} \right)_T \]

\[= C_V - T \left(\frac{\nu \kappa}{-\nu K_T} \right)^2 = C_V - \frac{TV\alpha^2}{K_T} \]

So \[C_V = C_p - \frac{TV\alpha^2}{K_T} \]
A general result for partial derivatives

Consider any three variables satisfying a constraint

\[f(x, y, z) = 0 \]

\[\Rightarrow z \text{ for } x, \text{ or } y \text{ is function of } x, z \text{ etc.} \]

\[\Rightarrow \text{exists a relation between partial derivatives of the variables with respect to each other.} \]

\[\text{constraint } \Rightarrow df = \left(\frac{\partial f}{\partial x} \right)_y \delta x + \left(\frac{\partial f}{\partial y} \right)_x \delta y + \left(\frac{\partial f}{\partial z} \right)_x \delta z = 0 \]

\[\text{if hold } z \text{ const, i.e. } \delta z = 0, \text{ then} \]

\[\left(\frac{\partial x}{\partial y} \right)_z = -\frac{\left(\frac{\partial f}{\partial y} \right)_x}{\left(\frac{\partial f}{\partial x} \right)_y} \]

\[\text{if hold } y \text{ const, i.e. } \delta y = 0, \text{ then} \]

\[\left(\frac{\partial y}{\partial x} \right)_z = -\frac{\left(\frac{\partial f}{\partial x} \right)_y}{\left(\frac{\partial f}{\partial y} \right)_x} \]

\[\text{if hold } x \text{ const, i.e. } \delta x = 0, \text{ then} \]

\[\left(\frac{\partial z}{\partial y} \right)_x = -\frac{\left(\frac{\partial f}{\partial y} \right)_x}{\left(\frac{\partial f}{\partial z} \right)_x} \]

Multiplying together we get

\[\left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -1 \]
\((x, y, z)\) with constraint among them

Solve for \(x(y, z)\) or for \(y(x, z)\)

Then

\[
\begin{align*}
\frac{dx}{dz} &= \left(\frac{\partial x}{\partial y}\right)_z \frac{dy}{dz} + \left(\frac{\partial x}{\partial z}\right)_y dz \\
\frac{dy}{dz} &= \left(\frac{\partial y}{\partial x}\right)_z \frac{dx}{dz} + \left(\frac{\partial y}{\partial z}\right)_x dz
\end{align*}
\]

Suppose \(\frac{dx}{dz} = 0\) then \(\frac{dy}{dz} = 0\)

\[
\begin{align*}
\Rightarrow \frac{dx}{dx} &= \left(\frac{\partial x}{\partial y}\right)_z dy \\
\frac{dy}{dy} &= \left(\frac{\partial y}{\partial x}\right)_z dx
\end{align*}
\]

\[
\Rightarrow \left(\frac{\partial y}{\partial x}\right)_z = \frac{1}{\left(\frac{\partial x}{\partial y}\right)_z}
\]
Similarly we must be able to write K_s in terms of φ, K_T, α

Consider enthalpy $H(s,p)$

$$\left(\frac{\partial H}{\partial p}\right)_s = V(s,p)$$

regarding V as a function of s and p we have

$$dV = \left(\frac{\partial V}{\partial p}\right)_s dp + \left(\frac{\partial V}{\partial s}\right)_p ds$$

$$\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_s - \frac{1}{V} \left(\frac{\partial V}{\partial s}\right)_p \left(\frac{\partial s}{\partial p}\right)_T$$

$$K_T = K_s - \frac{1}{V} \left(\frac{\partial V}{\partial s}\right)_p \left(\frac{\partial s}{\partial p}\right)_T$$

Now

$$\left(\frac{\partial s}{\partial p}\right)_T = -\frac{\partial G}{\partial T \partial p} = -\left(\frac{\partial V}{\partial T}\right)_p$$

and

$$\left(\frac{\partial V}{\partial s}\right)_p = \left(\frac{\partial V/\partial T}{\partial s/\partial T}\right)_p$$

above follows from:

$$\frac{\partial G}{\partial p} = V(T,p) \Rightarrow dV = \left(\frac{\partial V}{\partial T}\right)_p dT + \left(\frac{\partial V}{\partial p}\right)_T dp$$

$$-\frac{\partial G}{\partial T} = S(T,p) \Rightarrow ds = \left(\frac{\partial s}{\partial T}\right)_p dT + \left(\frac{\partial s}{\partial p}\right)_T dp$$

$$\Rightarrow \left(\frac{\partial V}{\partial s}\right)_p = \left(\frac{\partial V/\partial T}{\partial s/\partial T}\right)_p$$

or in general:

$$\left(\frac{\partial y}{\partial y}\right)_x = \left(\frac{\partial y/\partial u}{\partial y/\partial u}\right)_x$$
Substitute in to get

\[K_T = K_s + \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \left(\frac{\partial V}{\partial T} \right)_p = K_s + \frac{1}{V} \frac{(V \alpha)^2}{C_p/T} \]

\[K_T = K_s + TV \alpha^2 \]

\[K_s = K_T - TV \alpha^2 \]

See Callen for a systematic way to reduce all such derivatives to combinations of \(C_p, K_T, \alpha \)

The main point is not to remember how to do this, but that it can be done! There are only a finite number of independent 2nd derivatives of the thermodynamic potentials! [It considers only \(N \) fixed, there are only \(C_p, K_T, \alpha \)]

Another useful relation

\[C_V = T \left(\frac{dS}{dT} \right)_V \]

Since \(dE = TdS - pdV \) \((N \) fixed \)

it follows that

\[C_V = \left(\frac{dE}{dT} \right)_V = T \left(\frac{dS}{dT} \right)_V \]
Stability

We already saw that the condition of stability required that $S(E)$ be a concave function

\[\frac{\partial^2 S}{\partial E^2} \leq 0. \]

Concave means the chord drawn between any two points on the curve lies below the curve.

In a similar way, one can show \(\frac{\partial^3 S}{\partial V^3} \leq 0 \),
or more generally, S is concave in the three dimensional S,E,V space.

\[S(E + \Delta E, V + \Delta V, N) + S(E - \Delta E, V - \Delta V, N) \leq 2S(E, V, N) \]

Expanding the right hand side in a Taylor series we get

\[\frac{\partial^3 S}{\partial E^2} \Delta E^2 + 2 \frac{\partial^2 S}{\partial E \partial V} \Delta E \Delta V + \frac{\partial^3 S}{\partial V^3} \Delta V^2 \leq 0 \]

For $\Delta V = 0$ this gives $\frac{\partial^3 S}{\partial E^2} \leq 0$,
For $\Delta E = 0$ this gives $\frac{\partial^3 S}{\partial V^2} \leq 0$.

More generally, for ΔE and ΔV both $\neq 0$, we can rewrite as

\[(\Delta E, \Delta V) \left(\begin{array}{cc}
\frac{\partial^2 S}{\partial E^2} & \frac{\partial^2 S}{\partial E \partial V} \\
\frac{\partial^2 S}{\partial E \partial V} & \frac{\partial^3 S}{\partial V^2}
\end{array} \right) (\Delta E, \Delta V) \leq 0 \]
that the quadratic form is always negative implies that the determinant of the matrix must be positive.

\[
\frac{\partial^2 S}{\partial E^2} \frac{\partial S}{\partial V^2} - \left(\frac{\partial S}{\partial E \partial V} \right)^2 \geq 0
\]

Note: \[
\left(\frac{\partial^2 S}{\partial E^2} \right)_V = \frac{\partial}{\partial E} \left(\frac{1}{T} \right)_V = -\frac{1}{T^2} \frac{\partial T}{\partial E}_V = -\frac{1}{T^2 C_V}
\]

So \[
\left(\frac{\partial^2 S}{\partial E^2} \right)_V \leq 0 \implies C_V > 0 \quad \text{specific heat is positive}
\]

Other Potentials

One can use the minimization principles of the other thermodynamic potentials, \(E, A, G \), etc to derive other stability criteria.

\[S \text{ max} \implies E \text{ min} \]

\[S \text{ concave} \implies E \text{ is convex} \]

\[\implies E(S + \Delta S, V + \Delta V, N) + E(S - \Delta S, V - \Delta V, N) \geq 2E(S, V, N) \]

\[\implies \left(\frac{\partial^2 E}{\partial S^2} \right)_V \left(\frac{\partial E}{\partial S} \right)_V \geq 0 \quad \text{and} \quad \left(\frac{\partial^2 E}{\partial V^2} \right)_S = -\left(\frac{\partial P}{\partial V} \right)_S \geq 0 \]

and \[
\left(\frac{\partial^2 E}{\partial S^2} \right)_V \left(\frac{\partial^2 E}{\partial V^2} \right)_S - \left(\frac{\partial^2 E}{\partial S \partial V} \right)^2 \geq 0
\]

\[-\left(\frac{\partial T}{\partial S} \right)_V \left(\frac{\partial P}{\partial V} \right)_S - \left(\frac{\partial T}{\partial V} \right)^2 \geq 0 \]
Using \(\left(\frac{\partial T}{\partial s} \right)_v = \frac{I}{c_v} \), \(\left(\frac{\partial p}{\partial v} \right)_s = -\frac{1}{V K_s} \), we get

\[
\frac{I}{V c_v K_s} = \left(\frac{\partial T}{\partial v} \right)_s^2
\]
Helmholtz free energy

\[A(T, V, N) = E - TS \]

\[\left(\frac{\partial A}{\partial T} \right)_{V,N} = -S \quad \left(\frac{\partial E}{\partial S} \right)_{V,N} = T \]

\[\left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} = -\left(\frac{\partial S}{\partial T} \right)_{V,N} \quad \left(\frac{\partial^2 E}{\partial S^2} \right)_{V,N} = \left(\frac{\partial T}{\partial S} \right)_{V,N} \]

hence \[\left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} = -\frac{1}{\left(\frac{\partial^2 E}{\partial S^2} \right)_{V,N}} \]

since \[\left(\frac{\partial^2 E}{\partial S^2} \right)_{V,N} > 0 \quad \Rightarrow \quad \left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} \leq 0 \]

\[E \text{ is convex in } S \quad \Rightarrow \quad A \text{ is concave in } T \]

Consider \[\left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} = -\left(\frac{\partial S}{\partial T} \right)_{V,N} = -\frac{CV}{T} \leq 0 \]

\[\left(\frac{\partial^2 A}{\partial V^2} \right)_{T,N} = -\left(\frac{\partial P}{\partial V} \right)_{T,N} \quad \Rightarrow \quad CV \geq 0 \]

regard \(p \) as \(p(S(T,V), V) \)

from \[\frac{\partial p}{\partial V} \]

\[\Rightarrow \left(\frac{\partial p}{\partial V} \right)_{T} = \left(\frac{\partial p}{\partial V} \right)_{S} + \left(\frac{\partial p}{\partial S} \right)_{V} \left(\frac{\partial S}{\partial V} \right)_{T} \]

Now \[\left(\frac{\partial S}{\partial V} \right)_{T} = -\frac{\partial^2 A}{\partial T \partial V} = \frac{\partial P}{\partial T} = \frac{(\partial P/\partial S)_{V}}{(\partial T/\partial S)_{V}} \]
\[S_0 \left(\frac{\partial p}{\partial V} \right)_T = \left(\frac{\partial p}{\partial V} \right)_S + \left(\frac{\partial p}{\partial S} \right)_V \]

\[\frac{\partial T}{\partial S} \]

\[= -\left(\frac{\partial^2 E}{\partial V^2} \right)_S + \left(\frac{\partial E}{\partial V S} \right)^2 \]

\[\left(\frac{\partial^2 E}{\partial S^2} \right)_V \]

\[S_0 \left(\frac{\partial^2 A}{\partial V^2} \right)_{T,N} = -\left(\frac{\partial p}{\partial V} \right)_{T,N} = \left(\frac{\partial^2 E}{\partial V^2} \right) \left(\frac{\partial^2 E}{\partial S^2} \right) - \left(\frac{\partial E}{\partial V S} \right)^2 \]

\[\left(\frac{\partial^2 E}{\partial S^2} \right)_V \]

Since \(E \) is convex

\[\Rightarrow \left(\frac{\partial^2 A}{\partial V^2} \right)_{T,N} \geq 0 \quad \text{A is convex in } V \]

\[\Rightarrow \left(\frac{\partial^2 A}{\partial V^2} \right)_{T,N} = -\left(\frac{\partial p}{\partial V} \right)_{T,N} = \frac{1}{\sqrt{k_T}} \geq 0 \quad \Rightarrow \quad k_T \geq 0 \]

...thermal compressibility must be positive...
Gibbs free energy

\[G(T, p, N) = E - TS + PV \]

Legendre transformed from \(E \) in both \(S \) and \(V \).

\[\frac{\partial^2 G}{\partial T^2} \bigg|_p \leq 0 \quad \text{\(G \) concave in } T \]

\[\frac{\partial^2 G}{\partial p^2} \bigg|_T \leq 0 \quad \text{\(G \) concave in } p \]

In general, the thermodynamic potentials for constant \(N \) (ie \(E \) and its Legendre transforms) are convex in their extensive variables (ie \(S, V \)) and concave in their intensive variables (ie \(T, p \)).

Le Châtelier's Principle - any inhomogeneity that develops in the system should induce a process that tends to eradicate the inhomogeneity, - criterion for stability.