Response functions

- **Specific heat at constant volume**:
 \[C_V = \left(\frac{dQ}{dT} \right)_{V,N} = T \left(\frac{dS}{dT} \right)_{V,N} \]

- **Specific heat at constant pressure**:
 \[C_P = \left(\frac{dQ}{dP} \right)_{P,N} = T \left(\frac{dS}{dT} \right)_{P,N} \]

- **Isothermal compressibility**:
 \[K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T,N} \]

- **Adiabatic compressibility**:
 \[K_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{S,N} \]

- **Coefficient of thermal expansion**:
 \[\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,N} \]

All the above may be viewed as a second derivative of an appropriate thermodynamic potential.

- **Specific heat at constant volume**:
 \[C_V = T \left(\frac{dS}{dT} \right)_{V,N} = -T \frac{\partial^2 A}{\partial T^2} \] \(V, N \) \[\text{since} \quad \left(\frac{\partial A}{\partial T} \right)_{V,N} = -S(T, V, N) \]

- **Specific heat at constant pressure**:
 \[C_P = \frac{1}{V} \left(\frac{\partial S}{\partial P} \right)_{P,N} = -T \left(\frac{\partial^2 G}{\partial T^2} \right)_{P,N} \] \[\text{since} \quad \left(\frac{\partial G}{\partial T} \right)_{P,N} = -S(T, P, N) \]

- **Isothermal compressibility**:
 \[K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T,N} = -\frac{1}{V} \left(\frac{\partial^2 G}{\partial T^2} \right)_{T,N} \] \[\text{since} \quad \frac{\partial G}{\partial P}_{T,N} = V(T, P, N) \]

- **Adiabatic compressibility**:
 \[K_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{S,N} = -\frac{1}{V} \left(\frac{\partial^2 H}{\partial T^2} \right)_{S,N} \] \[\text{since} \quad \left(\frac{\partial H}{\partial P} \right)_{S,N} = V(S, P, N) \]

- **Coefficient of thermal expansion**:
 \[\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,N} = \frac{1}{V} \left(\frac{\partial^2 G}{\partial T \partial P} \right)_{P,N} \] \[\text{since} \quad \left(\frac{\partial G}{\partial P} \right)_{T,N} = V(T, P, N) \]

Since all the various thermodynamic potentials can all be derived from one another, the various second derivatives must be related. If we consider
cases where \(N \) is held constant (as in all the above response functions) then there can only be three independent second derivatives, for example:

\[
\left(\frac{\partial^2 G}{\partial T^2} \right)_{\gamma, N} = -c_p / T
\]

\[
\left(\frac{\partial^2 G}{\partial p^2} \right)_{T, N} = -\gamma V K_T
\]

\[
\left(\frac{\partial^2 G}{2 \partial p} \right)_{N} = \gamma \alpha
\]

All the other second derivatives of the other potentials must be some combination of these three.

Consider \(C_V \) we will show how to write it in terms of the above.

Consider Helmholtz free energy \(A(T, V) \) since \(N \) is kept constant, we will not write it

\[
-S(T, V) = \left(\frac{\partial A}{\partial T} \right)_V
\]

Viewing \(S \) as a function of \(T, \) at \(V \) we have

\[
dS = \left(\frac{\partial S}{\partial T} \right)_V dT + \left(\frac{\partial S}{\partial V} \right)_T dV
\]

\[
\Rightarrow T \left(\frac{\partial S}{\partial T} \right)_P = T \left(\frac{\partial S}{\partial T} \right)_V + T \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P
\]
\[\Rightarrow C_p = C_V + T \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_p \]

New:

\[\left(\frac{\partial S}{\partial V} \right)_T = -\frac{\partial^2 A}{\partial T \partial V} = \left(\frac{\partial \rho}{\partial T} \right)_V \]

and

\[\left(\frac{\partial \rho}{\partial T} \right)_V \left(\frac{\partial T}{\partial V} \right)_p \left(\frac{\partial V}{\partial \rho} \right)_T = -1 \]

\[(\frac{\partial \rho}{\partial T})_V = -\frac{1}{\left(\frac{\partial T}{\partial V} \right)_p \left(\frac{\partial V}{\partial \rho} \right)_T} = -\frac{(\partial V / \partial T)_p}{(\partial V / \partial \rho)_T} \]

\[C_p = C_V + T \left(\frac{\partial V}{\partial T} \right)_p \left(\frac{\partial \rho}{\partial T} \right)_p \frac{(\partial \rho / \partial T)_p}{(\partial V / \partial \rho)_T} \]

\[= C_V - T (\nu \kappa)^2 = C_V + TV \alpha^2 \]

\[= C_V - \frac{T (\nu \kappa)^2}{-\nu K \kappa} = C_V + TV \alpha^2 \]

So:

\[C_V = C_p - \frac{TV \alpha^2}{KT} \]
A general result for partial derivatives

Consider any three variables satisfying a constraint

\[f(x, y, z) = 0 \Rightarrow z \text{ for example, is function of } x \text{ and } y \]

or \(y \) is function of \(x, z \) etc.

\(\Rightarrow \) exists a relation between partial derivatives of the variables with respect to each other.

\[\text{constraint } \Rightarrow df = \left(\frac{\partial f}{\partial x} \right)_{y,z} dx + \left(\frac{\partial f}{\partial y} \right)_{x,z} dy + \left(\frac{\partial f}{\partial z} \right)_{x,y} dz = 0 \]

If hold \(z \) const., i.e \(dz = 0 \), then

\[\left(\frac{\partial^2 x}{\partial y \partial z} \right)_y = - \left(\frac{\partial^2 f}{\partial x \partial y} \right)_{y,z} \]

If hold \(y \) const., i.e \(dy = 0 \), then

\[\left(\frac{\partial^2 y}{\partial x \partial z} \right)_y = \frac{- \left(\frac{\partial^2 f}{\partial y \partial x} \right)_{y,z}}{\left(\frac{\partial^2 f}{\partial z \partial y} \right)_{x,y}} \]

If hold \(x \) const., i.e \(dx = 0 \), then

\[\left(\frac{\partial^2 y}{\partial z \partial x} \right)_x = \frac{- \left(\frac{\partial^2 f}{\partial x \partial z} \right)_{x,y}}{\left(\frac{\partial^2 f}{\partial y \partial x} \right)_{y,z}} \]

Multiplying together we get

\[\left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -1 \]
\((x,y,z)\) with constant among them

Solve for \(x(y,z)\) or for \(y(x,z)\)

Then
\[
dx = \left(\frac{\partial x}{\partial y}\right)_z dy + \left(\frac{\partial x}{\partial z}\right)_y dz
\]

\[
dy = \left(\frac{\partial y}{\partial x}\right)_z dx + \left(\frac{\partial y}{\partial z}\right)_x dz
\]

Suppose \(\text{way } dx\) keeping \(dz = 0\)

\(1 \implies dx = \left(\frac{\partial x}{\partial y}\right)_z dy \implies \frac{dy}{dx} = \frac{1}{\left(\frac{\partial x}{\partial y}\right)_z}\)

\(2 \implies dy = \left(\frac{\partial y}{\partial x}\right)_z dx \implies \frac{dy}{dx} = \left(\frac{\partial y}{\partial x}\right)_z\)

\[\implies \left(\frac{\partial y}{\partial x}\right)_z = \frac{1}{\left(\frac{\partial x}{\partial y}\right)_z}\]
Similarly we must be able to write k_S in terms of g, k_T, α

Consider enthalpy $H(S, P)$

\[
\left(\frac{\partial H}{\partial P}\right)_S = V(S, P)
\]

regarding V as a function of S and P we have

\[
dV = \left(\frac{\partial V}{\partial P}\right)_S dP + \left(\frac{\partial V}{\partial S}\right)_P dS
\]

\[
-\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_S \left(\frac{\partial V}{\partial S}\right)_P \left(\frac{\partial S}{\partial P}\right)_T
\]

\[
k_T = k_S - \frac{1}{V} \left(\frac{\partial V}{\partial S}\right)_P \left(\frac{\partial S}{\partial P}\right)_T
\]

Now \(\left(\frac{\partial S}{\partial P}\right)_T = -\frac{\partial G}{\partial T} = -\left(\frac{\partial V}{\partial T}\right)_P\)

and \(\left(\frac{\partial V}{\partial S}\right)_P = \frac{\left(\frac{\partial V}{\partial T}\right)_P \left(\frac{\partial S}{\partial T}\right)_P}{\left(\frac{\partial S}{\partial T}\right)_P}\)

above follows from: \(\frac{\partial G}{\partial P} = V(T, P) \Rightarrow dV = \left(\frac{\partial V}{\partial T}\right)_P dT + \left(\frac{\partial V}{\partial P}\right)_T dP \)

\(-\frac{\partial G}{\partial T} = S(T, P) \Rightarrow dS = \left(\frac{\partial S}{\partial T}\right)_P dT + \left(\frac{\partial S}{\partial P}\right)_T dP \)

\(\Rightarrow \left(\frac{\partial V}{\partial S}\right)_P = \frac{\left(\frac{\partial V}{\partial T}\right)_P}{\left(\frac{\partial S}{\partial T}\right)_P}\)

or in general \(\left(\frac{\partial y}{\partial x}\right)_x = \frac{\left(\frac{\partial y}{\partial u}\right)_x}{\left(\frac{\partial y}{\partial u}\right)_x}\)
\[k_T = k_S + \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \left(\frac{\partial V}{\partial T} \right)_P = k_S + \frac{1}{V} \left(\frac{V}{T} \right)_P \]

\[k_T = k_S + TV \alpha_2 \]

\[k_S = k_T - TV \alpha_2 \]

See Callen for a systematic way to reduce all such derivatives to combinations of \(C_P, k_T, \alpha \).

The main point is not to remember how to do this, but that it can be done! There are only a finite number of independent 2nd derivatives of the thermodynamic potentials! [It considers only \(\text{with } N \text{ fixed, there are only } C_P, k_T, \alpha \).]

Another useful relation

\[C_V = T \left(\frac{dS}{dT} \right)_V \]

Since \(dE = TdS - pdV \) (\(N \) fixed), it follows that

\[C_V = \left(\frac{dE}{dT} \right)_V = T \left(\frac{dS}{dT} \right)_V \]
Stability

We already saw that the condition of stability required that \(S(E) \) be a concave function \(\frac{\partial^2 S}{\partial E^2} \leq 0 \).

Concave means the line drawn between any two points on the curve lies below the curve.

In a similar way, one can show \(\frac{\partial^2 S}{\partial V^2} \leq 0 \).

Or more generally, \(S \) is concave in the three-dimensional \(S,E,V \) space.

\[S(E+\Delta E, V+\Delta V, N) + S(E-\Delta E, V-\Delta V, N) \leq 2S(E,V,N) \]

Expanding the right hand side in a Taylor series we get

\[\frac{\partial^3 S}{\partial E^2} \Delta E^2 + 2 \frac{\partial^3 S}{\partial E \partial V} \Delta E \Delta V + \frac{\partial^2 S}{\partial V^2} \Delta V^2 \leq 0 \]

For \(\Delta V = 0 \) this gives \(\frac{\partial^2 S}{\partial E^2} \leq 0 \).

For \(\Delta E = 0 \) the gives \(\frac{\partial^2 S}{\partial V^2} \leq 0 \).

More generally, for \(\Delta E \) and \(\Delta V \) both \(\neq 0 \), we can rewrite as

\[\mathbf{(\Delta E, \Delta V)} \left(\begin{array}{cc} \frac{\partial^2 S}{\partial E^2} & \frac{\partial S}{\partial E \partial V} \\ \frac{\partial S}{\partial E \partial V} & \frac{\partial^2 S}{\partial V^2} \end{array} \right) \mathbf{(\Delta E, \Delta V)} \leq 0 \]
That the quadratic form is always negative implies that both eigenvalues of the matrix must be \(< 0 \) and so the determinant of the matrix must be positive \(> 0 \)

\[
\frac{\partial^2 S}{\partial E^2} \frac{\partial S}{\partial \nu^2} - \left(\frac{\partial^2 S}{\partial E \partial \nu} \right)^2 \geq 0
\]

Note: \(\frac{\partial^2 S}{\partial E^2} = \frac{\partial}{\partial \nu} \left(\frac{\partial S}{\partial E} \right) = -\frac{1}{T^2} \frac{\partial T}{\partial E} \frac{\partial E}{\partial \nu} = -\frac{1}{T^2} \frac{\partial S}{\partial \nu} \)

So \(\left(\frac{\partial S}{\partial E^2} \right) \geq 0 \Rightarrow C_V > 0 \) specific heat is positive

Other Potentials

One can use the minimization principles of the other thermodynamic potentials, \(E, A, G, \) etc. to derive other stability criteria.

Energy

\(S \) is maximum \(\Rightarrow E \) is minimum
\(S \) concave \(\Rightarrow E \) is convex

\(\Rightarrow E(S+\Delta S, V+\Delta V, N) + E(S-\Delta S, V-\Delta V, N) \geq 2E(S, V, N) \)

\(\Rightarrow \left(\frac{\partial^2 E}{\partial S^2} \right) \frac{\partial S}{\partial \nu} \geq 0 \) and \(\left(\frac{\partial^2 E}{\partial E^2} \right) = -\left(\frac{\partial S}{\partial \nu} \right) \geq 0 \)

and \(\left(\frac{\partial^2 E}{\partial S^2} \right) \left(\frac{\partial^2 E}{\partial V^2} \right) - \left(\frac{\partial^2 E}{\partial S \partial V} \right)^2 \geq 0 \)

\(\Rightarrow -\left(\frac{\partial S}{\partial \nu} \right) \left(\frac{\partial S}{\partial \nu} \right) \geq 0 \)
Using \(\left(\frac{\partial T}{\partial S} \right)_V = \frac{I}{c_V} \), \(\left(\frac{\partial P}{\partial V} \right)_S = -\frac{1}{\sqrt{\kappa_s}} \), and \(\left(\frac{\partial S}{\partial V} \right)_s \) we get

\[
\frac{I}{\sqrt{c_V \kappa_s}} \gg \left(\frac{\partial T}{\partial V} \right)_s^2
\]
Helmholtz free energy

\[A(T, V, N) = E - TS \]

\[\left(\frac{\partial A}{\partial T} \right)_{V,N} = -S \quad \left(\frac{\partial E}{\partial S} \right)_{V,N} = T \]

\[\left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} = -\left(\frac{\partial S}{\partial T} \right)_{V,N} \quad \left(\frac{\partial^2 E}{\partial S^2} \right)_{V,N} = \left(\frac{\partial T}{\partial S} \right)_{V,N} \]

hence \[\left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} = -\frac{1}{\left(\frac{\partial E}{\partial S^2} \right)_{V,N}} \]

Since \[\left(\frac{\partial^2 E}{\partial S^2} \right)_{V,N} > 0 \quad \Rightarrow \left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} \leq 0 \]

E is convex in S \quad \Rightarrow \quad A is concave in T

Consider

\[\left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} = -\left(\frac{\partial S}{\partial T} \right)_{V,N} = -\frac{C_v}{T} \leq 0 \]

\[\left(\frac{\partial^2 A}{\partial V^2} \right)_{T,N} = -\left(\frac{\partial P}{\partial V} \right)_{T,N} \quad \Rightarrow \quad C_v \geq 0 \]

regard \(p \) as \(p(S(T,V), V) \) from \(\frac{\partial p}{\partial V} = -\frac{\partial E}{\partial S} \)

\[\Rightarrow \left(\frac{\partial P}{\partial V} \right)_T = \left(\frac{\partial P}{\partial V} \right)_S + \left(\frac{\partial P}{\partial S} \right)_N \left(\frac{\partial S}{\partial V} \right)_T \]

Now \(\left(\frac{\partial S}{\partial V} \right)_T = -\frac{\partial^2 A}{\partial T \partial V} = \left(\frac{\partial P}{\partial T} \right)_V = \left(\frac{\partial P / \partial S}{\partial T / \partial S} \right)_V \)
\[S_0 \quad \left(\frac{\partial p}{\partial V} \right)_T = \left(\frac{\partial p}{\partial V} \right)_S + \left(\frac{\partial p}{\partial S} \right)_V \]

\[= -\left(\frac{\partial^2 E}{\partial V^2} \right)_S + \left(\frac{\partial E}{\partial v \partial s} \right)^2 \]

\[\quad \left(\frac{\partial^2 E}{\partial s^2} \right)_V \]

\[S_0 \quad \left(\frac{\partial^2 A}{\partial V^2} \right)_{T,N} = -\left(\frac{\partial p}{\partial V} \right)_{T,N} = \left(\frac{\partial^2 E}{\partial V^2} \left(\frac{\partial^2 E}{\partial s^2} \right) - \left(\frac{\partial E}{\partial v s} \right)^2 \right) \geq 0 \]

\[\left(\frac{\partial^2 E}{\partial s^2} \right)_V \quad \text{since } E \text{ is convex} \]

\[\Rightarrow \quad \left(\frac{\partial^2 A}{\partial V^2} \right)_{T,N} \geq 0 \quad \text{A is convex in } V \]

\[\left(\frac{\partial^2 A}{\partial V^2} \right)_{T,N} = -\left(\frac{\partial p}{\partial V} \right)_{T,N} = \frac{1}{V k_T} \geq 0 \Rightarrow k_T > 0 \]

\[\text{cothermal compressibility must be positive} \]
Gibbs free energy

\[G(T, p, N) = E - TS + pV \]

Legendre transformed from \(E \) in both \(S \) and \(V \).

\[\Rightarrow \left(\frac{\partial^2 G}{\partial T^2} \right)_p \leq 0 \quad G \text{ concave in } T \]

\[\left(\frac{\partial^2 G}{\partial P^2} \right)_T \leq 0 \quad G \text{ concave in } P \]

In general, the thermodynamic potentials for constant \(N \) (i.e. \(E \) and its Legendre transforms) are concave in their extensive variables (i.e. \(S, V \)) and convex in their intensive variables (i.e. \(T, p \)).

Le Chatelier's Principle — any change in homogeneity that develops in the system should induce a process that tends to eradicate the inhomogeneity. — Criterion for stability.