Bose–Einstein Condensation in laser cooled gases

Gases of alkali atoms Li, Na, K, Rb, Cs

- all have a single s-electron in outer-most shell. Important for trapping of laser cooling
- use isotopes such that total intrinsic spin of all electrons and nucleons add up to an integer \(\hbar \)
 \(\Rightarrow \) atoms are bosons

- all have a net magnetic moment - used to confine dilute gas of atoms in a "magnetic trap"

- use 'laser cooling' to get very low temperatures in low density gases, to try and see BEC

magnetic trap \(\Rightarrow \) effective harmonic potential for atoms

\[
V(r) = \frac{1}{2} m \omega_0^2 r^2 \quad \omega_0 \approx 2 \pi \times 100 \text{ Hz}
\]

1995 - 10^3 atoms with \(T \approx 100 \text{ nK} \)
1999 - 10^8 atoms with \(T < 1 \text{ nK} \) gas size many microns

How was BEC in these systems observed?

Energy levels of ideal (non-interacting)

bosons in harmonic trap

\[
E(n_x, n_y, n_z) = (n_x + n_y + n_z + \frac{3}{2}) \hbar \omega_0
\]

\(n_x, n_y, n_z \) integer

Ground state condensate wavefunction

\[
\psi_0(r) \sim e^{-r^2/2a^2} \quad \text{with} \quad a = \left(\frac{\hbar}{m \omega_0} \right)^{3/2}
\]

\(a \approx 1 \mu \text{m} \) for current traps
\[\Rightarrow \text{Condensate has spatial extent } n \alpha \]

The spatial extent of the \(n \)th excited energy level is roughly

\[m \omega_0^2 \langle r^2 \rangle \approx E(n) \approx n \hbar \omega_0 \]

\[\Rightarrow \langle r^2 \rangle \approx \frac{n \hbar}{m \omega_0} \quad \text{or} \quad \sqrt{\langle r^2 \rangle} = \left(\frac{n \hbar}{m \omega_0} \right)^{\frac{1}{2}} \]

For \(k_B T \gg \hbar \omega_0 \), the atoms are excited up to level \(n \approx \frac{k_B T}{\hbar \omega_0} \)

\[\Rightarrow \text{spatial extent of the normal component of the gas is} \]

\[R \approx \left(\frac{n \hbar}{m \omega_0} \right)^{\frac{1}{2}} \approx \left(\frac{\hbar k_B T}{\hbar m \omega_0^2} \right)^{\frac{1}{2}} = \left(\frac{k_B T}{m \omega_0^2} \right)^{\frac{1}{2}} \]

\[R \approx a \left(\frac{k_B T}{m \omega_0^2} \right)^{\frac{1}{2}} \Rightarrow a \]

If \(T_c \) is the BEC transition temperature, then for \(T > T_c \) one sees a more or less uniform cloud of atoms with radius \(R \approx a \left(\frac{k_B T}{m \omega_0^2} \right)^{\frac{1}{2}} \gg a \).

But when one cools to \(T < T_c \), one now has a finite fraction of the atoms condensed in the ground state, superimposed on the atomic cloud of radius \(R \) one sees the growth of a sharp peak in density at the center of cloud - this peak has a radius \(a \ll R \).
To find the Bose–Einstein Condensation Temperature

The number of particles in the system is

\[N = \sum_{n_x, n_y, n_z} \left[\frac{1}{2} \frac{1}{\epsilon(n_x, n_y, n_z) / k_b T - 1} \right] \leq \text{Bose occupation function} \]

Let \(\epsilon_0 = \epsilon(0, 0, 0) = \frac{3}{2} \hbar \omega_0 \) the ground state energy

that the Bose occupation function can not be negative \(\Rightarrow \frac{1}{\epsilon} e^{-\epsilon / k_b T} \geq 1 \Rightarrow \frac{1}{\epsilon} \leq e^{-\epsilon / k_b T} \)

\(\Rightarrow \mu \leq \epsilon_0 \)

For the Bose condensed state, \(\mu \) assumes its upper limit, i.e. \(\mu = \epsilon_0 \) possible \(\frac{1}{\epsilon} = e^{-\epsilon / k_b T} \)

this gives the greatest density in the excited states

\[\Rightarrow \text{for } T \leq T_c, \quad N = \sum_{n_x, n_y, n_z} \left[\frac{1}{e^{(n_x + n_y + n_z) \hbar \omega_0 / k_b T} - 1} \right] \]

\[\Rightarrow N = N_0 + \int_0^\infty \int_0^\infty \int_0^\infty \left[\frac{1}{e^{(n_x + n_y + n_z) \hbar \omega_0 / k_b T} - 1} \right] \]

\[\Rightarrow \text{number in ground state} \quad \text{number in excited states} \]

\[n_x = n_y = n_z = 0 \quad \Delta n_x = \Delta n_y = \Delta n_z = 1 \]

\[N = N_0 + \left(\frac{k_b T}{\hbar \omega_0} \right)^3 \int_0^\infty \int_0^\infty \int_0^\infty \left[\frac{1}{e^{(x+y+z)} - 1} \right] \]

\[= N_0 + \left(\frac{k_b T}{\hbar \omega_0} \right)^3 \int (3) \]

\[\S(3) = 1 + \frac{1}{23} + \frac{1}{39} + \frac{1}{43} + ... \]

At \(T_c \), \(N_0 = 0 \Rightarrow k_b T_c = \hbar \omega_0 \left(\frac{N}{\S(3)} \right)^{1/3} \)

for \(T < T_c \), \(N_0(T) = N \left(1 - \left(\frac{T}{T_c} \right)^3 \right) \)

The power of \(T/T_c \) term is different from ideal free gas due to presence of magnetic field.
Classical spin models

\[H = -J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \] simple model of interacting magnetic

classical spins \(\vec{S}_i \) of unit magnitude \(|\vec{S}| = 1 \) on
sites \(i \) of a periodic d-dimensional lattice.
\(\vec{S}_i \) interacts only with its neighbors \(\vec{S}_j \)
\(\langle ij \rangle \) indicates nearest neighbor bonds of the lattice.
If coupling \(J > 0 \), then ferromagnetic interaction
in spins are in lower energy state when they are aligned.

\[\vec{S}_i \text{ interacts with spins on sites} \]

\[\vec{S}_i \text{ labeled by } i. \]

Behavior of model depends significantly on dimensionality
of lattice \(d \), and number of components of the spin \(\vec{S} \)

Examples:
\(\vec{S} = (S_x, S_y, S_z) \) points in 3-dimensional space
\(n = 3 \) called the \textit{Heisenberg model}

\(\vec{S} = (S_x, S_y) \) restricted to lie in a plane
\(n = 2 \) called the \textit{XY model}

\(\vec{S} = S_z = \pm 1 \) restricted to lie in one direct
\(n = 1 \) called the \textit{Ising model}

less obvious \(\left\{ \begin{array}{ll}
\frac{n = 0}{n = \infty} \text{ called the polymer model} \\
\end{array} \right. \)
\textit{called the spherical model}
We will focus on the Ising model (1925)

\[S = \pm 1 \]

Ensembles

1. **fixed magnetization**

\[M = \sum s_i \]

\[M \text{ is total magnetization} \]

partition function

\[Z(T, M) = \sum e^{-\beta H[s_i]} \]

\[\text{sum over all spin configurations} \]

\[\text{obeying the constraint } \sum s_i = M = N^+ - N^- \]

\[\text{similar to canonical ensemble with } \sum s_i = N \text{ total \# particles} \]

Helmholtz free energy

\[F(T, M) = -k_B T \ln Z(T, M) \]

2. **fixed magnetic field**

\[\text{to remove constraint of fixed } M \text{ we can Legendre transform to a conjugate variable } h, \text{ the magnetic field. We will see that } h \text{ is just the magnetic field} \]

Gibbs free energy

\[G(T, h) = F(T, M) - h M \]

where

\[\frac{\partial F}{\partial M} = h \quad \rightarrow \quad \frac{\partial G}{\partial h} = -M \]

\[dF = -SdT + h dM \quad \text{and} \quad dG = -SdT - M dh \]

\[\text{entropy} \quad \text{entropy} \]
To get partition function for G, take Laplace transform of Z:

$$Z(T, \beta) = \sum_M e^{\beta H M} Z(T, M)$$

$$= \sum_M e^{\beta H M} \sum_{\varepsilon i_j s_i} e^{-\varepsilon H[\varepsilon i_j s_i]}$$

Use $M = \sum s_i$

looks like interaction of magnetic field H

$$Z(T, \beta) = \sum_{\varepsilon i_j s_i} e^{-\beta [H[\varepsilon i_j s_i] - \varepsilon \sum s_i]}$$

with total magnetization $M = \sum s_i$

(looks like constrained sum over all spin configs $\varepsilon i_j s_i$)

(same to grand canonical ensemble with $\sum n_i = N$ unconstrained)

$$G(T, \beta) = -k_B T \ln Z(T, \beta)$$

Check:

$$\frac{\partial G}{\partial k} = -k_B T \frac{\partial Z}{\partial k} = -k_B T \sum_{\varepsilon i_j s_i} \frac{\partial}{\partial k} (e^{-\beta [H - \varepsilon \sum s_i]})$$

$$= -k_B T \frac{\partial}{\partial k} \left(\sum_{\varepsilon i_j s_i} e^{-\beta [H - \varepsilon \sum s_i]} (\beta \sum s_i) \right)$$

$$= - \sum_{\varepsilon i_j s_i} e^{-\beta [H - \varepsilon \sum s_i]} (\beta \sum s_i)$$

$$= \sum_{\varepsilon i_j s_i} e^{-\beta [H - \varepsilon \sum s_i]} \langle \varepsilon s_i \rangle$$

$$= -\langle \sum \varepsilon s_i \rangle = -M$$

so $\frac{\partial G}{\partial k} = -M$ as required.
we can work in fixed magnetization or fixed magnetic field ensemble according to our convenience. Usually it is easiest to work with fixed magnetic field. In this case we usually write

\[H = -J \sum_{<i,j>} S_i S_j - h \sum_i S_i \]

including the magnetic field part in the definition of \(H \).

\[Z = \sum_{\{S_i\}} e^{-\beta H} \]

\(\beta = \frac{1}{k_B T} \) includes \(k \) term

define magnetization density

\[m = \frac{M}{N} = \frac{1}{N} \langle \sum_i S_i \rangle \quad \text{N = total number spins} \]

Heinrich free energy density: In limit \(N \to \infty \), \(F(T, M) = NF(T, m) \)

\[\frac{F}{N} = f(T, m) \quad \text{depends on magnetization density} \]

\[df = -dM + h \, dm \]

\(A = \frac{S}{N} \quad \text{entropy per spin} \)

Gibbs free energy density: In limit \(N \to \infty \), \(G(T, \mu) = Ng(T, \mu) \)

\[\frac{G}{N} = g(T, \mu) \]

\[dg = -dM - m \, d\mu \]

\[\left(\frac{\partial f}{\partial m} \right)_T = h \quad \therefore \quad \left(\frac{\partial g}{\partial \mu} \right)_T = -m \]