Average Occupation Numbers

\[
\langle N \rangle = \frac{1}{\beta} \frac{2}{\partial \beta} \ln Z \bigg|_{T,V} = \frac{Z}{Z} \left(\frac{2 \ln Z}{2Z} \right) \bigg|_{T,V}
\]

\[
\langle E \rangle = -\frac{\partial}{\partial \beta} \ln Z \bigg|_{T,V}
\]

\[\text{const } Z, \text{ not const } \mu\]

\[
\ln Z = \pm \sum_i \ln \left(1 \pm Z e^{-\beta E_i} \right) + \text{FD} \quad -\beta E
\]

\[
\langle N \rangle = \pm Z \sum_i \frac{e^{-\beta E_i}}{1 \pm Z e^{-\beta E_i}} = \sum_i \frac{Z e^{-\beta E_i}}{1 \pm Z e^{-\beta E_i}}
\]

\[
\langle N \rangle = \sum_i \left(\frac{1}{Z e^{E_i} \pm 1} \right) = \sum_i \left(\frac{1}{e^{\beta (E_i - \mu)} \pm 1} \right)
\]

\[
\langle E \rangle = \mp \sum_i \frac{\mp Z E_i e^{-\beta E_i}}{1 \pm Z e^{-\beta E_i}} = \sum_i \frac{Z E_i e^{-\beta E_i}}{1 \pm Z e^{-\beta E_i}}
\]

\[
\langle E \rangle = \sum_i \left(\frac{E_i}{Z e^{E_i} \pm 1} \right) = \sum_i \frac{E_i}{e^{\beta (E_i - \mu)} \pm 1}
\]

Now \(N = \sum_i n_i \) so \(\langle N \rangle = \sum_i \langle n_i \rangle \)

and \(E = \sum_i n_i E_i \) so \(\langle E \rangle = \sum_i E_i \langle n_i \rangle \)

Combine with the above we get

\[
\langle n_i \rangle = \frac{1}{e^{\beta (E_i - \mu)} \pm 1} \quad + \text{FD} \quad -\beta E
\]
Classically

\[\ln Z = \sum_i z e^{-\beta e_i} \]

\[\langle N \rangle = \frac{\partial}{\partial z} \left(\sum_i z e^{-\beta e_i} \right) = z \sum_i e^{-\beta e_i} = \sum_i z e^{-\beta e_i} \]

\[= \ln Z = \frac{PV}{k_B T} \text{ again we get the ideal gas law! } \]

\[\langle E \rangle = -\frac{2}{\beta} \sum_i z e^{-\beta e_i} = \sum_i e_i z e^{-\beta e_i} \]

\[\Rightarrow \langle n_i \rangle = z e^{-\beta e_i} = e^{-\beta (e_i - \mu)} \]

\[\langle m \rangle \] for BE diverges as \(x \to 0 \)

\[\langle m \rangle \] for FD \(\to \begin{cases} 1 & \text{for } x \ll 0 \\ 0 & \text{for } x \gg 0 \end{cases} \)

all three expressions for \(\langle m \rangle \approx e^{-x} \) at large \(x \)

for FD \(\langle m(x) \rangle \) goes from 1 to 0 over an interval of order \(\sim o(1) \), i.e. \(|E - \mu| \sim k_B T \)
Review - Partition Functions

Quantum
\[
\ln Z = \pm \sum_i \ln (1 \pm e^{-\beta (E_i - \mu)}) + FD - BE
\]
\[= \pm \sum_i \ln (1 \pm e^\beta E_i)\]

Classical
\[\ln Z = \sum_i Z e^{-\beta E_i}\]

sum "i" *is over all single particle energy levels*

From above, we see that quantum result \(\rightarrow\) classical result

in the limit \(z \ll 1\), since \(\ln (1+z) \approx z\)

when \(z << 1\), \(z = e^{\beta \mu} \ll 1 \Rightarrow \beta \mu \ll 0\).

\(\Rightarrow\) chemical potential is negative in the classical limit

Occupation numbers

Quantum
\[
\langle m_i \rangle = \frac{1}{e^{\beta (E_i - \mu)} - 1} + FD - BE
\]

Classical
\[\langle m_i \rangle = e^{-\beta (E_i - \mu)}\]

we see that quantum \(\rightarrow\) classical for states \(E_i\)

such that \(e^{\beta (E_i - \mu)} \gg 1 \Rightarrow e^{\beta (E_i - \mu)} \gg 0\)

\(\Rightarrow (E_i - \mu) \gg k_B T\)

Note: Since \(\langle m_i \rangle\) must always be positive, we
for bosons \(\langle m_i \rangle = \frac{1}{[e^{\beta (E_i - \mu)} - 1]}\)

It therefore follows that we must always have \((E_i - \mu) > 0\)

for any state i, for bosons. For free particles the smallest \(E_i\)

is usually \(E_i = 0\), so we conclude that \(\mu < 0\)

always must hold for bosons (or \(\mu < E_{\text{min}}\))
Comparison of Classical and Quantum Ideal Gases

meaning of the "arbitrary" phase space factor h^3

Classical phase space approach

We had

$$ L = \sum_{N=0}^{\infty} Z^N Q_N = \sum_{N=0}^{\infty} \left(\frac{\pi \beta Q_1}{\hbar^3} \right)^N = e^{\frac{\pi}{\hbar^3} Q_1} \quad \ln L = \pi Q_1, $$

where Q_N is the single particle partition function for a free particle

$$ Q_1 = \int \frac{d^3r}{\hbar^3} \int \frac{d^3p}{\hbar^3} e^{-\beta \mathbf{p}^2/2m} = \frac{\sqrt{\pi}}{\hbar^3} \left(\frac{2\pi m k_B T}{\hbar^2} \right)^{3/2} $$

$$ Q_1 = \frac{V}{\lambda^3} \quad \text{where} \quad \lambda = \left(\frac{\hbar^2}{2\pi m k_B T} \right)^{1/2} $$

in the thermal wavelength.

In above classical calculation, h^3 was an arbitrary phase space factor.

Quantum sum over energy levels in classical limit

We now compare the above to the result we get using the occupation number formulation, in which one sums over the single particle energy levels ε_i. Since we want to compare to classical limit, we will use the expression we got in the $\varepsilon \ll 1$

limit ε_i

$$ L = \sum_{\varepsilon_i} Z^N \prod_i \left[\frac{1}{n_i!} (e^{-\beta \varepsilon_i})^{n_i} \right] = \prod_i e^{Z e^{-\beta \varepsilon_i}} \quad \ln L = \pi Q_1 = \pi \sum_i e^{-\beta \varepsilon_i} $$
only now, instead of integrating over continuous phase space, we will sum over the quantized energy levels of a quantum mechanical particle in a box of volume $V = L^3$.

Eigenstates of the particle in a box are specified by a quantized wave vector $\frac{n \pi}{L}$.

momentum $\frac{p}{\hbar} = \frac{n \pi}{L}$ with $k_\alpha = \frac{n \pi}{L}$, $\alpha = x, y, z$

energy $\epsilon = \frac{\hbar^2 k^2}{2m}$

integer number of wavelengths must fit in the box

$$Q_1 = \sum_k e^{-\beta \epsilon(k)} = \sum_k e^{-\beta \frac{\hbar^2 k^2}{2m}}$$

the spacing between the allowed values of k is $\Delta k = \frac{2\pi}{L}$. so we can write

$$Q_1 = \sum_k e^{-\beta \frac{\hbar^2 k^2}{2m}} \approx \int_0^{\infty} d^3k e^{-\beta \frac{\hbar^2 k^2}{2m}}$$

approximately sum by an integral

$$Q_1 = \left(\frac{\hbar}{2\pi}\right)^3 \left(\frac{2\pi m k_B T}{\hbar^2}\right)^{3/2} = V \left(\frac{2\pi m k_B T}{(2\pi \hbar)^2}\right)^{3/2}$$

use $2\pi \hbar = \hbar$ Planck's constant

$$Q_1 = V \left(\frac{2\pi m k_B T}{\hbar^2}\right)^{3/2} = V \frac{1}{\lambda^3}, \lambda = \left(\frac{\hbar^2}{2\pi m k_B T}\right)^{3/2}$$
We get exactly the same result as the classical phase space method, provided we identify the classically arbitrary phase space factor \hbar as Planck's constant.

Quantum mechanics $\Rightarrow \hbar$ in classical statistical mechanics should be taken as Planck's constant.

Validity of the classical limit

We found that the quantum partition functions Z (for FD or BE) agreed with the classical result in the limit $\hbar \ll 1$. Now we will see the physical meaning of this condition.

Classically: $N = Z \left(\frac{2 \ln Z}{2 \pi} \right)_{1/V} = Z \frac{2}{3} \pi Q_1 = \pi Q_1$

So $Z = \frac{N}{Q_1} = \frac{N}{V} \lambda^3 = M \lambda^3$

where $M = \frac{N}{V}$ is the density of particles

Define $M = \frac{\lambda^3}{V}$ where λ is roughly the average spacing between particles. Then

$Z = \left(\frac{\pi}{\lambda} \right)^3$ and $\hbar \ll 1 \Rightarrow \lambda \ll \lambda$.

Classical results are good approx when thermal wavelength λ is smaller than the typical spacing between particles λ.
physical meaning of thermal wave-length λ.

\[\lambda = \left(\frac{\hbar^2}{2\pi mk_B T} \right)^{\frac{1}{2}} \Rightarrow \frac{\hbar^2}{k} = \frac{2\pi}{\lambda^2} \]

\[\Rightarrow \frac{\hbar^2}{k} = \frac{\hbar^2}{(2\pi)^2} \]

\[\frac{\hbar^2}{k^2} = \frac{\pi k_B T}{2m} \sim \text{typical thermal energy of a classical particle at temperature } T. \]

So λ is the de Broglie wavelength of a typical particle taken from a classical Maxwell distribution at temperature T.

\[\Rightarrow \text{Quantum effects can be ignored, and classical results give a good approximation, when } \lambda \ll \ell, \text{ ie when the quantum de Broglie wavelength of the typical particle is much less than the average spacing between particles.} \]

Since $\lambda \sim \frac{1}{\sqrt{T}}$, as T decreases, λ increases.

For a gas of fixed density $n = \frac{1}{V^3}$, quantum effects become more important as T decreases.

At fixed T, quantum effects become more important as density n increases (so λ decreases).

\[\Rightarrow \text{Classical limit is a high-}T, \text{ low-}n, \text{ limit.} \]
Harmonic Oscillator vs boson

Recall our earlier result for the quantized harmonic oscillator

\[E_n = \hbar \omega (n + \frac{1}{2}) \]

We found:

\[
\text{average} \rightarrow \langle n \rangle = \frac{\sum_n e^{-\beta \hbar \omega (n + \frac{1}{2})}}{\sum_n e^{-\beta \hbar \omega (n + \frac{1}{2})}} = \frac{\sum_n e^{-\beta \hbar \omega n}}{\sum_n e^{-\beta \hbar \omega n}}
\]

\[
= -\frac{1}{\hbar \omega} \frac{\partial}{\partial \beta} \left(\sum_n e^{-\beta \hbar \omega n} \right) = -\frac{1}{\hbar \omega} \frac{\partial}{\partial \beta} \ln \left[\frac{1}{1 - e^{-\beta \hbar \omega}} \right]
\]

\[
= \frac{1}{\hbar \omega} \frac{\partial}{\partial \beta} \ln \left(1 - e^{-\beta \hbar \omega} \right) = \frac{1}{\hbar \omega} \frac{\hbar \omega e^{-\beta \hbar \omega}}{1 - e^{-\beta \hbar \omega}}
\]

\[
\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} - 1}
\]

Compare to occupation number of a boson of energy \(\epsilon \)

\[
\langle n \rangle = \frac{1}{e^{\beta (\epsilon - \mu)} - 1}
\]

We see that average level excitation of the harmonic oscillator has exactly the same form as the average number of bosons with energy \(\epsilon = \hbar \omega \), if the boson chemical potential is taken to be \(\mu = 0 \).
quantized harmonic oscillators obey same statistics as bosons, with $\mu = 0$

we say that excitation level n of the oscillators is the same as n quanta or n "particles" of excitation.

Applies to: elastic oscillations of a solid \leftrightarrow "phonons"
oscillation of electromagnetic waves \leftrightarrow "photons"

Sound modes in solid
\[
\omega = c_s |\vec{k}| \quad c_s = \text{speed of sound} \quad \vec{k} = \text{wave vector}
\]

\Rightarrow phonon modes $\langle n_k \rangle = \frac{1}{e^{\beta E_k} - 1}$

Electromagnetic waves
\[
\omega = c |\vec{k}| \quad c = \text{speed of light} \quad \vec{k} = \text{wave vector}
\]

 Photon modes $\langle n_k \rangle = \frac{1}{e^{\beta E_k} - 1}$

Another way to see $\mu = 0$. Phonons and photons are not conserved particles - they can be created and destroyed

\[e + \gamma \rightarrow e^{-} \] electron scattered by absorbing a photon

Chemical equilibrium $\Rightarrow \mu_e + \mu_\gamma = \mu_e \Rightarrow \mu_\gamma = 0$ chemical pot of photon