Maxwell Relations

Follow from 2nd derivatives of the thermodynamic potential

Energy:

$E(s, v, n) \Rightarrow \left(\frac{\partial E}{\partial s}\right)_{v, n} = T(s, v, n)$

$\Rightarrow \left(\frac{\partial^2 E}{\partial s \partial v}\right)_{n} = \left(\frac{\partial T}{\partial v}\right)_{s, n}$

but \(\left(\frac{\partial E}{\partial v}\right)_{s, n} = -p(s, v, n) \)

so \(\left(\frac{\partial^2 E}{\partial v \partial s}\right)_{n} = -\left(\frac{\partial p}{\partial s}\right)_{v, n} \)

$\Rightarrow \left(\frac{\partial T}{\partial v}\right)_{s, n} = -\left(\frac{\partial p}{\partial s}\right)_{v, n}$

Can do the same for any thermodynamic potential

Helmholtz free energy

$A(T, v, n) \Rightarrow -\left(\frac{\partial A}{\partial T}\right)_{v, n} = S(T, v, n)$

$\Rightarrow -\left(\frac{\partial^2 A}{\partial T \partial v}\right)_{n} = \left(\frac{\partial S}{\partial v}\right)_{T, n}$

but, \(\left(\frac{\partial A}{\partial v}\right)_{T, n} = P(T, v, n) \)

$\Rightarrow -\left(\frac{\partial^2 A}{\partial v \partial T}\right)_{n} = \left(\frac{\partial P}{\partial T}\right)_{v, n}$

$\Rightarrow \left(\frac{\partial S}{\partial v}\right)_{T, n} = \left(\frac{\partial P}{\partial T}\right)_{v, n}$
Gibbs free energy

\[G(T, p, N) \equiv \left(\frac{\partial G}{\partial p} \right)_{T,N} = V(T, p, N) \]

so

\[\left(\frac{\partial^2 G}{\partial p \partial N} \right)_T = \left(\frac{\partial V}{\partial N} \right)_{T, p} \]

but

\[\left(\frac{\partial G}{\partial N} \right)_{T, \mu} = \mu(T, p, N) \]

so

\[\left(\frac{\partial^2 G}{\partial N \partial p} \right)_T = \left(\frac{\partial \mu}{\partial p} \right)_{T,N} \]

\[\Rightarrow \left(\frac{\partial V}{\partial N} \right)_{T, p} = \left(\frac{\partial \mu}{\partial p} \right)_{T,N} \]

These equivalences, which follow from the independence of the order of taking 2nd derivatives, are called the Maxwell Relations.

See Callen Chpt 7 for a complete list.
Response functions

Specific heat at constant volume
\[C_V = \left(\frac{dQ}{dT} \right)_{V,N} = T \left(\frac{dS}{dT} \right)_{V,N} \]

Specific heat at constant pressure
\[C_P = \left(\frac{dQ}{dT} \right)_{P,N} = T \left(\frac{dS}{dT} \right)_{P,N} \]

Isothermal compressibility
\[K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \]

Adiabatic compressibility
\[K_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S \]

Coefficient of thermal expansion
\[\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \]

All the above may be viewed as a second derivative of an appropriate thermodynamic potential

\[C_V = T \left(\frac{dS}{dT} \right)_V = -T \left(\frac{\partial^2 A}{\partial T^2} \right)_{V,N} \quad \text{since} \quad \left(\frac{\partial A}{\partial T} \right)_{V,N} = -S(T,V,N) \]

\[C_P = T \left(\frac{dS}{dT} \right)_P = -T \left(\frac{\partial^2 G}{\partial T^2} \right)_{P,N} \quad \text{since} \quad \left(\frac{\partial G}{\partial T} \right)_{P,N} = -S(T,P,N) \]

\[K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T = -\frac{1}{V} \left(\frac{\partial^2 G}{\partial P^2} \right)_T \quad \text{since} \quad \left(\frac{\partial G}{\partial P} \right)_T = V(T,P,N) \]

\[K_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S = -\frac{1}{V} \left(\frac{\partial^2 H}{\partial P^2} \right)_S \quad \text{since} \quad \left(\frac{\partial H}{\partial P} \right)_S = V(S,P,N) \]

\[\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \frac{1}{V} \left(\frac{\partial^2 G}{\partial T \partial P} \right)_P \quad \text{since} \quad \left(\frac{\partial G}{\partial P} \right)_T = V(T,P,N) \]

Since all the various thermodynamic potentials can all be derived from one another, the various second derivatives must be related. If we consider...
cases where \(N \) is held constant (as in all the above response functions) then there can only be three independent second derivatives, for example:

\[
\left(\frac{\partial^2 G}{\partial T^2} \right)_{p, N} = -c_p / T
\]

\[
\left(\frac{\partial^2 G}{\partial p^2} \right)_{T, N} = -\nabla V K_T
\]

\[
\left(\frac{\partial^2 G}{2T \partial p} \right)_{N} = V \alpha
\]

All the other second derivatives of the other potentials must be some combination of these three.

Consider \(C_V \) we will show how to write it in terms of the above.

Consider Helmholtz free energy \(A(T, V) \)

since \(N \) is kept constant, we will not write it

\[-S(T, V) = \left(\frac{\partial A}{\partial T} \right)_V \]

Viewing \(S \) as a function of \(T \), at \(V \) we have

\[dS = \left(\frac{\partial S}{\partial T} \right)_V dT + \left(\frac{\partial S}{\partial V} \right)_T dV\]

\[\Rightarrow T \left(\frac{\partial S}{\partial T} \right)_p = T \left(\frac{\partial S}{\partial T} \right)_V + T \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_p\]
\[C_p = C_V + T \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_p \]

New:
\[\frac{\partial S}{\partial V} \bigg|_T = -\frac{\partial^2 A}{\partial T \partial V} = \frac{\partial P}{\partial T} \bigg|_V \]

and
\[\left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial T}{\partial V} \right)_P \left(\frac{\partial V}{\partial P} \right)_T = -1 \quad \text{(see general result)} \]

So,
\[\left(\frac{\partial P}{\partial T} \right)_V = -\frac{1}{\left(\frac{\partial T}{\partial V} \right)_P \left(\frac{\partial V}{\partial P} \right)_T} = -\frac{\left(\frac{\partial V/\partial T}{\partial V/\partial P} \right)_P}{\left(\frac{\partial V/\partial T}{\partial V/\partial P} \right)_T} \]

\[C_p = C_V + T \left(\frac{\partial V}{\partial T} \right)_P \left(\frac{\partial V/\partial T}{\partial V/\partial P} \right)_T \]

\[= C_V - T \left(\frac{V \kappa}{K_T} \right)^2 = C_V + TV \kappa^2 \]

\[\frac{K_T}{V \kappa} \]

So,
\[C_V = C_p - TV \kappa^2 \]
A general result for partial derivatives

Consider any three variables satisfying a constraint

\[f(x, y, z) = 0 \]

\[\Rightarrow z \text{ for example, is function of } x \text{ and } y \]

or \(y \) is function of \(z \), \(x \), etc.

\[\Rightarrow \text{ exists a relation between partial derivatives of the variables with respect to each other.} \]

\[
\text{constraint } \Rightarrow \ \frac{df}{dx} = \frac{\partial f}{\partial x} \frac{dx}{dx} + \frac{\partial f}{\partial y} \frac{dy}{dy} + \frac{\partial f}{\partial z} \frac{dz}{dz} = 0
\]

\[\text{If hold } z \text{ const, i.e. } dz = 0, \text{ then} \]

\[
\left(\frac{\partial x}{\partial y} \right)_z = - \frac{\left(\frac{\partial f}{\partial x} \right)_y}{\left(\frac{\partial f}{\partial y} \right)_x}
\]

\[\text{If hold } y \text{ const, i.e. } dy = 0, \text{ then} \]

\[
\left(\frac{\partial y}{\partial x} \right)_y = - \frac{\left(\frac{\partial f}{\partial y} \right)_x}{\left(\frac{\partial f}{\partial x} \right)_y}
\]

\[\text{If hold } x \text{ const, i.e. } dx = 0, \text{ then} \]

\[
\left(\frac{\partial y}{\partial z} \right)_x = - \frac{\left(\frac{\partial f}{\partial y} \right)_z}{\left(\frac{\partial f}{\partial z} \right)_x}
\]

Multiplying together we get

\[
\left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -1
\]
\((x, y, z)\) with constraint among them

Solve for \(x(y, z)\) or \(y(x, z)\)

then \[\begin{align*}
dx &= \left(\frac{\partial x}{\partial y}\right)_z \, dy + \left(\frac{\partial x}{\partial z}\right)_y \, dz \\
dy &= \left(\frac{\partial y}{\partial x}\right)_z \, dx + \left(\frac{\partial y}{\partial z}\right)_x \, dz
\end{align*}\]

Suppose vary \(dx\) keeping \(dz = 0\)

\(\text{1} \Rightarrow d x = \left(\frac{\partial x}{\partial y}\right)_z \, dy \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1}{\left(\frac{\partial x}{\partial y}\right)_z}\)

\(\text{2} \Rightarrow d y = \left(\frac{\partial y}{\partial x}\right)_z \, dx \quad \Rightarrow \quad \frac{dy}{dx} = \left(\frac{\partial y}{\partial x}\right)_z\)

\[\Rightarrow \left(\frac{\partial y}{\partial x}\right)_z = \frac{1}{\left(\frac{\partial x}{\partial y}\right)_z}\]
Similarly we must be able to write k_s in terms of g_p, k_T, a

Consider enthalpy $H(s, p)$

$$\left(\frac{\partial H}{\partial p} \right)_s = v(s, p)$$

regarding v as a function of s and p we have

$$dv = \left(\frac{\partial v}{\partial p} \right)_s \, dp + \left(\frac{\partial v}{\partial s} \right)_p \, ds$$

$$-\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_s \left(\frac{\partial s}{\partial p} \right)_T$$

$$k_T = k_s - \frac{1}{v} \left(\frac{\partial v}{\partial s} \right)_p \left(\frac{\partial s}{\partial p} \right)_T$$

Now

$$\left(\frac{\partial s}{\partial p} \right)_T = -\frac{\partial^2 g}{\partial T \partial p} = -\left(\frac{\partial v}{\partial T} \right)_p$$

and

$$\left(\frac{\partial v}{\partial s} \right)_p = \frac{(\partial v/\partial T)_p}{(\partial s/\partial T)_p}$$

above follows from:

$$\frac{\partial g}{\partial p} = v(T, p) \Rightarrow dv = \left(\frac{\partial v}{\partial T} \right)_p \, dT + \left(\frac{\partial v}{\partial p} \right)_T \, dp$$

$$-\frac{\partial g}{\partial T} = s(T, p) \Rightarrow ds = \left(\frac{\partial s}{\partial T} \right)_p \, dT + \left(\frac{\partial s}{\partial p} \right)_T \, dp$$

$$\Rightarrow \left(\frac{\partial v}{\partial s} \right)_p = \frac{(\partial v/\partial T)_p}{(\partial s/\partial T)_p}$$

or in general

$$\left(\frac{\partial y}{\partial x} \right)_x = \frac{(\partial y/\partial u)_x}{(\partial y/\partial u)_x}$$
Substitute \(m \) to get

\[
K_T = K_S + \frac{1}{V} \left(\frac{\partial^2 V}{\partial T} \right)_P \left(\frac{2V}{S} \right)_P = K_S + \frac{1}{V} \left(\frac{V \alpha^2}{C_P/T} \right)_P
\]

\[
K_T = K_S + TV\alpha^2
\]

\[
K_S = K_T - TV\alpha^2
\]

See Callen for a systematic way to reduce all such derivatives to combinations of \(C_P, K_T, \alpha \).

The main point is not to remember how to do this, but that it can be done! There are only a finite number of independent 2nd derivatives of the thermodynamic potentials! [It considers only \(N \) fixed, there are only \(C_P, K_T, \alpha \)].

Another useful relation

\[
C_V = T \left(\frac{dS}{dT} \right)_V
\]

Since \(dE = TdS - pdV \) (\(N \) fixed), it follows that

\[
C_V = \left(\frac{dE}{dT} \right)_V = T \left(\frac{dS}{dT} \right)_V
\]