
CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN

DIAGRAMS

LOGAN T. MEREDITH

1. Introduction

When one thinks of quantum field theory, one’s mind is undoubtedly drawn to
Feynman diagrams. The näıve view these diagrams as merely a concise and stan-
dardized way of describing collisions and processes. Feynman diagrams, however,
encode a great deal of information, for each one corresponds exactly to the proba-
bility amplitude of the transition it describes. In other words, it is easily possible
to write and calculate the transition amplitude of a given process using only the
process’ Feynman diagram. Such monumental utility arises thanks to the efforts of
Dyson, Wick, and, of course, Feynman.

In this short paper, we will briefly provide some background information on
concepts required to understand Feynman diagrams. In particular, we will give
an overview of Feynman diagram construction from terms in the S-matrix as ex-
panded by Wick’s theorem. We will then calculate a simple transition amplitude by
hand. Afterward, we will present the rules that can be used to derive the transition
amplitude much more simply from Feynman diagrams.

Throughout this paper, we will refer to equations in the book by Mandl and Shaw
and frequently use its notation. Where convenient or deemed sufficiently important,
certain equations will be rewritten here. This paper comprises a direct adaptation
from the lecture notes I used for Chapter 7, and is in most cases verbatim. Hence
the paper assumes a working familiarity with concepts of previous chapters and
should not be considered comprehensive.

2. Constructing Feynman Diagrams from the S-Matrix Expansion

For future reference, Table 1 succinctly shows the creation and absorption oper-
ators of the particles we will be dealing with in QED.

absorption creation
e− ψ+ ψ̄−

e+ ψ̄+ ψ−

γ A+ A−

Table 1. Absorption and creation operators for electrons,
positrons, and photons.
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Figure 1. The basic Feynman diagram for electron scattering
with photon emission.

Recall that the S-matrix expansion is given by

(2.1) S =

∞∑
n=0

S(n) =

∞∑
n=0

(−i)n

n!

∫
· · ·

∫
d4x1 · · · d4xnT{HI(x1) · · ·HI(xn)},

integrated over all spacetime, where the interaction Hamiltonian density is

HI(x) = −eN{ψ̄(x) /A(x)ψ(x)}

= −eN{(ψ̄+ + ψ̄−)( /A
+

+ /A
−

)(ψ+ + ψ−)}x.
(2.2)

The interaction Hamiltonian density can therefore be split into eight different terms.
Each term gives rise to one of eight basic processes, which can be drawn as Feynman
diagrams. Figure 1 shows the Feynman diagram for electron scattering with photon
emission. Note that S(1) integrates over exactly these terms, and hence corresponds
to these basic processes. Since we require that k2 = 0 for photons and p2 = m2 for
fermions, all eight of these basic transitions are unphysical, and so we will find that
〈f |S(1)|i〉 = 0 for any final state vector |f〉 and initial state vector |i〉 that these
basic processes describe.

In order to get a real, physical process, we must take S to at least its second-
order term S(2). Using Wick’s theorem, and following the notation in the book, we
can write S(2) as

(2.3) S(2) =

F∑
i=A

S
(2)
i ,
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where

S
(2)
A = −e

2

2!

∫
d4x1d

4x2N [(ψ̄ /Aψ)x1
(ψ̄ /Aψ)x2

](2.4)

S
(2)
B = − e2

2!

∫
d4x1d

4x2{N [(ψ̄ /Aψ)x1
(ψ̄ /Aψ)x2

] +N [(ψ̄ /Aψ)x1
(ψ̄ /Aψ)x2

]}(2.5)

S
(2)
C = − e2

2!

∫
d4x1d

4x2N [(ψ̄γαAαψ)x1
(ψ̄γβAβψ)x2

](2.6)

S
(2)
D = − e2

2!

∫
d4x1d

4x2{N [(ψ̄γαAαψ)x1(ψ̄γβAβψ)x2 ]

+N [(ψ̄γαAαψ)x1(ψ̄γβAβψ)x2 ]}
(2.7)

S
(2)
E = − e2

2!

∫
d4x1d

4x2N [(ψ̄ /Aψ)x1(ψ̄ /Aψ)x2
](2.8)

S
(2)
F = − e2

2!

∫
d4x1d

4x2N [(ψ̄γαAαψ)x1
(ψ̄γβAβψ)x2

].(2.9)

We will go through each of these terms one by one to take note of their properties.
To start, we observe that Equation (2.4) does not involve any contractions. In-

tuitively, this implies that the process it describes consists of two basic processes
as we saw from S(1) occurring independently of one another. Since we have al-

ready argued that such processes are unphysical, it follows that S
(2)
A also leads to

unphysical processes.
It turns out that the two terms in Equation (2.5) are actually identical under

interchange of integration variables. We can therefore rewrite S
(2)
B as

(2.10) S
(2)
B = −e2

∫
d4x1d

4x2N [(ψ̄ /Aψ)x1
(ψ̄ /Aψ)x2

].

This expression contains a fermion contraction. Hence we see a virtual fermion in

the processes described by S
(2)
B ; in particular, we see a virtual fermion propagating

from x2 to x1. The two uncontracted fermion and photon operator pairs deal with
the creation and absorption of external particles.

As an example of a process under the purview of S
(2)
B , consider Compton scat-

tering, whereby a photon is scattered by an electron (γ + e− → γ + e−). We will
pick out the initial electron absorption operator ψ+(x2) from ψ(x2) and the final
electron emission operator ψ̄−(x1) from ψ̄(x1). However, note that either external
photon can be emitted or absorbed at either point, and so we can choose between
having the initial photon absorbed at x2 or x1. In the former case, we take the
/A
+

(x2) term from /A(x2) to absorb the initial photon and the /A
−

(x1) term from
/A(x1) to emit the final photon. The resulting S-matrix term is given by

Sa = −e2
∫
d4x1d

4x2ψ̄
−(x1)γαψ(x1)ψ̄(x2)γβA−α (x1)A+

β (x2)ψ+(x2)

= −e2
∫
d4x1d

4x2ψ̄
−(x1)γαiSF (x1 − x2)γβA−α (x1)A+

β (x2)ψ+(x2),

(2.11)

where SF is the fermion propagator. The Feynman diagram for this process is
given in Figure 2. The S-matrix term for the other case, where the initial photon
is absorbed at x1, is constructed analogously, but we omit it here. There are other
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Figure 2. A Feynman diagram for Compton scattering where the
initial photon is absorbed at x2.

processes described by S
(2)
B , but we will not show them here for the sake of saving

space.

In S
(2)
C , we have photon-photon contraction and four uncontracted fermion oper-

ators. This term therefore gives rise to fermion-fermion scattering. As an example,
consider Møller scattering (e− + e− → e− + e−). Taking the electron parts of the

absorption and creation operators in S
(2)
C , we get

(2.12)

S(2)(2e− → 2e−) = −e
2

2

∫
d4x1d

4x2N [(ψ̄−γαψ+)x1
(ψ̄−γβψ+)x2

iDFαβ(x1 − x2),

where DFαβ is the photon propagator. As with the photons of Compton scatter-
ing, either initial electron can be absorbed by either ψ+ operator, and either final
electron can be created by either ψ̄−, and so we see that four terms arise from
this integral. But each of these terms differs from another only by the exchange
of integration variables. Intuitively, this is equivalent to saying that an electron
emitted and absorbed at x1 is the same as one emitted and absorbed at x2. We
are therefore left with a pair of integrals, which we multiply by a factor of 2. This
cancels the factor of 1

2 .

In general, the n integration variables of the nth order term S(n) in the S-matrix
expansion can be attached to the n vertices of a Feynman diagram in n! ways, and
so the 1

n! that we see in S(n) can be ignored when considering topologically distinct
Feynman diagrams.

We label the two initial electrons 1, 2 and the two final electrons 1′, 2′. We are
considering contributions to the transition

(2.13) |i〉 = c†(2)c†(1)|0〉 → |f〉 = c†(2′)c†(1′)|0〉.

Let

ψ+
j (x) = c(j)fj(x), ψ̄−j (x) = c†(j)gj(x)(2.14)

be the parts of ψ+ and ψ̄− proportional to c(j) and c†(j), respectively, for j =
1, 2, 1′, 2′. Then the two aforementioned distinguishable integral terms of S(2)(2e− →
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Figure 3. A Feynman diagram for Møller scattering where elec-
tron 2′ is emitted at x2.

Figure 4. A Feynman diagram for Møller scattering where elec-
tron 1′ is emitted at x2.

2e−) are

Sa = −e2
∫
d4x1d

4x2N [(ψ̄−1′γ
αψ+

1 )x1
(ψ̄−2′γ

βψ+
2 )x2

]iDFαβ(x1 − x2)(2.15)

Sb = −e2
∫
d4x1d

4x2N [(ψ̄−2′γ
αψ+

1 )x1
(ψ̄−1′γ

βψ+
2 )x2

]iDFαβ(x1 − x2).(2.16)

It can be seen that Sa corresponds to the case where electron 2′ is created at x2 and
Sb corresponds to the case where electron 1′ is created at x2. The corresponding
Feynman diagrams are shown in Figures 3 and 4.

Let us move on to S
(2)
D , which has two uncontracted fermion terms. As with

S
(2)
B , the two terms are equal, and so we can remove the 1

2 scalar. There are two
possibilities for the external fermion: an electron or a positron. In the case of an

electron, S
(2)
D modifies the bare electron into a physical electron, or one surrounded

by its photon cloud, by the its interaction with the radiating field. This interaction
changes the energy and therefore mass of the physical electron compared to the
bare electron. This is called the self-energy of the electron. The integral for it
diverges, but by adding the effects of the self-energy into the physical electron, we
can renormalize this S-matrix term into a convergent solution. A Feynman diagram
for the electron self-energy is shown in Figure 5.

Similarly, S
(2)
E has two uncontracted photon operators, so it describes a photon

self-energy. The photon self-energy is similarly divergent except under renormal-
ization.

Note that S
(2)
F has no uncontracted terms, no external particles, and therefore

no transitions. It generates a vacuum diagram, shown in Figure 6.
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Figure 5. A Feynman diagram for the self-energy of a physical electron.

Figure 6. A vacuum Feynman diagram.

3. Manually Calculating Transition Amplitudes

It can be shown that interpreting Feynman diagrams as graphs in momentum
space allows us to write down the matrix elements 〈f |S(n)|i〉. Before we use this fact,
we will calculate a specific example explicitly. Although the process is unphysical,
consider the term of S(1) corresponding to electron scattering with emission of a
photon (e− → e− + γ), the same process as in Figure 1. This is the transition

(3.1) |i〉 = c†(p)|0〉 → |f〉 = c†(p′)a†(k′)|0〉,

for an initial electron with momentum p, final electron with p′, and final photon
with k′. Using Equations 7.23 - 7.26 in the book, we get

〈f |S(1)|i〉 = 〈e−p′; γk′|ie
∫
d4xψ̄−(x)γαA−α (x)ψ+(x)|e−p〉

= ie

∫
d4x[(

m

V Ep′
)

1
2 ū(p′)eip

′x]γα[(
1

2V ωk′
)

1
2 εα(k′)eik

′x][(
m

V Ep
)

1
2u(p)e−ipx].

(3.2)

Using the fact that ∫
d4xeix(p

′+k′−p) = (2π)4δ4(p′ + k′ − p),

we have

(3.3) 〈f |S(1)|i〉 = [(2π)4δ4(p′ + k′ − p)( m

V Ep
)

1
2 (

m

V Ep′
)

1
2 (

1

2V ωk′
)

1
2 ]M ,

where

(3.4) M = ieū(p′)/ε(k′ = p− p′)u(p)
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is called the Feynman amplitude for this process. Observe that the δ-function
ensures conservation of energy and momentum at the vertex.

4. The Feynman Rules

Rather than using Equations 7.23-7.26 to calculate the transition amplitudes of
each process, it is possible to simply write down the answer just from knowledge of
the Feynman diagrams. In general, for the transition |i〉 → |f〉, we have that

(4.1) 〈f |S|i〉 = δfi + [(2π)4δ4(Pf − Pi)
∏
ext.

(
m

V E
)

1
2

∏
ext.

(
1

2V ω
)

1
2 ]M ,

where Pf and Pi are the total four-momenta of the final and initial states, and
the products iterate over all external fermions and photons, respectively. The total
Feynman amplitude is

(4.2) M =

∞∑
n=1

M (n),

where the M (n) come from S(n). In particular, each M (n) can be obtained by
drawing all topologically distinct Feynman diagrams which contain n vertices and
the correct external particles. The rules for writing M (n) are written below, almost
exactly as they appear in the book:

(1) For each vertex, write a factor of ieγα.
(2) For each virtual photon, labelled with momentum k, write a factor of

iDFαβ(k) = −i gαβ
k2 + iε

.

(3) For each virtual fermion, labelled with momentum p, write a factor of

iSF (p) = i
1

/p−m+ iε
.

(4) For each external particle, write one of these factors:
(a) initial electron: ur(p)
(b) final electron: ūr(p)
(c) initial positron: v̄r(p)
(d) final positron: vr(p)
(e) photon: εrα(k)

where p or k denote the particle’s three-momentum and r ∈ {1, 2} labels
its spin or polarization state.

(5) Write the spinor factors (γ, SF , any four-spinors) for each fermion so that,
reading from right to left, they occur in the same sequence as following the
fermion line in the direction of its arrows.

(6) For each closed fermion loop, multiply the trace by −1.
(7) For each four-momentum q which is not fixed by energy-momentum con-

servation, multiply by

(
1

2π
)4

∫
d4q.

Note that this is necessary for each closed loop in the diagram.
(8) Multiply the entire expression by −1 if an odd number of interchanges of

fermion operators is required to set them in normal order.
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These rules allow one to determine the transition amplitude of a given process using
just the Feynman diagrams. It can be confirmed that using these rules on Figure
1 results in the same results as calculated manually, given by Equation (3.3).

5. Conclusions

Thus ends our very brief introduction to the utility of Feynman diagrams. If we
were to suggest only one section from this paper to read, it would be Section 4. The
tedium of referring to Equations 7.23-7.26 in the book can be altogether avoided
by memorizing the eight rules outlined above. Section 4 therefore represents the
culmination of the work in this paper, and indeed, many years of work by brilliant
physicists. The reader can now be expected to easily compute the probability
amplitudes of any arbitrary process in QED, which is an incredibly valuable tool.
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