
Solving the Geodesic Equation

Jeremy Atkins

December 12, 2018

Abstract

We find the general form of the geodesic equation and discuss the
closed form relation to find Christoffel symbols. We then show how to
use metric independence to find Killing vector fields, which allow us to
solve the geodesic equation when there are helpful symmetries. We also
discuss a more general way to find Killing vector fields, and some of their
properties as a Lie algebra.

1 The Variational Method

We will exploit the following variational principle to characterize motion in
general relativity:

The world line of a free test particle between two timelike separated points
extremizes the proper time between them.

where a test particle is one that is not a significant source of spacetime cur-
vature, and a free particles is one that is only under the influence of curved
spacetime. Similarly to classical Lagrangian mechanics, we can use this to de-
duce the equations of motion for a metric.

The proper time along a timeline worldline between point A and point B for
the metric gµν is given by

τAB =

∫ B

A

dτ =

∫ B

A

(−gµν(x)dxµdxν)1/2 (1)

using the Einstein summation notation, and µ, ν = 0, 1, 2, 3. We can parame-
terize the four coordinates with the parameter σ where σ = 0 at A and σ = 1
at B. This gives us the following equation for the proper time:

τAB =

∫ 1

0

dσ

(
−gµν(x)

dxµ

dσ

dxν

dσ

)1/2

(2)

We can treat the integrand as a Lagrangian,

L =

(
−gµν(x)

dxµ

dσ

dxν

dσ

)1/2

(3)

and it’s clear that the world lines extremizing proper time are those that satisfy
the Euler-Lagrange equation:

∂L

∂xµ
− d

dσ

(
∂L

∂(dxµ/dσ)

)
= 0 (4)

1



These four equations together give the equation for the worldline extremizing
the proper time. This worldline is called the geodesic.

Since the Lagrangian necessarily involves a square root of a summation of
terms, taking its derivative will result in a pervasive factor of 1/L . However,
since L = dτ/dσ =⇒ 1/L = dσ/dτ , we can use this to change derivatives
with respect to σ to those with respect to τ . Additionally, the second term in (4)
implies that the resulting equations will all have second derivatives with respect
to σ that can be changed. Thus, it’s easy to see that each of the equations will
have the form

d2xµ

dτ2
= −Γµαβ

dxα

dτ

dxβ

dτ
(5)

where the coefficients Γµαβ are called the Christoffel symbols, which depend on
the metric and are taken to be symmetric in the lower indices. These equations
together are the geodesic equation.

To find the general form for the Christoffel symbols, we first write out the
general Euler-Lagrange equation:

1

2

(
−gγδ

dxγ

dσ

dxδ

dσ

)−1/2
∂gεβ
∂xα

∂xε

∂σ

∂xβ

∂σ
(6)

− d

dσ

[(
−gγδ

dxγ

dσ

dxδ

dσ

)−1/2
gαβ

dxβ

dσ

]
= 0 (7)

We know that (
−gγδ

dxγ

dσ

dxδ

dσ

)−1/2
=

1

L
=

dτ

dσ
(8)

which, after multiplying by dσ/dτ , allows us to simplify (6) to

1

2

∂gβγ
∂α

dxβ

dτ

dxγ

dτ
− d

dτ

[
gαβ

dxβ

dτ

]
= 0 (9)

Now,
dgαβ
dτ

=
∂gαβ
∂xγ

dxγ

dτ
(10)

allowing us to write (9) as

gαβ
d2xβ

dτ2
+

(
−∂gαβ
∂xγ

+
1

2

∂gβγ
∂xα

)
dxβ

dτ

dxγ

dτ
= 0 (11)

This can also be written as

gαδ
d2xδ

dτ2
= −1

2

(
∂gαβ
∂γ

+
∂gαγ
∂xβ

− ∂gβγ
∂xα

)
dxβ

dτ

dxγ

dτ
= 0 (12)

Note that we changed the summation index β to δ for clarity. The first two
terms in the parentheses contribute the same; just by changing summation
indices, clearly,

∂gαβ
∂xγ

dxβ

dτ

dxγ

dτ
=
∂gαγ
∂xβ

dxγ

dτ

dxβ

dτ
(13)
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When the geodesic equation is written in the form of (5), we can identify the
Christoffel symbols by multiplying that equation by gαδ:

gαδΓ
δ
βγ =

1

2

(
∂gαβ
∂xγ

+
∂gαγ
∂xβ

− ∂gβγ
∂xα

)
(14)

which is the general relation for the Christoffel symbols. This equation can be
useful if the metric is diagonal in the coordinate system being used, as then the
left hand side only contains a single term; otherwise, we would need to compute
the metric inverse gαδ (where gαβgβγ = δαγ ), a non-trivial task for non-diagonal
metrics.

2 Symmetries and Conservation Laws

The task we have given ourselves is, in general, rather intractable. Solving a
set of four coupled, second-order ordinary differential equations can be easy for
simple metrics, but quickly becomes very difficult for more interesting cases.

To simplify our task, we need to find conservation laws, equations that give
us first integrals of the equations of motion for free. One that is true for all
metrics is the magnitude of the four-velocity:

u · u = gαβ
dxα

dτ

dxβ

dτ
= −1 (15)

Sadly, this is the only universally true conservation law.
However, all is not lost! According to Noether’s first theorem, every differ-

entiable symmetry of the action of a system has a corresponding conservation
law. In this case, the action is just the proper time, and thus we’re looking for
symmetries in the metric.

These are not always easy to find, but the simplest symmetries can be found
by observing if the metric is independent of any of its coordinates. Then an
infinitesimal transformation of that coordinate, xµ → xµ+δxµ, leaves the metric
unchanged.

We can define a vector field for each symmetry such that, at every point, a
vector points along the direction in which the metric doesn’t change due to that
symmetry. This is called a Killing vector field, after the German mathematician
Wilhelm Killing. For example, if we have a metric independent of x1, the Killing
field associated with that symmetry is

ξα = (0, 1, 0, 0) (16)

We may use the term Killing field and Killing vector interchangeably.
A symmetry implies that there is a conserved quantity along a geodesic. This

can be seen by looking at the Euler-Lagrange equation, from which the geodesic
equation is derived. If the metric is independent of a coordinate, which without
loss of generality we’ll say is x1, then ∂L /∂x1 = 0. So, the Euler-Lagrange
equation becomes

d

dσ

(
∂L

∂(dx1/dσ)

)
= 0 (17)
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This means that the quantity inside the derivative is constant along the geodesic.
Now,

∂L

∂(dx1/dσ)
= −g1β

1

L

dxβ

dσ
(18)

= −g1β
dxβ

dτ
(19)

= −gαβξαuβ (20)

= −ξ · u (21)

where ξα is a Killing vector and uβ is a four-velocity. Thus, ξ ·u is a conserved
quantity. We can exploit this to solve geodesic equations.

3 Example: The Plane

The procedure for solving the geodesic equations is best illustrated with a fairly
simple example: finding the geodesics on a plane, using polar coordinates to
grant a little bit of complexity.

First, the metric for the plane in polar coordinates is

ds2 = dr2 + r2dφ2 (22)

Then the distance along a curve between A and B is given by

S =

∫ B

A

ds =

∫ B

A

√
dr2 + r2dφ2 (23)

As above, we’ll choose a parameter σ ∈ [0, 1]. Then,

S =

∫ 1

0

dσ

√(
dr

dσ

)2

+ r2
(

dφ

dσ

)2

(24)

Taking the Lagrangian as the integrand and plugging it into the Euler-Lagrange
equations for r and φ, we have

d

dσ

(
1

L

dr

dσ

)
=

r

L

(
dφ

dσ

)
(25)

d

dσ

(
r2

L

dφ

dσ

)2

= 0 (26)

Now, using the fact that L = ds/dσ, we have

d2r

ds2
= r

(
dφ

d

)2

(27)

d

ds

(
r2

dφ

ds

)
= 0 → d2φ

ds2
= −2

r

dr

ds

dφ

ds
(28)

Clearly, the only non-zero Christoffel symbols are

Γrφφ = −r (29)

Γφrφ = Γφφr =
1

r
(30)
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To begin, we can divide (22) by ds to get the first integral, corresponding to
u · u = 1:

1 =

(
dr

ds

)2

+ r2
(

dφ

ds

)2

(31)

Since the metric is independent of φ, we have the Killing vector ξ = (0, 1). So
we have the conserved quantity

ξ · u = giju
iuj = r2

dφ

ds
≡ ` (32)

Using this in (31), we get

dr

ds
=

(
1− `2

r2

)1/2

(33)

Dividing (32) by (33), we get

dφ/ds

dr/ds
=

dφ

dr
=

`

r2

(
1− `2

r2

)1/2

(34)

We can integrate this with respect to r to get

φ = arccos

(
`

r

)
+ φ∗ → r cos(φ− φ∗) = ` (35)

where φ∗ is an integration constant. Using a trigonometric identity to expand
the cosine and the fact that x ≡ r cos(φ) and y ≡ r sin(φ), we have

x cos(φ∗) + y sin(φ∗) = ` (36)

This is just an equation for a straight line! Thus, the solution to the geodesic
equation comes out to what we would expect.

4 More Killing Vectors

We previously discussed the easiest method of finding Killing vectors: read off
the coordinates of which the metric is independent. However, this will usually
not give us all of the symmetries (or even any of them). Take, for example, the
3D Cartesian metric,

ds2 = dx2 + dy2 + dz2 (37)

This obviously has three Killing vectors:

ξ1 = (1, 0, 0) (38)

ξ2 = (0, 1, 0) (39)

ξ3 = (0, 0, 1) (40)

However, consider the spherical metric, which describes the same space:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (41)

This metric is independent of φ, so in spherical coordinates, it should have the
Killing vector ξ4 = (0, 0, 1), or in Cartesian, (−y, x, 0). In fact, 3D Euclidean

5



space has 6 Killing vectors: three translations and three rotations. The metric
we started with didn’t make these rotational symmetries obvious.

To find all of the Killing vectors, we’ll start with the requirement that the
metric be unchanged under a constant coordinate transformation x→ x′:

gρσ(x′) = gµν(x)
∂xµ

∂x′ρ
∂xν

∂x′σ
(42)

Does this equation have any solutions?
In general, this is a set of equations that are difficult to solve, but looking at

an infinitesimal case makes it considerably easier. Take x′ and x to be related
by x′µ = xµ + εξµ(x), where ε << 1, and ξµ is some vector (with suggestive
notation). Now, we’ll expand (42) out to order ε. Setting

∂xµ

∂x′ρ
= δµρ − ε∂ρξµ(x) +O(ε2) (43)

and plugging into (42), the right hand side becomes

gµν(x)
∂xµ

∂x′ρ
∂xν

∂x′σ
= gµν(δµρ − ε∂ρξµ)(δνσ − ε∂σξν) (44)

= (gρν − gµνε∂ρξµ)(δνσ − ε∂σξν) (45)

= gρσ − gρνε∂σξν − gµσε∂ρξµ +O(ε2) (46)

We Taylor expand the left hand side, giving

gρσ(xµ + εξµ) = gρσ(x) + εξλ∂λgρσ +O(ε2) (47)

Neglecting terms of order ε2 and putting the left and right sides back together,
we have

gρσ(x) + εξλ∂λgρσ = gρσ − gρνε∂σξν − gµσε∂ρξµ (48)

→ gµσ∂ρξ
µ + gρν∂σξ

ν + ξλ∂λgρσ = 0 (49)

Since gρσ is symmetric, this is actually 10 equations; thus, there are at maximum
(for a 4-dimensional spacetime) 10 symmetries. Or, more generally, 1

2D(D+ 1)
for dimension D. A metric with all of those symmetries is said to be maximally
symmetric.

Let’s test this out on the very simple 3D Cartesian metric. We obtain from
(49) the following six equations:

∂xξ
x = 0 (50)

∂xξ
y + ∂yξ

x = 0 (51)

∂xξ
z + ∂zξ

x = 0 (52)

∂yξ
y = 0 (53)

∂zξ
y + ∂yξ

z = 0 (54)

∂zξ
z = 0 (55)

These are fairly easily solved. For example, act ∂x on the (52) and use (51),
letting us obtain ∂2xξ

y = 0, etc. We end up finding the six Killing vectors we
would expect:

ξ1 = (1, 0, 0) ξ2 = (0, 1, 0) ξ3 = (0, 0, 1)

ξ4 = (−y, x, 0) ξ5 = (0,−z, y) ξ6 = (z, 0,−x)
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Now, we still need to show that these Killing vectors lead to conserved
quantities, since our previous proof relied on the metric being independent of a
coordinate. This will only be a proof sketch, as all of the background is out of
the scope of this paper.

Consider a geodesicXµ(τ), with the tangent velocity vector V µ(τ) = dXµ/dτ .
Let ξ(x) be a Killing vector field of the metric describing this spacetime. We
wish to show that ξµ(Xµ)V µ is conserved along the geodesic.

We first define the covariant derivative:

DλW
µ = ∂λW

µ + ΓµλνW
ν (56)

This is basically because the standard derivative doesn’t transform properly,
while this definition does, so it’s more useful for our purposes. It works in a
very similar way.

Now, act the covariant derivative on the quantity:

V νDν(ξµV
µ) = V νV µDνξµ + ξµ(V νDνV

µ) (57)

by the product rule. Now, the second term is actually

V νDνV
µ =

dxν

dτ

(
d2xν

dτ2
+ Γµνσ

dxσ

dτ

)
= 0 (58)

according to the geodesic equation. So now we have just V νV µDνξµ. Notice
that we can rewrite (49) using the covariant derivative and the formula for the
Christoffel symbols as

Dρξσ +Dσξρ = 0 (59)

This implies that Dνξµ is antisymmetric in its indices. Thus, the whole term is
equal to zero. Since the (covariant) derivative of ξµ(Xµ)V µ is 0 along a geodesic,
then it must be conserved along that geodesic.

5 Killing Vector Lie Properties

We will now briefly describe some of the Lie algebraic properties of Killing
vectors. This will be mostly without proof, as this is a little out of the scope of
this course.

We can always associate a vector V µ with a differential operator V µ∂µ.
Thus, we can write Killing vectors as a summation of functions multiplied by
differential operators. For example, we can write ξ4 from the above formulation
as

ξ4 = −y ∂
∂x

+ x
∂

∂y
(60)

Interestingly, if we commute, say, ξ4 and ξ5, we find that

[ξ4, ξ5] =

(
−y ∂

∂x
+ x

∂

∂y

)(
−z ∂

∂y
+ y

∂

∂z

)
−
(
−z ∂

∂y
+ y

∂

∂z

)(
−y ∂

∂x
+ x

∂

∂y

)
(61)

= ξ6 (62)

In fact, it can be shown that, for any three Killing vectors for the same metric,

[ξa, ξb] = εabcξc (63)
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where εabc is the permutation symbol, defined such that, if εijk = 1, any flipping
of indices flips its sign.

Now, if we begin with a Lie group G and a subgroup H, and say that g1 is
equivalent to g2 for g1, g2 ∈ G if there exists a subgroup element h such that
g1 = g2h. Then we say that g1 and g2 belong to the same equivalence class
if they are equivalent. Finally, we can define a manifold by associating each
equivalence class with a point; this is called a coset manifold G/H.

On a coset manifold G/H, the Killing vectors actually satisfy

[ξa, ξb] = fabcξc (64)

where fabc are the structure constants of the Lie algebra of the group G.

6 Conclusion

In this paper, we discussed the origin of the geodesic equation and the method
of solving it, namely that of finding symmetries and using Killing vectors.

We are very lucky that many physically interesting situations have these nice
symmetry properties. When these don’t exist for a metric, we have to resort
to numerical simulations, which in Einstein’s day would have been either very
difficult or impossible. Using these symmetries, we can actually study many
interesting metrics analytically, including the famed Schwarzchild metric for
space near a massive body. Clearly, symmetries in physics are very important
to our understanding and ability to understand complicated physical situations,
and methods of finding new ones are critical to progress.
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