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Abstract

We discuss properties of SU(2), especially in relation to its double-covering of SO(3). We
first point out the double covering, then we show the isomorphism of the Lie algebras of SU(2)
and SO(3). We then explicitly find the elements of SU(2) and show how they map to rotations.
We also discuss the pseudoreality of the fundamental representation of SU(2), and the finally
show that U(1) ∼= SU(2)/ZN × U(1), discussing some of the subtleties in applications.

1 Introduction

SU(2) is important in both physics and math. In physics, it originally became important as
a tool for studying electron spin, and Heisenberg, reasoning by analogy, used it to predict the
existence of isospin. Mathematically, it has many of interesting properties, especially its rather
intricate relationship with SO(3). Historically, physicists needed to master the mathematics of
SU(2) before moving to SU(3) and beyond. Thus, just as when studying SO(N) we generally
begin with SO(3), it’s instructive to begin studying SU(N) by considering the specific case of
SU(2), which is interesting in its own right.

2 SU(2) is locally isomorphic to SO(3)

One of the most interesting properties of SU(2) is its aforementioned relationship to SO(3), namely
that the two are locally isomorphic. Essentially, this means that, in a neighborhood of any U ∈
SU(2), SU(2) and SO(3) are isomorphic. This manifests itself as an isomorphicm of their Lie
algebras. As we shall see, this does not hold globally, ie not restricted to a small neighborhood.

To prove this local isomorphism, first consider that any 2-by-2 Hermitian traceless matrix X
can be written as a linear combination of the Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(1)

We can state this more succinctly (and often more usefully) as X = ~x · ~σ, where ~x = (x, y, z).
Explicitly,

X =

(
z x− iy

x+ iy −z

)
(2)

Pick any arbitrary element U of SU(2), and consider X ′ ≡ U†XU . We want to show that we can
associate some rotation R with this arbitrary U (ie, define a map that takes U → R)
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First, X ′ is Hermitian:

(X ′)† = (U†XU)† = U†X†U = U†XU = X ′

since X is Hermitian by assumption. Also, X ′ is traceless:

tr(X ′) = tr
(
U†XU

)
= tr(X) = 0

using the cyclicity of the trace.
Now, since X ′ is Hermitian and traceless, we can write X ′ = ~x′ · ~σ, just as we did with X. We

see that ~x and ~x′ are linearly related: taking ~x→ λ~x for a real number λ also takes ~x′ → λ~x′:

X ′ = U†XU ↔ ~x′ · ~σ = U†(~x · ~σ

Now compute the determinant: notice that

det(X) = −z2 − (x− iy)(x+ iy) = −(x2 + y2 + z2) = −~x2

for a general X. So,

det(X ′) = −(~x′)2 = det
(
U†XU

)
= det

(
U†
)

det(X) det(U) = det(X) = −~x2

So ~x and ~x′ are linearly related and have the same magnitude. Then by definition, they are related
by a rotation! So we can associate a rotation R with U .

3 SU(2) covers SO(3) twice

f : U → R is actually 2-to-1, since f(U) = f(−U): ie, U†XU = (−U)†X(−U), so U and −U are
mapped to the same R. We say that SU(2) double-covers SO(3).

Since the map U → R is 2-to-1, not 1-to-1, SO(3) and SU(2) clearly can’t be isomorphic groups.
However, for a sufficiently small neighborhood around the identity, that neighborhood will include
exactly one of U and −U , ∀U ∈ SU(2). So locally, in a neighborhood of the identity, they are
isomorphic.

There are hints of this in many other areas of the usual discussion around representations of
SU(2) and SO(3). For example, SU(2) has a three-dimensional representation. This is exactly its
correspondence with SO(3).

4 Properties of the Pauli Matrices

Since the Pauli matrices form the basis for the fundamental two-dimensional representation of
SU(2), understanding their behavior allows us to understand all of SU(2). So let’s study them in
a bit more detail.

First, we will enumerate some of their properties. It turns out that:

σ2
a = I ∀a (3)

Additionally, they skew-commute:

σaσb = −σbσa ∀a, b, a 6= b (4)
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We’ll check this explicitly for a = 1, b = 2:(
0 1
1 0

)(
0 −i
i 0

)
=

(
i 0
0 −i

)
= iσ3(

0 −i
i 0

)(
0 1
1 0

)
=

(
−i 0
0 i

)
= −iσ3

Notice the correspondence with σ3! In fact, distinct Pauli matrices give the other with a factor of
±i in front.

We can summarize these two properties with the following equation:

σaσb = δabI + iεabcσc (5)

If a = b, the second term vanishes and we have I. If not, the first term vanishes, and we’re left
with ±iσc.

Interchanging a and b, we also have

σbσa = δbaI − iεabcσc (6)

We can then add and subtract (5) and (6) to get

{σa, σb} = 2δab (add) (7)

[σa, σb] = 2iεabcσc (subtract) (8)

Note the factors of 2! They are critical in what is to come.
Now, the Lie algebra for SU(N) is given by

[T a, T b] = ifabcT c (9)

where the fabc’s are the structure constants of the algebra. Dividing (8) by 2, we get[σa
2
,
σb
2

]
= iεabc

σc
2

(10)

which matches up with (9) perfectly. Thus, the generators of the fundamental two-dimensional
representation of SU(2) are represented by the σa/2, with structure constants εabc.

Recall that the Lie algebra for SO(3) is given by

[Ja, Jb] = iεabcJc (11)

We can see that by identifying the T a of the SU(2) representation with the Ja, the Lie algebras of
SU(2) and SO(3) are isomorphic; in other words, identical!

Given all of this, we don’t need to do anything more to find the representations of SU(2), as
we can replicate exactly the steps for analyzing SO(3). Just define T± = T 1 ± T 2, which has the
commutation relations

[T 3, T±] = ±T , [T+, T−] = 2T 3

and continue from there. Just as with SO(3), the representations will be (2t + 1)-dimensional,
t = 0, 1/2, 1, 3/2, 2, .... This, in a sense, “explains” the intuitive strangeness of the two-dimensional
representation of SO(3); it’s simply the fundamental representation of SU(2).
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5 The Group Elements of SU(2)

Every element of SU(2) can be written as

U = eiφaσa/2 = ei
~φ·~σ/2 (12)

where repeated indices are summed. Let’s look at what these are in more detail.
We denote ~φ = φφ̂, where φ is the magnitude of ~φ and φ̂ is a unit vector pointing in the same

direction, and expand (12) in a Taylor series:

U = ei
~φ·~σ/2 =

∞∑
n=0

in

n!

(
~φ · ~σ

2

)n
(13)

To figure this out, we need to work out what (~φ · ~σ)n is.
For arbitrary ~u and ~v,

(~u · ~σ)(~v · ~σ) = uavbσaσb

= uava(δabI + iεabcσc)

= (~u · ~v)I + i(~u× ~v) · ~σ

So if ~u = ~v = ~φ, we get
(~φ · ~σ)2 = φ2I

Now we can split up (13) into even and odd powers:( ∞∑
k=0

(−1)k

(2k)!

(
φ

2

)2k
)
I + i

( ∞∑
k=0

(−1)k

(2k + 1)!

(
φ

2

)2k+1
)
φ̂ · ~σ

= cos

(
φ

2

)
I + i(φ̂ · ~σ) sin

(
φ

2

)
Since we’re free to align our coordinates, we’ll align ẑ with φ̂, giving us

cos

(
φ

2

)
I + iσ3 sin

(
φ

2

)
(14)

These are the elements of SU(2).

6 Half-angles become Full-angles

In section 2, we showed that for X ′ = ~x′ · ~σ and X = ~x · ~σ related by X ′ = U†XU for some
U ∈ SU(2), then ~x and ~x′ are related by a rotation. But which rotation is it? And how exactly do
the half-angles in (14) become full angle rotations? To see all of this, it’s instructive to compute
the rotation relating ~x and ~x′ explicitly.

We will compute U†XU by brute force. Without loss of generality, let φ̂ point along ẑ, so we
can use the form of U found in (14).
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We’ll first find U†σaU , and then use that to work out the result for a linear combination of σa.
So,

U†σaU =

[
cos

(
φ

2

)
I − iσ3 sin

(
φ

2

)]
σa

[
cos

(
φ

2

)
I + iσ3 sin

(
φ

2

)]
For a = 3, this becomes

= cos2
(
φ

2

)
σ3 + sin2

(
φ

2

)
= σ3

Otherwise, a = 1, 2. We first get the sin2(φ/2) coefficient:

σ3σaσ3 = −σaσ3σ3 = −σa

using (3)and (4). Then multiplying out, we get[
cos2

(
φ

2

)
− sin2

(
φ

2

)]
σa − i sin

(
φ

2

)
cos

(
φ

2

)
σ3σa + i sin

(
φ

2

)
cos

(
φ

2

)
σaσ3

=

[
cos2

(
φ

2

)
− sin2

(
φ

2

)]
σa − i sin

(
φ

2

)
cos

(
φ

2

)
[σ3, σa]

By (8), [σ3, σ1] = 2iσ2 and [σ3, σ2] = −2iσ1. Then using the identities cos2(θ)− sin2(θ) = cos(2θ)
and 2 sin(θ) cos(θ) = sin(θ), we get

U†σ1U = σ1 cos(φ) + σ2 sin(φ) (15)

U†σ2U = −σ1 sin(φ) + σ2 cos(φ) (16)

Now plug in X:

X ′ = U†XU = U†(xσ1 + yσ2 + zσ3)U

= (x cos(φ)− y sin(φ))σ1 + (x sin(φ) + y cos(φ))σ2 + zσ3

So x′ = x cos(φ)−y sin(φ) and y′ = x sin(φ)+y cos(φ), exactly what we would expect for a rotation
about ẑ by an angle φ.

7 Quantum Mechanics and the Double Covering

Now for a striking fact!
As before, set U(φ) = eiφσ3/2 which, as we just checked, leads to a rotation by an angle φ around

ẑ. But notice:

U(2π) = ei2πσ3/2 = eiπσ3 =

(
eiπ 0
0 e−iπ

)
= −I (17)

So by the time φ has gone from 0 to 2π, U has only gone from I to −I! To reach I, φ needs to go
all the way to 4π - two “total rotations”.

Recall in section 3 that we showed SU(2) double-covered SO(3). This is the manifestation of
that. In this case, I and −I both map to the same rotation in SO(3), and in general, we’ll always
have U and −U mapping to the same rotation. More concretely

U(φ+ 2π) = ei(φ+2π)σ3/2 = eiπσ3eiφσ3/2 = −U(φ)
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Since φ and φ+2π are the same rotation in SO(3), these are two elements of SU(2) that correspond
to the same rotation.

All of this underlines (and relates back to) the mathematical statement that, while the Lie
algebras of SU(2) and SO(3) are isomorphic, making them locally work the same, the groups
themselves manifestly do not.

8 SU(2) and Tensors

SO(3) has special properties that SO(N) does not, in general, share. The situation is similar for
SU(2) and SU(N). These properties are best explored using tensor representations.

The tensors that furnish representations of SU(N) are precisely the traceless ones, notated
T i1i2...inj1j2...jm

. These should have definite symmetry properties under permutation of the upper and

lower indices. For SU(2), since εij and εij carry only two indices, we can in fact remove all of the
lower indices from said traceless tensors.

It’s easier to see this from a specific example; it easily generalizes. So consider the the traceless
tensor T ijkmn. Then using the construction

εpmεqnT ijkmn = T pqijk

we transform the lower indices into upper indices, just so! Thus we can get away with only consid-
ering traceless tensors with no lower indices.

But we can go further! In fact, it suffices to consider only tensors with the upper indices all
symmetrized under interchange. We will show this by induction.

Suppose the statement holds for tensors with fewer than four indices, and suppose T ijkl has no
specific symmetry under interchange of i and k. Then we can construct the tensors

Sijkl = T ijkl + T kjil

Aijkl = T ijkl − T kjil

εikA
ijkl is a tensor with two upper indices, which we need not worry about by our inductive

hypothesis. And of course, Sijkl is now symmetric on i and k.
Of course, you couldn’t do any of this with, say, SU(5). This simplicity is what makes SU(2)

special.
We can use this understanding to count the dimensions of representations. Take the represen-

tation furnished by T i1i2...im . Each il can take on the value 1 or 2, and the tensor is invariant
under the interchange of any two indices. So we just count: T 11...11, T 11...12, T 11...22, ... , T 12...22,
T 22...22. So the number of 2’s ranges from 0 to m, and thus there are m + 1 independent objects
(and thus the representation is m+ 1-dimensional). If we write m = 2t, t = 0, 1/2, 1, 3/2, ..., then it’s
2t+ 1-dimensional.

So irreducible representations of SU(2) are indexed by t, which is either an integer or half-
integer, such that the dimensions are 2t + 1. This is precisely what we expect from the local
isomorphism with SO(3), and in fact we could see this from our reflections in section 4. Good to
know everything is consistent.
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9 The Pseudoreality of SU(2)

Recall the purpose of upper and lower indices in tensor representations. For a tensor ψ, it’s necessary
to have ψi to stand in for ψi∗. However, in the preceding discussion we were able to transform away
all of the lower indices. It seems like ψi must be invariant under complex conjugation; ie, that it’s
real.

But this clearly can’t be the case! After all, the group elements of SU(2) in equation (14) are
explicitly complex.

To understand this, we develop the concept of “pseudoreal” representations. We say that if, for
a representation D(g),

D(g)∗ = SD(g)S−1 (18)

for all g ∈ G and for some similarity transformation S, then the representation is pseudoreal.
To show that the fundamental representation of SU(2) is pseudoreal, we will explicitly find

the S transformation. First, note that the fundamental representation is given, as always, by

D(g) = ei
~φ·~σ/2, and the conjugate representation is given by D(g)∗ = e−i

~φ·~σ∗/2.
Notice that the only Pauli matrix that’s at all complex is σ2. This suggests that σ2 should be

our attack vector (or rather, attack transformation). From our Pauli matrix identities,

σ2σ
∗
1σ2 = σ2σ1σ2 = −σ1σ2σ2 = −σ1

σ2σ
∗
3σ2 = σ2σ3σ2 = −σ3σ2σ2 = −σ3

σ2σ
∗
2σ2 = −σ2σ2σ2 = −σ2

Generalizing, we have σ2σ
∗
aσ2 = −σa. So,

σ2

(
ei
~φ·~σ/2

)∗
σ2 = σ2

 ∞∑
k=0

ik

k!

(
~φ · ~σ

2

)k∗σ2 = ei
~φ·~σ/2 (19)

Thus, we can choose S = S−1 = σ2, which proves that the fundamental representation of SU(2) is,
in fact, pseudoreal.

Note that since our requirements for S are simply that S†S = I and equation (18), S is only
determined up to a phase. If we instead use S = iσ2 =

(
0 −1
1 0

)
, we can see the connection between

S and the tensor approach: namely, S = εij , which connects ψi to ψi.

10 U(N) and SU(N)

Now that we’ve discussed a bit about SU(2), we can make a few statements about U(N), which is
an important group for physics in its own right.

The definition of U(N) is very similar to that of O(N): all N × N matrices satisfying U†U =
I. With O(N), the analogous condition leads to the fact that det

(
OTO

)
= det

(
OT
)

det(O) =
(det(O))2 = 1⇒ det(O) = ±1. With U(N) on the other hand, we get something slightly different:

det
(
U†U

)
= det

(
U†
)

det(U) = det(U)
∗

det(U) = |det(U)|2 = 1

which implies a continuum of possibilities: det(U) = eiα, 0 ≤ α < 2π. We pull out SU(N) with
the additional condition that det(U) = 1.
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U(N) also has another important subgroup: that of all matrices of the form Ieiα. Since this is
isomorphic to U(1), we label it as such (slightly abusing notation). We can use these subgroups to
better understand U(N).

First, notice that the intersection of SU(N) and U(1) is nontrivial. The matrices of the form
Ieiα/n are included in both subgroups (since det

(
Ieiα/n

)
=
(
eiα/n

)n
= 1. These are really just the

nth roots of unity, which is isomorphic to Zn. Again with a slight abuse of notation, since strictly
speaking Zn 6∈ U(n), but it will do.

The remainder of this section will prove that

U(N) ∼= SU(N)/ZN × U(1) (20)

and briefly discuss what this means in the context of Lie algebras.
We will prove this in two steps, by proving the following two isomorphisms:

SU(N)/ZN × U(1) ∼= SU(N)×U(1)/ZN
∼= U(1) (21)

which we will do using the First Isomorphism Theorem:

First Isomorphism Theorem. Let G and H be groups, and let ϕ : G→ H be a homomorphism.
Then

1. ker(ϕ) E G,

2. Im(ϕ) ≤ H, and

3. G/ker(ϕ) ∼= Im(ϕ)

Let’s prove the first isomorphism in (21) now, and then do the second.

Isomorphism 1. SU(N)×U(1)/ZN
∼= SU(N)/ZN × U(1)

Proof. Let ϕ : SU(N)×U(1)→ SU(N)/ZN×U(1) be a homomorphism, defined such that ϕ(S, eiα) =
(S, eiα), for S ∈ SO(N), α ∈ [0, 2π), S ∈ SU(N)/ZN . Note that this is only a homomorphism because
SU(N) is a normal subgroup of U(N).

ϕ is onto since ∀S ∈ SU(N)/ZN , it’s represented by one of its elements S ∈ SO(N). Thus, we
can always find at least one element (S, eiα) that maps to (S, eiα).

Furthermore, ker(ϕ) = {(S, 1) | S ∈ ZN}, which is exactly the definition of ZN × {1} ∼= ZN .
Thus, by the First Isomorphism Theorem, SU(N)×U(1)/Zn

∼= SU(N)/ZN × U(1).

Now, to conquer the second isomorphism in (21), we need the following lemma:

Lemma 1. Every U ∈ U(N) can be written U = eiα/NS, for some α ∈ [0, 2π) and some S ∈
SU(N).

Proof. Note that, since U ∈ U(N), det(U) = eiα for some α ∈ [0, 2π). So write U = eiα/NS, where
we let S = e−iα/NU . Clearly eiα/N ∈ U(1), so we just need to show S ∈ SU(N).

det(S) = det
(
e−iα/NU

)
= e−iα det(U) = 1, and

S†S = eiα/NU†e−iα/NU = I
So we’re done.

Finally we’re ready for the second isomorphism:
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Isomorphism 2. SU(N)×U(1)/ZN
∼= U(1)

Proof. Let ψ : SU(N)× U(1)→ U(N) be a homomorphism, defined such that ψ(S, eiα) = Seiα.
By lemma (1), every U ∈ U(N) can be written as eiα/NS for some S ∈ SU(N). Thus, for any

U ∈ U(N), there exists an element of SO(N) × U(1) such that ψ(S, eiα/N ) = eiα/NS = U . Thus,
ψ is onto.

Finally, ker(ψ) = {(Ie−iα, eiα)}∩SO(N)×U(1) = {(Ie−iα/N , eiα/N )}, which can be seen to be
isomorphic to ZN .

Thus, by the First Isomorphism Theorem, SU(N)×U(1)/ZN
∼= U(1).

At the level of the Lie algebra, we can in fact make the further simplification that U(N) ∼=
SU(N) × U(1). While this isn’t strictly a true statement, there doesn’t end up being a practical
distinction between SU(N) and SU(N)/ZN when talking about their Lie algebras.

To see why, write an element of U(N) as U = eiH ≈ I + iH, where H is some matrix. Then we
can see that H must be Hermitian: U†U ≈ (I − iH)(I + iH) ≈ I − iH† + iH = I, which means
H† = H. This ends up being the only restriction on H (unlike with SU(N), where we can find
that tr{H} = 0). Thus, the generators of the Lie algebra of U(N) are the generators of the group
of N ×N Hermitian matrices and the identity I. Thus, the ZN part doesn’t need to be “removed”.
This is a very rough way of seeing it.

Ultimately, for typical applications in physics, the global properties of these sorts of groups
don’t matter at all. The theory of the strong, weak, and electromagnetic interactions is based on
the group SU(3)× SU(2)× U(1). For this group, we really only need worry about its Lie algebra
— its local, not global, properties. Thus, the distinction doesn’t end up being necessary, and we
can use it in its simpler form.
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