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Abstract

The purpose of this paper is to provide in a written format the topics

covered in the Kapitza Lecture held on October 26, 2019. As such, it will

follow closely to the material covered in chapter IV.1 of the book Group

Theory in a Nutshell for Physicists for which the lecture was based on.

Important topics include: how to construct irreducible representations of

the special orthogonal group of dimension N , an explanation of dual ten-

sors and their significance in certain groups, formulation and application

of the anti-symmetry symbol.

1 SO(N) and General Concepts

An N×N matrix R is a member of the special orthogonal rotation group SO(N)

if and only if (1) and (2) are true concerning R:

RTR = 1 (1)

det(R) = 1 (2)

Irreducible representations in the N th dimension can themselves be repre-

sented as a vector. As such, it is important to define how vectors behave under

rotation. If we consider a vector V being rotated to V ′ then we say for i, j

ranging from 1 to N, the components of V transform as follows:

V i → V ′i = RijV j (3)

In general, a vector will not work. Namely, if we try to create irreducible

representations of dimensions higher than N , we will require a more complicated

object. This object is called a tensor (essentially a generalized matrix). For a
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tensor T , we will treat its definition as an object that transforms under rotation

in the following way:

T ij = T ′ij = RikRjlT kl (4)

where i, j range from 1 to N and l, k are summation indices ranging from 1 to

N. Although in general tensors can have as many indices, for most purposes in

physics, tensors with two indices (called a rank 2 tensor to indicate this) and

lower are used. Rank 1 tensors are equivalent to vectors and rank 0 tensors are

equivalent to scalars.

2 Representation Theory

A matrix representation of a group G means that each element of the group

has a corresponding matrix that preserves the group operation through matrix

multiplication. Mathematically, for an N ×N matrix representation of G with

group elements g1, g2 this looks like:

M(g1)M(g2) = M(g1g2) (5)

where M(gi) is the M ×M matrix associated with the group element gi. If

we are dealing with a rank 2 tensor in 3 dimensions, we can represent the 9

components of the tensor in a 9× 1 matrix as so:

T =


T 11

T 12

...

T 33


For a 3 × 3 matrix R associated with a rotation, we can formulate a 9 × 9

matrix that can act on our column matrix (above). If we think about the resul-

tant matrix we will see that, for each new T ′ij , it will be a linear combination

of all the components in the original column matrix. However, all the objects

in the column matrix were arbitrary values so the real thing of interest is our

9× 9 rotation matrix that takes a 3× 3 matrix (i.e. our tensor) and transforms

it. Thinking about it this way makes it clear that this 9 × 9 matrix is the

representation we wanted. To see this mathematically, we can compare

T ij → T ′′ij = Rik
2 R

jl
2 T
′kl = Rik

2 R
km
1 Rjl

2 R
ln
1 T

mn = (R2R1)im(R2R1)jnTmn

(6)

to equation (5) to see explicitly that M(R2)M(R1) = M(R2R1) i.e. this meets

our definition of a 9× 9 matrix representation of the rotations in SO(3).
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Determining Irreducible Representations When considering whether or

not a representation is irreducible, we must try to find the collection of elements

of the representation that can only be transformed into one another (kind of

like a subgroup). The physicist way to do this is to first determine the common

collections that almost always appear. One common collection of such elements

is the anti-symmetric tensors. Typically denoted A, an anti-symmetric tensor

is a tensor whose constituent parts can be written as:

Aij = T ij − T ji (7)

For such a tensor, it is simple to verify that Aij = −Aji and under rotation

A′ij = −A′ji. So we can see that our anti-symmetric tensors only can be turned

into other anti-symmetric tensors. If we are interested in the number of possible

unique constituent parts for a given tensor A, simple combinatorics lead us to

the conclusion this number is, for a tensor in dimension N , N(N−1)
2 .

The next common collection is the symmetric tensors, a counterpart to the

anti-symmetric tensors. Typically these are denoted S and have constituent

parts that can be written as:

Sij = T ij + T ji (8)

from which it is evident that Sij = Sji and hence S′ij = S′ji. For a dimension

N , the number of possible unique constituent parts is N(N−1)
2 +N .

Using these facts, we can see that for SO(3) we can break our 9×9 matrices

into 3×3 anti-symmetric matrices and 6×6 symmetric matrices. Given that the

qualities of symmentry and anti-symmetry for a tensor are mutually exclusive

and 6 + 3 = 9, we can conclude that we aren’t missing any other collections.1

However, it turns out that the symmetric tensor collection is not irreducible. For

a given rotation, the diagonal elements of S are sent to one another, meaning

that the trace remains unaltered. As such, symmetric matrices can be broken

down into traceless symmetric matrices and diagonal matrices with a certain

trace. It is clear that the diagonal matrices of a given trace will have a dimen-

sionality of 1, so we find that in general the traceless symmetric matrices will

be of dimension N(N−1)
2 +N − 1. For SO(3), this means that our 9× 9 matrix

representation can be decomposed into 1× 1, 3× 3, and 5× 5 matrices.

Dimensions of the SO(3) Irreducible Representations Suppose we are

interested in counting the total number of independent components (i.e. dimen-

sionality) of a symmetric tensor representation of SO(3) with N indices (e.g.

Si1i2...iN ). Then each index can only take one of three values and, since it is

1For a general N with a rank-2 tensor representation (of dimension N2), since
N(N−1)

2
+

N(N−1)
2

+N = N2, this line of reasoning will hold in general for N×N matrix representations.
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symmetric, only the total number of each value matters (e.g. Sklmklmklm =

Skkklllmmm). The total number of possibly unique tensor components is:

(N + 1)(N + 2)

2
(9)

Considering, however, that we are interested only in traceless symmetric tensors,

we will say that δi1i2Si1i2...iN = 0. This determines two of the indices, leaving

us with N − 2 undetermined indices. Using (9), we can see that this leaves

us with N(N−1)
2 components for traceless symmetric matrices. By assuming

tracelessness, we are imposing this number of conditions meaning that we must

remove this number from our total number of possibly unique components.

This gives us (N+1)(N+2)
2 − N(N−1)

2 = 2N + 1, which is our dimensionality of

the irreducible representation under consideration.

3 Anti-symmetric Symbol and Kronecker Delta

Under Rotation

Understanding how the anti-symmetric symbol and kronecker delta behave un-

der rotation will provide much utility throughout the rest of this paper. The

primary thing to note about both is that they are invariant under rotation.

Kronecker Delta To see why the kronecker delta is invariant, we can refer

explicitly to the invariance of the trace under rotation, a fact that we glossed

over in the last section. If we consider a transformation on an element of the

trace of a symmetric rank 2 tensor, we have:

Sii → S′ii = RikRilSkl = (RT )kiRilSkl (10)

Referring to (1), if we are working in SO(N), then we can say

(RT )kiRilSkl = (R−1)kiRilSkl = δklSkl = Skk (11)

Considering that we can write S′ii = δijS′ij and Skk = δklSkl then we see

that the preservation of the trace as shown in (10) and (11) gives us the fact

that a kronecker delta under rotation will merely be sent to another kronecker

delta i.e. it is also invariant.

Anti-symmetric Symbol The anti-symmetric symbol in N-dimensions is de-

noted with an ε containing N indices and obeys (12) and (13):

ε...i...j... = −ε...j...i... (12)
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ε12...N = 1 (13)

For an arbitrary matrix M , we can express the determinant using the anti-

symmetric symbol as follows:

εij...ndet(M) = M ipM jq...Mnmεpq...m (14)

if we consider that in SO(N) we are dealing with rotation matrices R that have

a determinant of 1, then we can see that the left hand side of (14) is just an

anti-symmetric symbol. So, similar to the kronecker delta, we find that anti-

symmetric symbols are transformed under rotation into other anti-symmetric

symbols.

4 Dual Tensors

For an anti-symmetric tensor A with m indices, we can multiply it with an anti-

symmetric symbol with n indices and (assuming n ≥ m) this yields another

anti-symmetric tensor scaled by n with n−m indices, typically denoted B. In

this case, A and B are considered ”dual” to each other and transform like each

other.

For a rank 2 tensor in SO(3), we can see that for the anti-symmetric 3 × 3

matrices, these are dual to a rank 1 pseudotensor ( 1
2ε

ijkAij = Bk). Since rank

1 tensors are just vectors, this tells us that our 3 dimensional irreducible repre-

sentation transforms like a vector i.e. it is equivalent to a vector representation

(like the Euler vectors). This fact has particular consequences, principally that

we only have to deal with the traceless symmetric part of a tensor. It turns

out that when we decompose a tensor T of N indices into its symmetric and

anti-symmetric parts (denoted T {ij}...n and T [ij]...n respectively for the pair of

indices i, j), the anti-symmetric part will always behave like an anti-symmetric

tensor of N − 1 indices. Applying this observation N times allows us to treat

any anti-symmetric part of a tensor as if it were a rank 1 tensor, leaving us with

the symmetric component as the only part of real consequence. Evidently, we

can decompose the symmetric tensor again into a traceless part and the tensor

used to subtract out the trace. As we covered in section 2, the trace does not

transform so the traceless symmetric part of the tensor ends up being the only

part of interest.

Self-Dual and Antiself-Dual In general for SO(2N), we can define a tensor

B dual to an anti-symmetric tensor A carrying N indices as follows:

Bi1i2...iN =
1

N !
AiN+1iN+2...i2N (15)
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Then for such tensors A and B over the same N indices, we can define a self-

dual tensor (denoted T+) as A + B and an antiself-dual tensor (denoted T−)

as A − B. The significance of these self-dual and antiself-dual tensors is that

they correspond to irreducible representations. Considering that in SO(2N) an

anti-symmetric matrix A with N indices will have (2N)!
(N !)2 components, we can see

that each self-dual and antiself-dual tensor will each have half this number of

components (recall this is interchangeable with dimensionality for tensors).

5 Contraction of Indices

This section is merely to provide information on a convention used in the book

which may be important to understanding the content of other papers based off

of later sections of the book.

For a tensor where two indices are equal (e.g. T ijk...jl), it will transform the

same as a tensor with the indices removed (e.g. T ik...l). To convince oneself,

merely consider that RjqRjp = δqp. So in a rotation of a tensor with two

equal indices (think of one represented similar to in (4)), the two rotational

components for each of the indices can be combined into a kronecker delta,

which essentially functions as a 1 since we are summing over the indices. Since

these rotational components are removed, the rotation looks the same as if we

were considering the rotation of a tensor without them to begin with.
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