PHY100 — The Nature of the Physical World

Lecture 16 Particle Physics

Arán García-Bellido

News

- Exam 2: Wednesday March 31 (next week!)
 - Hoyt at 2 pm
 - Bring a calculator
 - I will provide a formula sheet
 - Material: lectures 8 15 (up to nuclear physics, life of a star), recitations 5-7
- I want to meet with all groups before April 9.
 - Please contact me to set up a meeting during the week after the exam

Last time

- Gravity pulls in, heat (radiation pressure) pushes out
- "Thermonuclear" fusion reactions in core
- Starts with H→He, then He→C,O (star then becomes red giant), small stars then become white dwarfs
- If star is very massive, it can synthesize up to ⁵⁶Fe
- Then explode into neutron star or black hole
- Heavier elements are formed in SuperNovae
- Next generation of stars form with heavier elements present from previous stars
 PHY100

Recap: big picture in PHY100

- We took the theory of gravity from the surface of the Earth and showed it applied to the solar system
- Then we looked at relativity
 - Objects moving fast must obey: speed of light is constant
 - Time is no longer fixed, but relative: spacetime
- Then we got introspective...
 - Quantum theory explained the atom, light, and the very small
 - No longer deterministic Universe: probability
 - Heisenberg: $\Delta x \Delta p \sim h$ ($\Delta E \Delta t \sim h$): cannot know things with arbitrary precision
 - Nucleus needed the addition of a "new force"

Our quest

- Want to understand the "dynamics" of a theory, not just the "kinematics"
 - "Why" things move, not just "how"
 - Kinematics describe movement, Dynamics describe general forces and laws
- Want to understand the structure of matter at the smallest scales
 - Are there ultimate constituents of matter?
 - What lies beyond the nucleus?
 - What makes the matter we see in the Universe?
 - How do they interact?
 - What forces exist in Nature?
 - What is a force?

Forces in Nature

- Gravity: attractive force between particles with mass or energy
 - Iong range but very weak
 - holds planets, galaxies, etc. together
 - makes road runner happy

- Electromagnetism: attractive or repulsive force between particles with charge
 - Iong range, stronger than gravity
 - holds atoms together
 - keeps matter from collapsing under the force of gravity: shockingly important!

Forces in Nature: the very small

Strong Nuclear Force

- the nucleus of an atom contains lots of protons that all repel each other electromagnetically
- the strong force binds them
- it's a force that is short-range (10⁻¹⁵m) because it is so strong!

Weak Nuclear Force

- its exciting role is to, well, make β-decays
- Not very exciting.... Who cares? We all do!
- Fusion in the sun requires that a proton turn into a neutron. Inverse of β-decay!
- Without β-decay, we are stuck with a sun that doesn't shine...
 PHY100

Four forces explain everything!

Force	Source	Range	Strength
Gravitation	Mass	Infinite	10 ⁻³⁹
Weak nuclear	Weak charge	10 ⁻¹⁸ m	10 ⁻⁵
Electromagnetism	Electric charge	Infinite	10-2
Strong nuclear	Color charge	10 ⁻¹⁵ m	1

But what is our dynamical quantum theory of the atom?

Theory of force carriers

- All 4 forces above are "mediated" by an exchange of force carrying particles
- Symbolically: Feynman diagram
- The world is made of two kinds of particles:
 - Matter particles
 - Force carrying particles

How does this work?Imagine a game of basketball on ice....

 By exchanging basketballs, players also exchange momentum. Definition of a force!

• $p = mv \Rightarrow \Delta p = m\Delta v$ But: $a = \Delta v/\Delta t$

•
$$F = ma \Rightarrow F = \Delta p / \Delta t$$

This is Quantum Electrodynamics!

Yicky name...

- But all it means is a quantum...
 - Think uncertainty principle, wave/particle duality

… electro…

- Electricity and magnetism. Like charges repel, etc.
- ...dynamical theory
 - Finally an explanation for WHY!

Developed by Richard Feynman and Julian Schwinger 1940's

Electromagnetism: Massless photon Range: infinite **PHY100**

Electrostatic repulsion of two e

Now might exchange many photons (far apart)

The photons are a "quantum fluctuation" allowed by the uncertainty principle...

Virtual particles are the quanta that describe the fields of fundamental forces e^+

Einstein: $E = mc^2$ Heisenberg: $\Delta E \Delta t \sim h$

Seeing structure

Imagine you fell in a dark cave and your hear ominous snorting noises. Is it a bear?

 Easier to see a bear with marble-sized probes than basketball-sized probes

Microscopes and beyond

- So probes must be small if we want to see small structures.
- Use wave-particle duality to think of the "size" as the wavelength. Long wavelength waves can't be scattered by small things...
 - deBroglie says: $\lambda = h / mv$
 - Visible light limits microscopes $\lambda \sim 3x10^{-7}m$
 - Electron microscope can have smaller wavelength
- But electron microscopy doesn't work for subatomic structure!
 - Need smaller electron wavelength
 - Which implies higher speed or momentum
- Modern particle physics is stuck using large accelerators!

How we see things

 Different technology for different scales
 Accelerators probe the smallest structure PHY100

FERMILAB'S ACCELERATOR CHAIN

A small bottle of hydrogen is the source of protons to be accelerated.

Ions leaving here have 750 keV of kinetic energy.

FERMILAB'S ACCELERATOR CHAIN

...and 8 GeV here

protons leaving here have 400 MeV of kinetic energy...

FERMILAB'S ACCELERATOR CHAIN

protons leaving here have 120 GeV of kinetic energy

protons accelerated to
~980 GeV of kinetic energy

Accelerators: Fermilab

So the whole thing sits in a site the size of a moderate Chicago suburb... no problem!

But wait, there's bigger and better

Overall view of the LHC experiments.

CERN's LHC

CMS detector: March 2009

Relax, Earth will survive it!

THE SMALLEST BLACK HOLE YET DISCOVERED BY HUMANS LOCATED AT BINARY XTE J1650-500.

OPTRIGHT@2008 J.D. "Illind" Frazer HTTP://WWW.USERFRIENDLY.ORG/

Remember Rutherford

Rutherford's alpha particle had a mass of 6.7x10⁻²⁷kg and a speed of about 1x10⁷ m/s

- So the wavelength is about $\lambda = h / mv = 10^{-14} m$
 - Good for resolving structure inside 10⁻¹⁰ m atoms
 - Lousy for resolving structure inside 10⁻¹⁴ m nucleus
- Need higher momentum (smaller wavelength)

Inside protons/neutrons

- Discovered smaller structure inside protons at Stanford Linear Accelerator
- Just as with Rutherford, essentially found unexpected backward scattering
- There are "quarks" inside the proton, bound together by the strong force!

proton

- u = up quark (q=+2/3e)
- d = down quark (q=-1/3e)

Quarks come in colors (red, green and blue) which are "strongforce" charges.... nothing to do with real colors!

Standard Model

ELEMENTARY

PARTICLES

dictron scitting-

COMPANY INCOMENTS.

Three Generations of Matter

Three "families" of matter + forces

- Ordinary matter is made only with 1st family: p=uud ; n=udd ; e
- W boson can convert u into d, or e into v (mix different families)
- Gluons are responsible for the strong interaction
- Particles with "color" cannot be isolated: bound in hadrons:
- **Baryons**: qqq, like p and n
- Mesons: $q\overline{q}$, like K=us or $\overline{u}s$; $\pi=ud$ or $\overline{u}d$

Summary

Links

- http://www.interactions.org
- http://particleadventure.org
- http://pdg.lbl.gov
- http://public.web.cern.ch/public/
- http://www.fnal.gov/
- http://www.er.doe.gov/production/henp/np/index.html
- http://www.science.doe.gov/hep/index.shtml