PHY100 — Recitation #7

1) Determine the nuclear product remaining after:

- a) β^{-} decay of ²¹¹Pb
- b) α decay of ²⁴⁷Cm
- c) γ decay of ¹³¹I
- 2) Which is safer overall: a coal power plant or a nuclear power plant?

What do you mean by "safe"?

What are all the factors that you should consider?

3) Sometimes radioactive isotopes decay to other isotopes that are also radioactive... which decay to other isotopes that are radioactive, etc... This is called a "decay series". Here is the beginning of one such series:

$${}^{238}U \xrightarrow{\alpha} A \xrightarrow{\beta} B \xrightarrow{\gamma} C \xrightarrow{\alpha} D$$

What are nuclei A, B, C, D? (Give Z, A and symbol)

4) A small sample of charcoal from an archeological site is measured to have 64 times less ¹⁴C than living material. How long ago was the wood burnt? $T_{1/2}$ (¹⁴C) = 5730 years.

Radiation such as α , β , and γ rays are potentially harmful to living things because these particles can ionize (rip apart) the molecules in human tissue, killing cells and causing long-term DNA damage. If the radiation dose is high enough the cell damage can kill the living thing. If the damage is not that severe, the DNA damage can lead to cancer and/or birth defects many years later.

Only particles that are charged can cause ionizing damage as they pass through tissue. The larger the electrical charge of the ionizing radiation, the heavier is the ionizing damage and the shorter the range of the radiation in the material. γ rays pass harmlessly through materials except when they pair-produce into an electron-positron pair: $\gamma \rightarrow e^- + e^+$ The positron (e⁺) is the anti-particle of the electron: it shares all its characteristics, except its charge is +1, instead of -1.

So γ rays have a long penetration power, but eventually they interact with matter and decay into an electron-positron pair.

 α particles can be stopped by a sheet of paper

 β particles can be stopped by the outer layers of the skin

 γ rays can pass through living tissue and other materials, they are stopped by a thick layer of lead.

- 5) If I told you that you had to spend the night sleeping in a bed laced with an α source, a β source, or a γ source... which would you choose? Why? Assume all sources would have the same half-life.
- 6) Suppose you had three stupid friends:

Friend 1 drinks a glass of water laced with an α source

Friend 2 drinks a glass of water laced with a β source

Friend 3 drinks a glass of water laced with a γ source

Assume similar half-lifes for the materials in the drinks. Which friend should you be most worried about? Why?

In quantum mechanics we usually cannot predict the outcome of a single measurement, but we can often predict the correct average of many measurements.

DO THESE TWO EXCERSISES IN GROUPS OF 2 TO 4

- 7) One person (the experimentalist) should toss a die 48 times keeping track of the values on top face of the die for each toss. A different person (the oracle) should move where they cannot see the die being thrown and they should predict the value seen for each of the 48 throws and record their predictions.
 - a) How often does the oracle correctly predict what the experimentalist measures?
 - b) How often would you expect the oracle to get it right just due to random luck?
 - c) Does it matter whether the predictions are made after each throw, or all 48 in advance?
 - d) How much variation is there among all the oracles in your section in terms of the number of correct predictions they make?
 - e) What is the average value of all the measurements made by the experimentalists?
 - f) What would you expect to find for the average value of all 48 measurements?
- 8) Throw two dice sequentially 50 times. If the 1st die comes up as a one or a two, record the value of the second die. Compare the distribution and average values of your measurements with what you observed in the previous exercise. What do you see from this comparison?

Now repeat the exercise... but instead of throwing the second die, take as your measured value the number on the bottom face of the first die (remember only take those where the 1st die comes up one or two). Compare the distribution and average of your measurements with what you saw earlier.

Can you explain the difference you see?

How might this situation be similar to what is meant by "quantum entanglement"?

hydrogen 1																	[helium 2
H																		He
1.0079				Key:														4.0026
lithium 3	beryllium 4	element name atomic number										boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10	
Li	Be	symbol										В	С	Ν	0	F	Ne	
6.941	9.0122	atomic weight (mean relative mass)											10.811	12.011	14.007	15.999	18.998	20.180
sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon	
11	12												13	14	15	16	17	18
Na	Mg													Si	Ρ	S	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
																-	33	
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium	F7 70	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TL	Pb	Bi	Po	At	Rn
132.91	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubalum	183.84	186.21 hobdum	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97	200.59	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
francium 87	88	89-102	103	104	dubnium 105	seaborgium 106	bohrium 107	108	109	110	unununium 111	ununbium 112		114				
		**	_				-											
Fr	Ra		Lr	Rf	Db	Sg	Bh	Hs	Mt	Jun	Uuu	auu		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*lanthanoids	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**actinoids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]