

All DØ meeting

March 30, 2007

Moriond EW summary

42nd Rencontres de Moriond Electroweak Interactions and Unified Theories March 10-17 200, La Thuile, Italy http://indico.in2p3.fr/conferenceDisplay.py?confld=151

- Goals of the conference
- W, Z, top and H from the Tevatron
- Evidence for D mixing from Belle and Babar
- CKM angles and sides
- Neutrinos: beam, reactor, atmospheric, $0\nu\beta\beta$
- High energy astronomy: photons, CR, neutrinos
- DM searches and precision measurements

Arán García-Bellido

Introduction

- Purposes of the conference:
 - Bring together theorists and experimentalists in beautiful and inspiring surroundings to discuss recent findings
 - Invite young scientists (~80% below 35 years-old)
- 138 participants, with 94 talks (11 in Young Scientist Forum)
- Excellent talks from the youngest participants!
- Dense program: 3 hours in the morning, 4 hours break, 3 hours in the evening
- Theorists and experimentalists talks mingled
- I will not cover all topics here: I have made a biased selection!
- Largely following the EW summary by B. Mansoulie
- Some updated plots and numbers are from Moriond QCD
- Big surprise was D-Dbar mixing evidence by Belle & BaBar
 Arán García-Bellido
 Moriond EW summary
 2

Skiing was great! <u>From glorious "off-piste"</u>... to embarrassing falls

But all with beautiful views of Mont Blanc, Cervino, etc...

m_w and m_t

World average decreases by 6 MeV Δm_w decreases from 29 to 25 MeV

World average decreases by 0.5 GeV Δm_{t} is now at 1.1%!

Arán García-Bellido

Electroweak fits

Time evolution

Evolution of Mtop and Dmtop

From Gigi Rolandi

Arán García-Bellido

Evolution of MW and DMW

More electroweak

Z→bb sample

- Measure specific b-JES
 - Help top mass measurement
- Improve b-jet energy resolution
 - Help low Higgs mass searches
- Background from data + TRF
- Applicability of b-JES to other analyses under study

 W_{γ} amplitude zero

Measure $\Delta \eta$ between γ and ℓ Interferences between leading diagrams induce dip in $Q\Delta \eta$

Good agreement with SM

Higgs

Analysis	CDF limit (1fb ⁻¹)	D0 limit (1fb ⁻¹)	हु ⁴⁰ Tevatron Run II Preliminary
	factor above SM	factor above SM	₩ 35
	observed (expected)	observed (expected)	
ZH → vv bb @ 115			J 30 30 Tevatron Expected
Technique: M _{jj}	16 (15)	40 (34)*	
WH → Iv bb @ 115			20
Technique: M _{ii}	26 (17)	★ 10 (9)	
Technique: MÉ		★ 13 (10)	
ZH → IIbb @ 115			
Technique: NN2D	★ 16 (16)	33 (34)	5
H → WW → lvlv @ 160			00 110 120 130 140 150 160 170 180 190 200
Technique: AΦ (LI)	9 (6)	4 (5)	The above limits do not include $m_{\rm H}$ (GeV/c ⁻)
	* 35 (5)		– new CDF ∠H->IIDD ▼
rechnique: ME	~ 3.5 (5)		– new CDF H->WW results 🔸
			– new D0 WH results ★

New results scaling much better than 1/sqrt(L)

Arán García-Bellido

MSSM Higgs $\phi \rightarrow \tau \tau$

- **CDF** search in (e,mu)+ τ_{had} and e+mu channels
- **DØ** search in mu+ τ_{had} channel
- ► CDF see <2 σ excess in m_{ϕ} ~ 160GeV (σ xBR~2pb, tan β ~50)
- DØ has deficit there
- CDF search in dilepton channel is not conclusive

Evidence for D-D mixing: Intro

intermediate down-type

SM: *b* quark contribution

 $\Delta M \sim [SU(3) \text{ breaking}]^2$

 ΔM dominated by light q loops

small in SM: NP

long

dis-

is negligible due to V_{ub}

B mixing

quarks

able

grangian

intermediate up-type

SM: t quark contribu-

 $\Delta M \propto m_t^2$ and size-

described by local La-

large in SM

tion is dominant

D mixing

quarks

sensitive to

tance QCD

$\frac{\partial}{\partial t} \left(\begin{array}{c} D^0 \\ \bar{D}^0 \end{array} \right) = -i \left(M \right)$	$T - i\frac{\Gamma}{2} \left(\begin{array}{c} D^0 \\ \bar{D}^0 \end{array} \right)$
$x \equiv \frac{\Delta M}{\Gamma} = \frac{M_2 - M_1}{\Gamma},$	$y \equiv \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_2 - \Gamma_1}{\Gamma}$

x and y are similar and small o(10⁻³) in the SM

Arán García-Bellido

Experimentally

Select sample of $D^{*\pm} \rightarrow \pi^{\pm}{}_{s}D^{0}$. Use $\pi^{\pm}{}_{s}$ to tag the event

Right sign sample: $D^0 \rightarrow K^-\pi^+$ (+cc)

Wrong sign sample: $D^0 \rightarrow K^+\pi^-$ (+cc) has DCS and mixing+CF

Right sign sample gives D^o lifetime and resolution model
 Mixing is any deviation from this in the wrong sign sample

$$\Gamma(D^{0}(t) \to K^{+}\pi^{-}) \propto e^{-\Gamma t} \begin{bmatrix} R_{D} + \sqrt{R_{D}} y'(\Gamma t) + \frac{x'^{2} + y'^{2}}{4} (\Gamma t)^{2} \end{bmatrix} \begin{bmatrix} \mathsf{R}_{\mathsf{D}} \sim \tan^{4}\theta_{\mathsf{C}} \sim 0.3\% \\ (\mathsf{DCS/CF rate}) \end{bmatrix}$$

 $x' = x \cos \delta + y \sin \delta, \quad y' = -x \sin \delta + y \cos \delta$

 δ strong phase between DCS and CF amplitudes → Measure x¹² and y'

Arán García-Bellido

Results: evidence for mixing

- No hint of new physics in D mixing: $x \sim y$
- No indication of CP violation yet
- D is too light to be treated as heavy and too heavy to be treated as light: so new theory predictions are not expected soon
- Test of non-perturbative QCD

Arán García-Bellido

Consistency

CKM angles of CP violation $\beta (\phi_1)$ BaBar + Belle

- $\sin 2\beta = 0.678 \pm 0.026$ from J/ ψ K_s
- Belle CPV in $B \rightarrow D^+D^-$ at 4σ (not confirmed by BaBar)
- cos2β > 0 from different approaches
 First measurement! Standard solution favored
 β=(21.3±1.0)°
- Hints of difference between penguin modes and charmless (cc)K decays persist
- $\mathbf{r} \alpha (\phi_2)$ BaBar + Belle
 - $\mathbf{B} \rightarrow \pi \pi$, $\rho \rho$, $\rho^+ \pi^-$, $\mathbf{a_1^+} \pi^-$
 - $B^0 \rightarrow \rho^0 \pi^0$ Dalitz
 - $\alpha = (93.5^{+10.8})^{\circ}$
- ▶ γ (ϕ_3) BaBar + Belle

- $B^{\pm} \rightarrow DK^{\pm}$, $D^{*}K^{\pm}$, $DK^{*\pm}$: $\gamma = 53 \pm 18(stat) \pm 3(sys) \pm 9(model)$
- $B^{\pm} \rightarrow DK^{\pm}$, $D^{*}K^{\pm}$: $\gamma = 92 \pm 41(\text{stat}) \pm 11(\text{sys}) \pm 12(\text{model})$
- $\gamma = (77 \pm 31)^{\circ}$
- Arán García-Bellido

CKM sides

V_{ub} from BF(B \rightarrow X_u $\ell\nu$) in excl. decays (8%expt,15%theory) and incl. decays (15%, 5%)

V_{cb} measured with 2% accuracy from fit of ℓ moments in B \rightarrow X_c $\ell\nu$

 $V_{ub} = (4.1 \pm 0.5)10^{-3}$ $V_{cb} = (41.5 \pm 0.5)10^{-3}$ $V_{tb} > 0.68 @ 95\%$ CL

Belle&Babar V_{td}/V_{ts} in BF(B $\rightarrow \rho/\omega\gamma$)/BF(B $\rightarrow K^*\gamma$) agrees with CDF value from B_s mixing

 $\left|\frac{V_{td}}{V_{ts}}\right|_{\rho/\omega\gamma} = 0.202 \underbrace{+0.017}_{-0.016} \pm \underbrace{0.015}_{7.4\%} \qquad \left|\frac{V_{td}}{V_{ts}}\right|_{\Delta m_d/\Delta m_s} = 0.2060 \pm 0.0007 \overset{+0.0081}_{-0.0060}$

• Overall consistency (M. Neubert)

- $\sin 2\beta$ from $B \rightarrow J/\psi K_s \sim 0.68 \pm 0.03$
- $\sin 2\beta$ from penguins $B \rightarrow \Phi K_s \sim 0.50 \pm 0.06$
- 2.6 σ deviation
- $\sin 2\beta$ from V_{ub} and V_{td} discrepancy at 2.9 σ
- Need for low energy experiments (B, K, g-2, v, EDM) to complement the high energy frontier

Arán García-Bellido

Neutrinos

▶ HARP (p_{heam} ~1.5-15 GeV) and MIPP (p_{heam} ~120 GeV, $p_{sec, beam}$ ~ 5-85 GeV)

- Neutrino fluxes for K2K, MiniBooNE, hadron production for NuMI-Minos
- π/K yields for targets in v factories and Super-beams
- HARP results in use (K2K, MiniBooNe), MIPP results will appear in the summer
- \blacktriangleright K2K: 4.3 σ evidence
 - Final results: 112 obs. events
 - 158±9 exp. w/o oscillations
- T2K: first beam in Apr'09
 - Off axis scheme 295km: search for $v_{\mu} \rightarrow v_{e}$
- SuperK: running since last summer
- SuperK \rightarrow Gadzooks!
 - Proposal to add 100 tons of gadolinium (GdCl₃)

 $\overline{v}_e + p \rightarrow e^+ + n$

- 5k evt/y from reactors \rightarrow x10 better Δm_{12}^2
- Discover diffuse SN ν background ~5 evt/y Arán García-Bellido Moriond EW summary

Physics run: 1999-2004

$K2K \rightarrow T2K$

Precise measurement of $\Delta m^2_{23}/\theta_{23}$ T2K 5x10²¹POT K2K/Super-K (~5yr full intensity)

Arán García-Bellido

More accelerator neutrinos

- **NUMI-MINOS:** test $v_{\mu} \rightarrow v_{\tau}$ osc. in
 - 735km flight from near/far detectors
 - Results from 1st year: 1.27 10²⁰ pot
 - Exclude no-disappearance at 6.2 σ (rate only)
 - Consistent with other experiments

 $|\Delta m^2_{32}| = 2.74 + 0.44_{-0.26}$ (stat.+syst.) x 10⁻³ eV²

 $sin^2 2\theta_{23} = 1.00_{-0.13}$ (stat.+syst.)

CNGS-Opera

- Beam commissioned to nominal p/spill in 2006 \rightarrow 10¹⁹ pot by end of 2007?
- First beam-v events recorded in Opera!
- 1k emulsion bricks installed \rightarrow 100k fall '07

MiniBooNE: confirm/refute LSND

- $v_{\mu} \rightarrow v_{e}$ osc. with similar L/E to LSND
- Timing and ℓ ID are crucial in evt. reco.
- Blind analysis of v_e appearance
- Several difficult backgrounds
- No results yet! Stay tuned

Arán García-Bellido

Neutrinos from reactor, and atm Reactor neutrinos

- Sensitive to θ_{13} and complementary to beams: no CP or matter effects
- Inverse β reaction: $\nu + p \rightarrow n[delay] + e^+[prompt]$
- Double CHOOZ (end 2007): near and far (1km) detectors to cancel flux systematics
 - Gd detectors (n-Gd capture ~ 30μ s)
 - Reach of $\sin^2\theta_{13}$ to 0.02 in 3y

Atmospheric

Reactor and beam data gives no info on:

- Mass hierarchy (sign of Δm_{31}^2)
- "Octant" from 2 sols. of θ_{23} (sign of θ_{23} - $\pi/4$)
- CP phase
- Future exps. on atm. v will provide complementary information to man-made v

Arán García-Bellido

Neutrinoless Double β decay

- **Determine Majorana nature of** v
 - Nuclear matrix elements calculations disagree
 - Shell model vs QRPA now closer (x2 difference)
 - More theoretical efforts needed
- Experimental results
 - Need different isotopes (experiments)
 - Heidelberg-Moscow (⁷⁶Ge, 10kg, 71.7 kg year): debated evidence at 4*o*
 - Nemo3 (10kg + tracking):
 - $T_{\frac{1}{2}}(100 \text{ Mo})>4.6 \ 10^{23} \text{ y} \Rightarrow m_{y}<0.66-2.81 \text{ eV}$
 - Cuoricino (TeO₂ bolometers, 10kg)
 - $T_{\frac{1}{2}}(^{130}\text{Te}) > 2.4 \ 10^{24} \text{ y} \Rightarrow m_{y} < 0.18 0.94 \text{eV}$
- Future experiments
 - Gerda (⁷⁶Ge) end of 2008, Cuore (TeO₂) aim for 1 ton year
 - Reach inverted hierarchy mass 0.01-0.1eV

Arán García-Bellido

Particles from outer space

photons

- + points to source
- + detect over large E range
- universe sort'a opaque
- protons (nuclei)
- + detect over large E range
- can id at low E, not so easily at high E (AUGER)
- does not point to source

neutrinos

- + points to source
- hard to detect

Arán García-Bellido

High Energy astronomy

Photons: γ ray Cherenkov telescopes

- Magic: One 17m mirror telescope
 - ~15 extragalactic VHE γ sources (4 new) from blazars and 1 radio galaxy
 - 13 GRB discovered (GRB alert: 40s positioning)
 - 2nd telescope first light this year
- HESS: Four 13m-telescopes (107m²)
 - ~30 new VHE sources
 - Phasell: 30m telescope (2008+)
- Future: CTA
 - x10 sensitivity of MagicII/HESSII

Auger: Ultra High Energy cosmic rays

- 1600 tanks (1000 active) cover 3000km²
- 4 Fluorescent detectors
- Cosmic ray spectrum at GZK cutoff: not yet!
- New limits on anisotropy (no confirmation of galactic center signals in AGASA/SUGAR)
- Sensitive to grazing v_{τ} showers!
- Arán García-Bellido

High energy astronomy: neutrinos

Amanda/Icecube (B Fox) [Ice, South pole]

- Amanda operational since 2000 (19 lines)
 - no point source found
 - limit on diffuse flux
- Ice Cube progress
 - 22 strings deployed (complete 70 in 2011)
 - upward-going neutrinos clearly seen

• Antares (J Brunner) [Mediterranean sea]

- 5 lines deployed (complete 12 in 2008)
- Downgoing tracks=> resolution
- A few up-going neutrinos seen

Arán García-Bellido

Moriond EW summary

APRAISS predeterary 250

2000

1000

Amanda/IceCube

Completion by 2011

Arán García-Bellido

Arán García-Bellido

Precision measurements

Muon lifetime and g-2

MuLan new result:

 τ_{μ} =2.197013(24) μ s 11ppm \rightarrow G_F to 5ppm

BNL g-2:
$$a_{\mu}$$
 (Expt.) = 11659208.0(6.3)×10⁻¹⁰

- Need to measure cyclotron and spin precessions and the magnetic field $\omega_a = \frac{q}{m} a_{\mu} B$
- Achieves 0.54ppm (theory 0.48ppm)
- Strongest experimental evidence of BSM: 3.4 σ
- Although a au based prediction agrees at 1σ

Gravity from 50 μ to 50 AU

- Short distance (Eöt-Wash): Yukawa interaction with gravitational strength has range $\lambda < 56\mu$ m
- Mid distance (Doppler velocimetry on Cassini, from Jupiter to Saturn): GR accurate to 10⁻⁵
- Very long distance: Pioneer anomaly unexplained
 - Constant small anomalous acceleration towards the Sun (blue-shift) in two probes: P10 and P11
 - On-board hardware systematics, external effects, all ruled out as possible explanations

Arán García-Bellido

Conclusions

- Excellent atmosphere for discussions and interactions
- Some very good talks (from young people, and from nuclear physicists!)
- Still some difficulty for theorists to understand experimental talks and viceversa
- Tevatron made a very strong showing
- Celebrated announcement of the evidence for D mixing
- SM in good shape, a few (small) deviations persist
- Big emphasis in coming years will be searches for BSM
 - Lots of places to look at: flavor physics, g-2, LHC, etc...
- High energy astronomy is booming ... very exciting
- GR in good shape, except the curious Pioneer anomaly

Arán García-Bellido