CDF-DØ Alpgen Meeting FNAL, April 5, 2007

NLO for heavy flavor W+jets

- Stating the problem: goals and past experience
- Differences between matched Alpgen and LO MCFM
- Loosening MCFM parton level cuts to study sensitivity of the k-factors: try to match MCFM and Alpgen
- HF fraction from MCFM
- Studying massive b-quarks effect: prescription
- Wbj at NLO in MCFM: how to handle it?
- We have data: make the measurement!

The problem

- We know the NLO cross section changes wrt LO values for Wbb and Wcc, and also for Wjj
- Since we usually normalize all W+jets to data, the problem is not so much the absolute σ(Wbb) or σ(Wjj), but the fraction of Wbb (and Wcc) in W+jets: the HF ratio
- Our Alpgen samples have LO cs values and massive b's, and they are matched (generated with no parton cut on b pT)
- MCFM gives NLO with massless b's and requires a b pT cut
- In the past, Alpgen was not matched and we could use MCFM with the same Alpgen parton cuts (away from m_b) and got a NLO value for both Wbb and Wjj, and ensured the HF fraction was that NLO ratio.
- But now Alpgen is matched, so what NLO σ should we use, i.e. what is the effect of not using parton cuts in Alpgen? And what is the effect of massive b's?
- We need to know a $\sigma_{\rm NLO}$ (Wbb)/ $\sigma_{\rm NLO}$ (Wjj) that is applicable to our Alpgen v2.06 samples, and study its limitations

MCFM (NLO) (closest to the truth) vs. Alpgen (as in production, except b-cut)

Parton cuts dependence

- LO MCFM and LO Alpgen are hard to compare!
 - Default matching settings did not agree with MCFM
- So let's take a look at the old MCFM NLO numbers and see if we can relax the parton level cuts and get something meaningful
- In Alpgen 1.3.3-1 (with no matching), we used:
 - $p_T(jet) > 8 \text{ GeV}, |\eta(jet)| < 3.0 \text{ and } \Delta R(jet, jet) > 0.4$
 - And then used MCFM with same parton cuts to get NLO

In Alpgen 2.06 there are no parton cuts, but we use the following cuts for the MLM clustering criteria:

• $p_T(jet) > 8 \text{ GeV}, \Delta R(jet, jet) > 0.4$

What cuts should we use in MCFM to compare to MLM?

Tables of results can be seen here

Pretty large dependence of the Wbb k-factor with jet pT

We should be making a b jet pT dependent correction

Although Wbb matched Alpgen with constant scale factor (+acceptance cuts) seems to agree well with data Arán García-Bellido

Jet pT with other cuts and smaller pT

I'm not sure I understand the difference between this plot and the previous one, based on the different cuts

Mass effect turn on at pT~5GeV: MCFM always requires pT(b)>4.620 & m(bb)>9.240, to simulate the effect of mass Arán García-Bellido

DeltaR(jet,jet) cut dependence

► Allowing for more jet merging (smaller △R(jet,jet) cut) decreases by 20% the Wjj k-factor down to k-factor=1

Wbb k-factor is unaffected

Summary of cuts dependence

- To summarize what we have seen:
- No lepton η cut dependence: 10 is fine
- No jet η cut dependence: 3 is fine
- **•** Relaxing the jet p_T from 8 to 4 GeV gives:
 - ${\small \bullet}$ Wbb 1.642 ${\rightarrow}$ 1.880 (+14%); Wjj 1.220 ${\rightarrow}$ 1.197 (-2%)
 - Huge jet pT dependence for higher jet pTs
- Wjj k-factor changes with $\Delta R(jet, jet)$, Wbb is stable.
 - Going from 0.4 to 0.05: Wjj k-factor $1.2 \rightarrow 1.0$ (-17%)
 - Going from 0.4 to 1: Wjj k-factor $1.2 \rightarrow 1.4 (+17\%)$
- We cannot simply apply our old factors
- We could take the numbers from our loosest operating point: what errors?

What we really want

 \blacktriangleright We really only need $\sigma_{\rm NLO}({\rm Wbb})$ and $\sigma_{\rm NLO}({\rm Wjj})$ for a given point

In other terms, you can calculate how much you need to boost your Wbb contribution over Wjj in Alpgen to account for NLO: HF factor=(Wbb k-factor)/(Wjj k-factor)

Jet pT	Wbb k-factor	Wjj k-factor	HF factor
4	1.880	1.197	1.571
6	1.742	1.233	1.413
8	1.642	1.220	1.346
10	1.580	1.232	1.282

- Ideally, we'd like : NLO massive/LO massive (Alpgen)
- CDF has measured Wbb and finds a factor 1.5±0.4 to multiply matched Alpgen to agree with data

A note on Wcc: even though Wcc is not calculated explicitly in MCFM, it has the same production mechanisms as Wbb. And since Wcc is a really small fraction of Wjj (few%), we can treat Wcc/Wjj the same way as Wbb/Wjj before tagging (with some caveats)

MCFM Wbb/Wjj ratio

Adding b mass to LO distribution decreases σ(Wbb)
The same effect can be expected for NLO (hep-ph/0606102)

Wbb/Wjj ratio with less jet merging

 NLO massive should lay somewhere between red and green
Flipping back and forth from previous page, we can see the <u>AR(jet,jet)</u> cut effect: Wjj k-factor is bigger at 1 than at 0.4

NLO Wbb/Wjj with massive b's

Plot kindly provided by D. Wackeroth et al. (hep-ph/0606102)

massive NLO = NLO massless * LO(massive)/LO(massless)

Wbj NLO production

Most recent MCFM calculation (Willenbrock et al. hep-ph/0611348)

	(LO) NLO Cross sections (pb)				
Collider	Wbj	$Wb\overline{b}$	$W(b\overline{b})j$	Wbjj	$Wb\overline{b}j$
TeV $W^+(=W^-)$	(1.06) 2.54	(2.48) 3.14	0.89	0.18	0.65
	W j j		W j j j		
TeV $W^+(=W^-)$	(261) 290		39		

Wbj has large kfactor!

Wbj is produced in Wbbj in Alpgen

Wbj behaves similarly to Wbb: also comparable in size!

Conclusions and open questions

- MCFM can be used to obtain NLO cross sections
- Interpretation of results to apply to matched Alpgen is difficult, since LO MCFM and LO Alpgen are difficult to "match"
- Need to take massive b effects into account: prescription ready
- Loosening MCFM parton cuts changes significantly the result
- Wbb k-factor has strong dependence on b jet p_T : we should parametrize the HF fraction as a function of jet p_T
- Wbj has large k-factor, but behaves like Wbb. Study it separately? Covered by Wbb k-factor?

Possible solutions:

- 1- If Alpgen/MCFM agree at LO, use NLO MCFM with mass effects taken into account
- 2- Use the data to measure HF fraction (Wcc? shape dependence?)
- 3- Use the data to measure Wbb (Wcc? shape dependence?)

What errors are associated to each possibility?

Extra slides

Check list: things to do

- Latest MLM version effect of ickkw=1,0
- How to match Alpgen and LO MCFM with massive b: compare MCFM and Alpgen to check agreement
- Shape dependence of k-factors
- How to determine the errors on a k-factor from MCFM? Comparing to what?
- How to determine the errors on a k-factor measured in data? What effects should we look at?
- Study Wc k-factors if/when available in MCFM
- Study Wbj process in Alpgen and make sure its large k-factor is covered

Some basics

- ▶ k-factor = $\sigma_{\rm NLO}/\sigma_{\rm LO}$
- **HF** ratio = σ (Wbb)/ σ (Wjj)

I'm running MCFM v5.1 with native PDFs and ewscheme=+1

- $\alpha_s(M_z)$ and $\sin^2\theta_w$ are calculated from other fixed EW parameters, like Alpgen 2 does
- Factorization and renormalization scales: $\mu^2 = M_W^2 + p_T(W)^2$

▶ The k-factors are calculated with CTEQ6M (NLO PDF) for $\sigma_{\rm NLO}$ and with CTEQ6L1 (LO PDF) for $\sigma_{\rm LO}$, as was done before.

- Both are massless b's caculations
- $\,$ $\,$ No big difference if I use CTEQ6L1 (LO PDF) for $\sigma_{\rm \scriptscriptstyle NLO}$
- MCFM can give you:
 - Wbb LO (with massive b's)
 - Wbb NLO (with massless b's), but no NLO with massive b's

Wjj NLO and Wjj LO, but no Wcc (Wcc is included in Wjj) Arán García-Bellido

Comparison with p14 numbers

- Derived by Thomas Nunnemann here
- He used MCFM v3.4.5 and CTEQ5L (for LO) and CTEQ5M (for NLO)
- My numbers use v5.1 and CTEQ6M (for NLO) and CTEQ6L1 for LO
- p14 Higgs Alpgen parton cuts:
 - pT(parton) > 8 GeV
 - |eta(parton)| < 3.0
 - DeltaR(parton,parton) > 0.4

	Thomas		Aran		
	Wjj	Wbb	Wjj	Wbb	
Sigma LO [pb]	90.168+-0.126	0.883+-0.003	112.774+-0.177	0.880+-0.003	
Sigma NLO [pb]	135.180+-0.844	1.925+-0.010	137.584+-0.142	1.445+-0.006	
K-factor	1.499+-0.005	2.179+-0.004	1.220+-0.014	1.642+-0.012	

From Thomas Nunnemann With Alpgen 2.06, massive b-quarks

• σ given for one W charge and one l flavor only

Alpgen, ickkw=0, no <i>b</i> -cut	2.15 pb	
Alpgen, ickkw=1, no <i>b</i> -cut	4.07 pb	p17 production: 3.98 pb
Alpgen, ickkw=0, w. <i>b</i> -cut	0.81 pb	
Alpgen, ickkw=1, w. <i>b</i> -cut	1.23 pb	
MCFM, LO, massive b, w. b-cut	0.78 pb	
MCFM, LO, massless b, w. b-cut	0.92 pb	
MCFM, NLO, massless b, w. b-cut	1.52 pb	→ K-factor: 1.65