SUNY Stony Brook — HEP Seminar
Stony Brook, January 28, 2007

Evidence for production of single top
quarks at D@ and a first direct
measurement of |V_ |

» Electroweak production of top quarks at D@
» Event selection and background estimation
» Multivariate methods
@ Decision Trees, Matrix Elements, Bayesian NN
» Cross checks. Expected sensitivity
» Cross sections and significance
» First direct measurement of |V

» Summary .
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The Tevatron

The highest energy TGS e
particle acceleratorin | -f
the world!

Proton-antiproton
collider

Run | 1992-1995
Top quark discovered!

Run Il 2001-09
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At = 396ns
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Data taking
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Top quark physics
The top quark is a very special fermion:
» Heaviest known particle: 170.9+1.8 GeV

@ m~v/V2, A~1 — Related to EWSB!

@ Sensitive probe for new physics, FCNCs, ...
» Decays as a free quark: 1,=5x10% s < A ;*

@ Spin information is passed to its decay products
@ Test V-A structure of the SM

Electron Neutrinog Muon Neuting Toni Meudring
Moss ~0 ~0 ~0

We know the mass, cross section, L o 0

Rucn Tou

charge and its BR(t—-Wb)~1 s BE
We still don't know: spin, width,

>

lifetime & | =] &
Plenty of room for new physics = | 3% Q

Aran Garcia-Bellido Evidence for single top at DG 5



Top quark electroweak production

Dominant top production mode at the Tevatron is in pairs:

q o r
0 o=6.8%1.2 pb
PRD 68, 114014

But top quarks can be produced singly via the EW interaction:

. q ¢ q q
ws w
2% b t
28 & -
i< q b g -
s-channel (tb) t-channel (tqgb)
O\ 0=0.88+0.11 pb O\ o=1.98+0.25 pb
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Why search for single top?

» Access W-t-b coupling q t
@ measure V,_ directly Y ol
o — V
@ test unitarity of CKM _ i ®
q b

» New physics:
@ s-channel sensitive to resonances: W’, top pions, SUSY, etc...
@ t-channel sensitive to FCNCs, anomalous couplings

» Source of polarized top quarks

» Extract small signal out of a large background

q q

HU\‘ b
antiproton <
K b

u,c t
D@ search: hep-ex/0607102 D@ search: hep-ex/0702005
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A big challenge!

E Total inelastic
S @
E]ﬂ
£  Fmb
2 10" ‘ -
2 bb 10’
; 6
210" F b
IUH L 6,000
600
- b Z
110 _
I )
]O-IEK =1
14
10 Higos (ZH + WH)
- b
116
100 120 140 160 180 200
Higgs mass (GeV)/

~20 single top events produced
per day

But huge backgrounds!

We have benefited greatly from
the following improvements for
this analysis:

» Background model improvements
(PS—~ME matching: MLM)

» Fully reprocessed dataset: new
calibrations, jet thresholds, JES,...

» New more efficient NN b-tagger
» Split channels by jet multiplicity

» Combined s+t search added
(SM s:t ratio is assumed)
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Signal selection

Signature:
a One high p; isolated lepton (from W)

4 MET (v from W)
4 One b-quark jet (from top)
4 A light flavor jet and/or another b-jet

Event selection:
P Only one tight (no loose) lepton:
@e: p; >15 GeV and |n%t|<1.1

au: pr >18 GeV and |n%t<2.0

» MET > 15 GeV
P 2-4 jets: p; >15 GeV and |n%t|<3.4

alLeading jet: p;>25GeV ; |n*<2.5
a@Second leading jet: p; >20 GeV
» One or two b-tagged jets
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Tagging b-jets

Three different algorithms for
b-jet identification at DQ:

Secondary vix » Two based on tracks with

\ large IP (JLIP, CSIP)

displaced track

rimary vix » One based on secondary
' N vertex reconstruction (SVT)

» Combine in NN Hew

» Neural Net trained on seven variables:

1. Decay length significance SVT 5. Number of tracks in SVT vertex
2. Weighted combination of track's IPs 6. Mass of the SVT vertex

3. JLIP probability 7. Number of secondary vertices
4. x/dof of the SVT vertex found inside jet
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NN b-jet tagger

b Jets

0.7 -
» Much improved performance! :
@ Fake rate reduced by 1/3 for
same b-efficiency relative to

previous tagger 4
@ Smaller systematic uncertainty M_‘L — TRF appled o MC

TRF after scaling to match tagger on data

» Tag Rate Functions (TRFs) innp,  ®ieinon 0.

20 30 40 50 o0 TO BO 90 100

0.6

0.5

NN Tagger Efficiency

* Tagger applied to MC

p, and z-PV derived in data are Trraverss Moienkin Toe)
applied to MC : |
0.7 | b Jets

» Our operating point:
@ b-jet efficiency: ~50%
@ c-jet efficiency: ~10%

06 °

0.4

NN Tagger Efficiency

@ Light-jet efficiency: ~0.5% 03[ *® Taggerapplied to MC
- = TRF applied to MC
0.2 :_ TRF after scaling to match tagger on data

IJ'I | l.'l'2 El4 IJE IJIB 1I 12 1.4 .1.EI 1.IEI IE 22 IE.#
Detector Pseudorapidity Inl
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Background modeling

» W+jets: ~o(1000) pb &

@ Distributions from Alpgen 2.0
@ Normalization from data
@ Heavy flavor fractions from data

» Top pairs: ~7 pb

@ Topologies: dilepton and t'+jets oroton

@ Use Alpgen 2.0 with MLM d
matching /

@ Normalize to NNLO o anfiproton q

» Multijet events (misidentified lepton)

@ From data

Aran Garcia-Bellido Evidence for single top at D@
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W+ jets yield determination

» Normalize W+jets and QCD to data simultaneously before tagging
@ Split data sample in events with real and fake isolated lepton
@ Measure the probability to have an isolated lepton in each sample

» We also know that there are large k-factors for Wbb and Wcc

» Determine Wbb and Wcc factor in W+jets from zero-tagged data

@ Constant factor describes heavy flavor kinematics well
@ Largest single uncertainty: 30% relative error on Wbb+Wcc composition

5 & 0= 1.50 £0.45

o A A

8 i

e 1.8

S C

" 1'6: .....................................................................

8] YT TITIYY STV FSSR PO N, AP SRR B

Q 141
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121
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= 1 T ST
- Fitto data with no b-tagged jets
= | | | | | | |
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ND qﬁ) nﬁ) bﬁb x'\\ q/\c' ‘b@ b‘\?’

Ardn Garcia-Bellido

L =871 pb”

DO Run Il Preliminary  KS=0.895

i

25

20
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10

* DATA

I aco

W + light Jets

O Wec + Jets

I Wbb + Jets

Bt lep + Jets

Bt  dllepton
signal: tb x10

mu
1 b-tag
2 jets

80 100 120 140 160 180 200
Leading b-Tagged Jet PT [GeV]

20 40 60

Events

10f

Evidence for single top at DG

D@ Run Il Preliminary  KS=0.188 L =871 pb”

30'_ * DATA

i EqcD

B W + light |ets
25— I Wecc + [ets

B I Wbb + |ets

B Bt lep + Jets

C BBt  dllepton
20 signal: tb x10

- — signal: tqb x10
na mu

00
InvariantMass JetiJet2
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Agreement before tagging
» Normalize W+jets and QCD vyields to data before tagging

» Check 90 variables (in e,mu x 2,3,4 jets)
» Good description of data

DG Run Il Preliminary KS=0.T61 L =913 pb™” wugg:- Run Il Preliminary KS=0.581

0 0
= * DATA &215.0
© 1000 BN oD 1431 .3 E
= WV o+ lignit |ets 3 ==
w I WWee = jets 929.0 Ly
- =1¢1.m|:- + |els 35T
— tm—1 249
800 = B —rﬂEInI!EIlIF:I’ 3
i shgnal: th [o10) 655
B — signal: tqk (x10)|315.
BO0—
A00f—
200—
o 40 60 a0 100 4120 4140 460 4180 200
Pyt [GeV]
- DG Run Il Preliminary KS=0.517 L =913 pb™” - D@ Run Il Preliminary KS=0.171 L=2913pb”
'E““I__ * DATA &290,0 = L * DATA BX 9.0
O BN QoD 1433.0 41000 BN QoD 14328
= 0 WV & lignt |=ts Sak7.0 = B 0 WV & lignt Jets 5
w -chLr:ﬂmn w B O Wee + jets 9307
Bl Wb & [els 358, Bl Wob + [els 357
B tE — lep + jets 256 BN tE — lep + jets 256
[ — dllepion

I tf —_-dIEEInn 5
signal: th {x10] -]

— signal; tak {x10)|318. — signal: tgb (x10)|216.

40 (] 80 100 120 140 [5] [1] 40 ] 80 100 120 140 1B 20
Missing E_[GeV] Lepton P_[GeV]




Yields after event selection

Event Yields in 0.9 fb-1 Data

Electron+muon, 1tag+2tags combined
Source 2 jets 3 jets 4 jets
tb 163 82 2+ 1
tgb 20+ 4 12+3 4+ 1
tt — Il 39+09 32+7 11 £ 3
tt — [Hjets 205 103 £ 25 143 + 33
W+bb 261 £ 55 120 £ 24 357
W+cc 151 £ 31 8517 235
W+jj 119 + 25 43 +9 12 + 2
Multijets 95 + 19 77 £ 15 29+6
Total background 686 £ 41 460 £ 39 253 + 38
Data 697 455 246

» Optimized the selection to maximize acceptance
tb=(3.2%x04)% tgb=(2.1+%0.3)%
» Allow a lot of background at this stage!

» Then use multiple distributions to separate signal-background
Aran Garcia-Bellido Evidence for single top at DG 15



Event selection and S:B

Percentage of single top tb+tgb selected events
and S:B ratio

Electron . . . . ]
1 jet 2 jets 3 jets 4 jets 2 5 jets
+ Muon J J J J J
1%
10% ]
0 tags
1: 3,200 1:390 1:300 1:270 1:230
1%
O
1 tag
1:100 1:53
0%
O
2 tags
1:43
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Systematic uncertainties

» Uncertainties are assigned per background, jet multiplicity,

lepton channel, and number of tags

» Uncertainties that affect both the normalization and the

shapes: JES and tag rate functions

» Correlations between channels and sources are taken into

account
Relative systematic uncertainties
Component Size
W+jets & QCD normalization 18 - 28%
top pair normalization 18%
Tag rate functions (+shape) 2 -16%
Jet energy scale (+shape) 1-20%
Luminosity 6%
Trigger modeling 3-6%
Lepton ID 2-1%
Jet modeling 2 - 7%
Other small components few%

Aran Garcia-Bellido Evidence for single top at D@
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Yield [Events/10GeV]

Yield [Events/10GeV]

100}

check 1000s of plots again...

200}

-+ DO 0.9 b’
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Mt
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B Multijet
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1-2 b-tags
2-4 jets

50 100 150 200
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200

100
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Yield [Evenis/10GeV]
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300}
200}

100}
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Analysis methods

» Once we understand our data, need to measure the signal
» We cannot use simple cuts to extract the signal:
use multivariate techniques
» DJ has implemented three analysis methods to
extract the signal from the same dataset:
Decision Trees Bayesian NNs Matrix Elements

Gh FE - I

@ DT and BNN use same pool of discriminating variables
@ ME method uses 4-vectors of reconstructed objects

@ Optimized separately for s-channel, t-channel and s+t
@ Test response and robustness with ensemble testing

Aran Garcia-Bellido Evidence for single top at DG 19



Decision Trees

Machine learning technique widely used in social sciences
|dea: recover events that fail criteria in cut-based analysis

» Start with all events (first node ‘)

» For each variable, find the splitting
value with best separation between
children

» Select best variable and cut:
produce Pass and Failed branches

» Repeat recursively on each node

» Stop when improvement stops or
when too few events left

» Terminal node: |leaf with
purity = N./(N.+N;)

» Output: purity for each event

Aran Garcia-Bellido Evidence for single top at D@
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Decision Trees + Boosting

Boosting is a recent technique to improve the performance of any
weak classifier: recently used in DTs by GLAST and MiniBooNE

Background fraction vs. efficiency

M t-channel

AdaBoost algorithm: adaptive boosting § e
g E| - :
. 5 08-| —+— Single tree !
1) Train a tree T, B ooseaees 0 .;;'
2) Check which events are misclassified by T, = £
P
3) Derive tree weight «, e
4) Increase weight of misclassified events R
: : : E 60— -# Data @ Run Il Preliminary 910pb’
5) Train again to build T __, 2 " i jors

40—

@ We have trained 36 separate trees:
(s, t, s+t)x(e,mu)x(2,3,4 jets)x(1,2 tags)

20

@ Use 1/3 of MC events for training

0.2 0.4 0.6 0.8 1
tgb-combined DT output (fulltree)

@ For each signal, train against sum of backgrounds

@ Signal leaf if purity>0.5; Minimum leaf size=100 events;
Goodness of split: Gini factor; Adaboost f=0.2; boosting cycles=20

Aran Garcia-Bellido Evidence for single top at D@ 21



Decision Trees: 49 variables

Object Kinematics
P (jetl)
pr (jet2)
P (jet3)
pr(jetd)
pr(bestl)
notbest1)

pr(
p1(notbest2)
pr(tagl)
pr1(untagl)
pr(untag2)

Angular Correlations
AR(jetl,jet2)
ccs[hestl,leptnn}hgsttgp
cos(bestl, notbestl ) esttop
cos(tagl,alljets)alijets
cos(tagl,lepton)pt aggedtop
cosﬂetl,alljets}a]]jets
cos(jetl,lepton )y, aggedtop
cas[jet?,alljets}a]]jets
cos(jet2, lepton )4 aggedtop
cos(lepton, Q(lepton) X z)p esttop
cos(lepton besttop: besttopo Mframe ]

cos(lepton, aggedtop btaggedtopomerame)
cos(notbest,alljets)a11jets

(
(
(
cos(notbest,lepton)esttop
cos(untagl,alljets)a)1jets

(

cos(untagl lepton)htaggadtop

Ardn Garcia-Bellido

Event Kinematics

Aplanarity(alljets, W)

M(W bestl) ("best” top mass)
M(W tagl) (“b-tagged" top mass)
Hy (alljets)

Hy (alljets—best1)

Hr (alljets—tagl) Most discrimination:

Hy (alljets, W) .
et alljets)
M(alljets) M(W,tagl)

M alljets—bestl1)
M(alljets—tagl)
M(jetl, jet2)
M(jetl, jet2, W)
M (jetl, jet2)

M7 (W)

Missing ET

pt (alljets —best1)
pr (alljets—tagl)

COS(tag 1;|epton)btaggedtop
Q(lepton) x n(untagl)

@ Adding variables

pr (jetl jet2) does not degrade
Qepron)xn(untagt) performance

Sphericity(alljets, W) @ Tested shorter lists,

lose some sensitivity

@ Same list used for all
channels
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Bayesian Neural Networks

A different sort of NN (http://www.cs.toronto.edu/radford/fom.software.html):

» Instead of choosing one set of weights, find posterior probability
density over all possible weights

» Averages over many networks weighted by the probability of each
network given the training data

» Use 24 variables (subset of the DT variables) and train against

sum of backgrounds

Advantages:
@ Less prone to overfitting,

because of Bayesian 03"

averaging
@ Network structure less

important: can use large 02

networks!
@ Optimized performance
Disadvantages:
@ Computationally

demanding! 0. .
0 0102030405060.70.80.9 1

Aran Garcia-Bellido Evidence for single top at D@

Network Output (tqb-p)

0.4

0.35]
0.25(
0.15[

0.1

0.05}

(11, 30, 1) network
Average over last 100 networks

¥ =1 S yixwa
n=1

0.8

Network Output (Wbb-p1)

0.75
o.af
u.sf

0.45 z _-'f_.' '

0.3[3°

0.2

0 010.20304050.60.70.80.9 1

Hybrid MCMC

500 iterations

20 steps/iteration

2000 (tgb+Wbb) events
10,000 steps (1000/hour)
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Matrix Elements method

» The idea is to use all available kinematic information from a fully
differential cross-section calculation

» Calculate an event probability for signal and background hypothesis

P(X)== J £(q,:Q)da, (0, Q)da,xM(F)f ¢(¥)dyxW (%, 9)

Parton distribution @ Differential cross section @ Transfer Function: maps parton level (y) to
functions CTEQG6 (LO ME from Madgraph) reconstructed variables (x)

» Uses the 4-vectors of all
reconstructed ¢s and jets

P This analysis: 2&3 jet events
only, match partons to jets

» Apply b-tagging information @"roten

» Integrate over 4 independent variables: assume angles well
measured, known masses, momentum and energy conservation

Aran Garcia-Bellido Evidence for single top at DG 24



ME discriminant

» Define discriminant based on event probabilities for signal and
background
Pngnaf(X)

P ngns.n’(; ) T P Backgmund(f )

P In 2 jet events: use ME for Wbb, Wcg and Wgg backgrounds
» In 3 jet events: use ME for Wbbg, Wggg and tt—¢+jets backgrounds

» |In tt events, we need to lose one jet: assume one g from W is lost
(1.7 times more likely than b) or two jets are merged

Dy(%) = P(SIF) =

0.1 B_; DG Run Il | 0D.24F DG Run Il |
S 3 D22
- - = s-channel MC Events D.2E = 1-channel MC Evenils
014 D.18
D120 = Wbb MC Evenis D.16 = Wbb MC Evenis
: 0.14;
0.1 0.12
0.08 D.1
D.06 ggg
0.04 GeEE
; 0.04:
0.02; | . 0.02 | |
D 0.2 0.4 D.6 D.8 1 [b D.2 0.4 0.6 D.8 i

tb+tqgb ME Discriminant tb+tqgb ME Discriminant
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Measuring the cross section

» We form a binned likelihood from >

o

signal bkgd.

the discriminant outputs E 0.355— peak
U 03F
» Probability to observe data O 0'35
distribution D, expecting y: g 0.5
N N o 0.2
Yy =aZo+Xb, =ac+Xb, 5015
s=1 s=1 -
o 01
wn
O
o

| 0.05F
nbins -

P(Dly) = P(Dlo,a,b) = IT P(Dy) & 3 4§ & 1
=1 single top cross section

» And obtain a Bayesian posterior probability density as a function of
the cross section:

Post(c|D) = P(o|D) x /LP(DM, a, b)Prior(o)Prior(a, b)

@ Shape and normalization systematics treated as nuisance parameters
@ Correlations between uncertainties properly accounted for
@ Flat prior in signal cross section

Aran Garcia-Bellido Evidence for single top at DG 26



Ensemble testing

» To verify that all this machinery is working properly, we test with
many sets of pseudo-data

» Wonderful tool to test analysis methods!
Run D@ experiment 1000s of times

» Use pool of MC events to draw events with bkgd. yields fluctuated
according to uncertainties, reproducing the correlations
between components introduced in the normalization to data

» Randomly sample a Poisson distribution to simulate statistical
fluctuations

» Generated ensembles include:
1) O-signal ensemble (o, = 0 pb)
2) SM ensemble (o, = 2.9 pb)

3) “Mystery” ensembles to test analyzers (o_. = 77 pb)

4) Ensemble at measured cross-section (o, = o

+t measured)

s+t

5) A high luminosity ensemble
» Each analysis tests linearity of “response” to single top

Aran Garcia-Bellido Evidence for single top at DG 27



Responses

— 9
2 g £ xiindof = 492/4 .
= E Slope-1.07%003 Using the ensemble tests:
§ g MereenmoieERT @ SM ensemble is returned at
> 5 the right value
2 i 3 @ “Mystery” ensembles are
& E unraveled
s 1- (a) DT analysis @ Linear response is achieved

0: | L | IFENIPEN ITATETE IUNAPEN INATATE R

o 1 2 3 4 o5 6 7T 8 9
Input Gyeiqp [PD] 0

'-g_' ;%_ yZndof = 11.03/4 E 8; y?Indof = 2.73/2
— —  Slope = 1.00 £0.01 — = Slope =0.95 £0.01
& 7 ~  Intercept = —=0.14%+0.03 £ 7 —  Intercept = 0.46 = 0.04
£ 6F I 60
6 5 - © 5°E
e 4 3 4
a2 °F 5 30
o 2F | ® 2F
= 10 (b) BNN analysis é’ 1E (c) ME analysis

06'""'""""""'"""""""""""" OE N RN S N RS NN R NN

1 2 3 4 5 6 7 8 9

(]
—
(NS
(o8]

4 5 6 7 8 9

Inlet Otb+tgb [pb] Input th+tqb [pb]
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Expected p-values and cross sections

P The expected o is obtained assuming data=expected SM background

P Use 0-signal ensembles to determine the significance:

Expected p-value: the fraction of 0-signal pseudo-datasets in which we

measure at least 2.9 pb

Observed p-value: the fraction of 0-signal pseudo-datasets in which we
measure at least the measured cross section

Decision Trees
p-value 1.9%
exp. sig. 2.1o

s+t-channels, tbtqgb DO Run

Bayesian NN

o
Y]
u

.l_LJ_.l.|._LJ_.I..L_|.J_l.L_|..|_l.LJ.J_T__J..I. |

o
[¥)

Posterior Density

015

01

0.05

Matrix Elements
p-value 3.1%
exp. sig. 1.9¢

i tbiqb
910, pb™’ Entries 68150

p-value 1.6%
exp. sig. 2.2c0
910 pb’ DO Run i
o?
| Measured 10°
Cross Saction
=27 pb 102
Bayes Ratio = 8.0
; 10
| 1

-
10 12

Cross Section [pbk] e f(

Maan 0525
AMS 0.7963

e+-channel
Full systematics

1300 entries above
observed cross section

p-value: 1.9e-02
sigma: 2.1

T a a

5 B
Observed tbiqb cross seciion [pb]



DT cross check samples

Check the description of the data in the DT output
o W+jets: 2 jets and H_ (lepton,MET,alljets) < 175 GeV

@ tt: 4 jets and and H (lepton,MET,alljets) > 300 GeV

=} 0
|c|| T -Q

Yield [Events/0.1]
o
=

20_—

b

Ardn Garcia-Bellido

+DJ 0.9 fby’

s-channel
Bt-channel

- Bt

R

0.2

W+jets
B Multijet

e+jets
'+' 1 b-tag
2 |ets

it - H,.<175GeV

04 06 038

1

tb+tgb DT Output

Yield [Events/0.1]

N
T Dl T

—
T ol T

®

L

0.2

+D@ 0.9 fby’

s-channel

Bt-channel
Bt

W+jets
B Multijet

e+jets

1 b-tag

4 jets

HT>300 eV

04 06 08 1
tb+tgb DT Output
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ME cross check samples

Check the description of the data in the ME output
@ Soft W+jets: H (lepton,MET,alljets) < 175 GeV

@ Hard W+jets: H_(lepton,MET,alljets) > 300 GeV

":.' e+ channel - D@ 0.9 fb! E e+u channel
% 1 %&tag s-channel I 1-2 b-tag
S HT<:1?5GEU M t-channel 10 2 jets
et LI ] H,<175GeV
= W W+jets =

2 Multijet 2

- [ U > 5

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
ME tb Discriminant Output ME tq Discriminant Output

- c) e+ channel - d) e+ channel
S 1-2 b-tag B 1-2 b-tag
S 3 jets = 3 jets
= H,>300GeV > 40 H,>300GeV
= =
2 2
- -

N
o

% 02 04 06 08 1 % 02 04 o066 08 1
ME tb Discriminant Output ME tq Discriminant Output
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Observed results
Decision Trees Bayesian NN Matrix Elements

Expected BOISIRELR Expected ROISERELE Expected [OlEIEY
sitb+gb) [pb] 277 WREIWE 2777 3,05
significance 210 3.40 2.20 1.9¢

All three analyses measure >30¢! Evidence for single top production!

P Results are compatible with the SM at ~1 std. dev.

Decision

' DO 0.9 b  Measured
- Trees

= 4.9%74pb

\ g expected
X _ 7116
_ =2.1244pb

4& \ LL -
0

0123456789 10 01 233 58 T=g
tb+tgb Cross Section [pb] th+tqb Cross Section [pb] th+tqb Cross Section [pb]

Decision
Trees

o
w

49 pb

49 pb Lero-
signal

ensemble

SM-signal
ensemble

Compatibility
With SM

_

10
50

seudo-datasets / 0.4 pb
—
o

\\\\\\\
2

/

Pseudo-datasets / 0.5 pb

Posterior
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Excess in the high discriminant regions

8 300- . *DO09f'| S 4¢2 DO 0.9 fb'
= = s-channel | &
@ i - s-channel
c -t:channel E M t-channel
> 200 Wi o 10 L
] i I Wijets = WW+jets
@ M Multijet | .2 B Multijet
e e+ channel e+u channel
100 1
1-2 b-t?gs 1-2 b-tags
2-4 jets 2-4 jets
02 04 06 08 1 105 0.7 08 09 1
tb+tqb Decision Tree Output tb+tqb Decision Tree Output
E . e+u channel E e+u channel
F 100= 1-2 b-tags | & 1-2 b-tags
= 2-3 jets| E 2-3 jets
S S
L, L,
o o
2 2
= >
86 0.7 0.8 0.9 1 86 0.7 0.8 0.9 1
Matrix Element tb Discriminant Matrix Element tq Discriminant
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ME event characteristics

ME Discriminant < 0.4

b-Tagged Top Mass
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ME Discriminant > 0.7
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DT event characteristics

DT Discriminant < 0.3

2 8oF (a) e+ channele-DE 0.9
0 gf b-lags 5 channel
_ 4 jets
8 sok 1=03 Htchannel
‘g [ 'FJ L [0
E ! Wijets
Lo o40- gﬁ B Multijet
T |
g | :
= 20
i | i
700 200 300 400 500
M(l,v,b) [GeV]
z 0 e+ channel
0 1.2 b-tags
s | 2.4 jets
£ 4o DT <0.3
E L
u
- |
T 20
} L
b 50 100 150

M(W) [GeV]
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DT Discriminant > 0.55

Yield [Events/20GeV]

Yield [Events/10GeV]

20

[ (b) e+ channel
- 1-2 b-tags
60r 2.4 jets
: DT > 0.55
40
- =
zn_r ;
%00 200 300 400 500
M(l,v,b) [GeV]
| (@) e+ channel
I 1-2 b-tags
A0- 2-4 jets
! DT = 0.55

%

a0 100

150
M;(W) [GeV]
Evidence tor single top at DY

Yield [Events/20GeV]

Yield [Events10GeV]

DT Discriminant > 0.65

(c)
15

10—

on
T

G

e+u channel
1-2 b-tags
2-4 jets

DT = 0.65

100 200 300 400 500

M(l,v,b) [GeV]

i

e+ channel
1-2 b-tags

2.4 jels
DT = 0.65

o —

150
M (W) [GeV]
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A candidate event

Run 177034 Evt 10482925
Run 177034 Evt 10482925

ale: 31 GeV

Triggers:

1 MET M Em
. IcD
MG
M HaD
- o ] ' CH
—_ " ——

30
- _

Bins: 105

Mean: 1.15 -

Rms: 3.85 mu particle et: 27.2
Min: 0.00933 MET et: 28

Max: 27.4
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Combination of analyses

» Combine the three measurements with BLUE method

» Method requires to measure the correlations Q& ,@@ Q)%é
» Used SM pseudo-datasets with systematics 1 064 066\ DT
p = 0.64 1 0.59 ME
Combined result: 4.7 = 1.3 pb = Significance of 3.6 std. dev.
D@ Run i 0.9 fb" Do Run Il
i » 'g_ 10° Ensemble of pseudo-datasets with
Decision trees E —— 4.9 Jia|'4 pb N - background only (no signal)
| ' o 04
: w 10 4
Matrix elements i I o—1 18 +::E ob % - 0.9 tb™' per pseudo-dataset
| S 10°% 4.7 pb
Bayesian NNs | E—— 4.4 +1i pb -g -
| B 3 10
Combination | —e— 47 *1- pb ﬁ - _ |
| -1a o 10— Matrix elements
| o S
N. Kidonakis, PRD 74, 114012 (2006), m, = 175 GeV - - .
-, IZ.Slulli\ﬁllan,.IF'RIIIJ'.-’I].I‘11=|1012||{2[il[14],;mt|=1'.-:5(3|e‘-fI 2 1L F{}mhllnauonl |

1 2 3 4 5 6 7
tb+tgb cross section [pb]

o T

Lo

-5 0 5 10 15
6(pp — th+tgb) [pb]
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CKM matrix element V
[d [ Vir Vie Vi \ [ d ) .

S — Ved Vs Ve S
) e e @\ ey e

» Weak interaction eigenstates and mass eigenstates are not
the same: there is mixing between quarks » CKM matrix

» In SM: top must decay to W and d, s or b quark
@V, 2+V.2+V 2 =1

@ Strong constraintsonV _ and V_:V, > 0.998

@ Assuming unitarity and 3 generations: B(t—=Wb)~100%
» If there is new physics:

@ V. 2+V 2+V 2<1

@ No constrainton V_

@ Interactions between the top quark and weak gauge bosons are
extremely interesting!
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Measuring |V_|

» Once we have a cross section measurement, we can make the first

direct measurement of |V_|

» Calculate posterior in |V |*: o« |V_|?
q t Additional theoretical errors are needed
s r o
W+ (00
top mass 13%  85% 2
scale 5.4% 4.0% 2
g 5 PDF 43% 10.0% 2
)
» Most general Wtb vertex: s 1.4% 0.01% <
e g [l R 1ot .IL R
P = _ﬁ Viw {’}# [f] P+ 1 PH] Tl Dy = o), [fg Pr+ 1 PH} }
» Assume:
@ SM top decay: V *+V > <V, ° No need to assume
@ Pure V-A interaction: f® = 0 three quark families or

a CP conservation: f.t = frR =0 CKM matrix unitarity!

We are effectively measuring the strength of the V-A coupling:
|V,.f,"|, which can be >1
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First direct measurement of |V_|

> 07E - 45
L _ ol =
@ ook (a) D@ 0.9 fb” G 40f D@ 0.9 fb’ (b)
E {:}.55— |Uﬂ}|2: 1}'2ng: 8 3.52_ |Uﬂ}|2: 1UUiggi
. C . = 30F
N Prior 20 S 0 < Prior < 1
e F o
Lt - sl
2 03F 0
al C E
0.2
01F
D: A I W ! !
0O o5 1 15 2 25 3 35 4 . . . . 1
Vip|? Vio|?
IV_f ' = 1.3%0.2 IV..| > 0.68 @ 95 C.L.

(assuming: f- = 1)

This measurement does not assume 3 generations or unitarity
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Single top prospects

» In 2008 work on the discovery, possible observation of t-
channel alone

» Then the LHC will start with huge production rates:
c.=10.6x1.1 pb 0,=246.6x17 pb o,,=062.0+1%6 . pb

t . q
g d » :"'"-f-- 5 “ﬂj-gﬂ".-d“_ﬂ_-'-.?_'l-if————r-"' !
" :
W A
4
L f Vi

— - > B .
":f :!'-' E‘.l =" E'-' W

» Observe all three channels (s-channel will be tough)
» tW mode offers new window into top physics
» Measure V,, to a few %

» Large samples: study properties
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Conclusions

First evidence for single top quark production

and direct measurement of |V_|

Published in PRL 98, 181802 (2007)
o(s+t) =4.7 = 1.3 pb
3.60 significance!

V.. |>0.68 @ 95%C.L.

@ Challenging analysis: small signal hidden in huge
complex background

@ Expand to searches of new phenomena
@ We now have tripled the data to analyze!
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Extra slides

For more information:
http://www-d0.fnal.gov/Run2Physics/top/public/fall06/singletop/

Aran Garcia-Bellido Evidence for single top at D@
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Projections for s+t
Projection by CDF for P5 in 2005

D 7F

e - Points with systematics

¢ B Line without

E -

c S

i

= .

5

- 3-
2 % DO observed ~
1 ® DO expected _

B CDF expected -

DIIIIII!IIIIIIlIIiIIIIIII:II:-II-I'IIII'IIII

0 1 2 3 4 5 6 7 8
integrated luminosity [ 1/fb ]
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CDF's old results

Likelihood

CODF Run Il Preliminary, L=055 pb™*

CDF Il Preliminary

200

Neural Networks

955 pb”

L T
& Daoa H Wb
80 W s-channel W ttbar
F I wchannel [0 WesWee

E:ll Illltlgzl
[0 MonW

B Zs,. . Dicoscn
[0 Syst Error —

- 150-+

1 100}

l-'r han

No evidence of signal
0...<2.7pb at 95% C.L.

from Bernd Stelzer

@ Moriond EW

Ardn Garcia-Bellido

o.,.<2.6pb at 95% C.L.

Matrix Element
ICDF RII.IHI I F’relimipary, L"—7955pb"

normalized to fit result —e— CDF Il data 200
I tt background
I c-like background
.~ beike background

.

" non-W background

"
e |

i..

Events / 0.05
g

W Single top
M b-like

c-like

Mistags
Wt-bar
—GOF Data

05 0 05 1 % o2
NN output

No evidence of signal

 Performed common pseudo-experiments
- Use identical events
- ME uses only 4-vectors of lepton, Jet1/Jet2
- LF/NN uses sensitive event variables
- Correlation among analyses: ~60-70%

- 1.2% of the pseudo-experiments had an
outcome as different as the one observed in
data (using BLUE)

Evidence for single top at DG

0.4 06 0.8 1

Event Probability Discriminant

p-value = 1.0% (2.30)
0,..=2.7(+1.5/-1.3)pb

CDF Run Il Preliminary

*—

Naural Network: COF
0.0+ )2

—_—

Matrix Element: CDF 15
2.0% o5

-

Likelihood Function: COF

0.3+ 2

] 2 4 6
Single Top Production Cross Section (pb)



CDF's latest results

- 2 -1
COF Run I Preliminary, L=1 51 fb-1 _ CDF Run Il Preliminary, L=1.5 fb
inala t 1 I ® Data B wbb W+LF
=E'_Tli§ op ] - M s-channel M ttbar NonW
250 e 1 10 3 L t-channel Wec+Wece [ Z+jets,Diboson
s ] - Syst. Error
it
200 -

Candidate Events
3

I_ Ig
100 f 12
i 15
O R 12
= -

0 02 04 06 08 1

10

Event Probability Discriminant 0 010203 040506070809 1
—_ 1.2 —_— 1.3
Ogie = 3.07 -1.1pb Ocie = 2.7% -1.1pb
3.00 expected 2.90 expected
3.10 observed 2.70 observed
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Preparing the way for the LHC
Studies at the Tevatron will help the LHC:

» Wbb measurement (will also help WH search) (pg: hep-ex/0410062)
Current limit at 4.6 pb for p.(b)>20GeV

» In general, W+jets background determination techniques
tt will be main background, but large uncertainties come from W+jets
Effect of jet vetoes (N_,=2), check other methods planned in LHC analyses

» Study charge asymmetries (owen, Eliis, Strassler: hep-ph/0412223)
Signal shows asymmetry in (Q,xn,, Q,xn,) plane at TeV

» Study kinematics of forward jets in t-channel (WW—-H at LHC)

» Even measure asymmetry in production rate (vuan: hep-ph/9412214)
(probe CP-violation in the top sector):

_o(pp-tX)—a(pp—tX)
oc(pp—-tX)+o(pp—-tX)

TeV4LHC workshop report: 0705.3251 [hep-ph]
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Crash course in Bayesian probability

Bayes’' theorem expresses the degree of belief in a hypothesis A,
given another B. “Conditional” probability P(A|B):

P(B l1A)P(A
p(a1p)=LIB1AIP(A)
P(B)
In HEP B_)Nobserved ! A_)npredicted=nsignal-l-nbkgd ! n =ACC*L*O-

P(B|A): “model” density, or likelihood: LN .. cal N egictea) =N"E€/N!

P(A): “prior” probability density [1(n pred) =[1(Acc*L,n,)[1(o)
[1(n_,n, ) multivariate gaussian ; [(o) assumed flat

P(B): normalization constant Z: P(N

observed)

P(A|B): “posterior” probability density P(n

predictedI Nobserved)

P(n ) = 1/Z L(N

predicted | observed observed | N predicted ) I_I ( N pred )
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Signal modeling

Have to get the t-channel right:

Avoid double counting when different diagrams produce same
final states in different kinematic regions

Use ZTOP as NLO benchmark http://home.fnal.gov/~zack/ZTOP

»D@: “Effective” NLO CompHEP (also used in CMS)

Match 2—2 and 2—3 processes using b p, for cross over, normalize to NLO
Resulting distributions agree well with ZTOP & MCFM

» Recently available: MC@NLO, MCFM, Alpgen 2, C.-P. Yuan et
al.

CompHEP (tgb+ISR) and Pythia (tq+ISR) processes, P;b cut = 10 GeV

[ 1 of 2nd b-quark, top only |

>
é : < H 1 B 4+
2 F — 0.25 r___‘-J _L—l CompHEP
> S CompHEP P:b>10 ; F | Ztop
[_1 - i
» ) 0.2l 1 1
S ermsrmnnmnee P VTHIA PrH <10 - - L
< - | -
3 0.15- f L
2—2 | L
0.1} I L
4 2—3 g g
a3 0.05} ’H
L £l - o T
: | | | | } h *
| | | | | | 1 | 1 | | | | | | 1 1 : J’L'_ I_+
0 10 20 30 40 50 60 Qe .1,54“4*5

P (b), [GeV]
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W+jets normalization

» Find fractions of real and fake isolated ¢ in the data before b-
tagging. Split samples in loose and tight isolation:

N/oose: Nloose + Nloose |
fake real Obtaln: Nloose and N]Icgize

tight loose loose real
N o Efake Nfake + Ereal Nreal

» Normalize the MC Wjj and Wbb samples to the real ¢ yield
found in data, after correcting for the presence of tt events:

N =SF[Y (Wjj)+Y (Wbb)+Y (Wce)|+Y (tt) SF=1.4

Ereal real

» The sum Y(Wijj)+Y(Wbb)+Y(Wcc) is done according to the
ratio of (Wbb+Wcc)/Wjj found in 0-tag data —» 1.5+0.5

» Then apply b-tagging
» Greatly reduce W+jets background (Wbb ~1% of Wjj)
» Shift distributions, changes flavor composition
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Wbb and Wcc fraction

@ \We use our own data to derive the
Wbb+Wocc fraction: something very 2
close to 1.5 is needed to describe our .
data

@ This is not a measurement of Wbb,
but a fraction determination. The full 14
W+jets yield is scaled to data

o =1.51+0.04

1.6

T 1
!
e . ]

1

i

i

—

N
[ I ]
N
o
1

[ B
N
N B
i

e

il
N
¥ B
1

i

:

1

L o

i

1

1.2
@ Until we have our own measurement,

this is the best we can do 1

0 1 2 3 4 J 6 7 8

scale Factor e to Match Heavy Flavor Fraction to Data

1 jet 2 jets 3 jets 4 jets

Electron Channel

0 tags 1.53 £010 148 £+£010 1.50+020  1.72 & 040

1 tag 1.20 £ 010 158 £ 010 140 020  0.69 = 0.60

2 tags — 1.71 £040 202 £ 120 -2.01 £ 3.50
Muon Channel

0 tags 1.4 £010 150+ 010 1.524+010 138 +£0.20

1 tag 111 £010 152010 132020  1.86 x 0.50

2 tags — 1.40 £ 040 246 £ 090  3.78 £ 2.80
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What about shapes?

» NLO shapes for Wbb are different from Alpgen (LO)
» Specially at low b-jet p; (<25GeV) and m,, (<25GeV & >80GeV)

@ Until we have a data-based method to extract Wbb or a pT
dependent k-factor from MC, we are stuck with a constant

@ |Let the data judge. We have found overall good agreement in
all kinds of distributions inside our acceptance before and
after tagging: angular correlations, pTs, background cross
check samples, discriminant outputs...

= [ D@ Run Il Preliminary 0.5 b D@ Run Il Preliminary 0.9 fb' 3 | #Da Run Il Preliminary 910pb'

éﬁ{l}— Hjets BHJElS| &= | ==gyt-channel e+jets
i pre tag : ==11ag| g€ 60 mEsit-channel ==1 tag
. == jets| 100 ==2jets| § | -li" ==2 Jets
. WL mWijets HT<175.0

— B | -fﬂ{«ﬁ-lﬁpt

1000~ a0

=

L1 o

1] 10@ 150 ul] 2 4 6 0.2 0.4 0.6 0.8 1
LW [GeV] A R(jet1jet2) tbigb-combined DT output (fulltree)
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Wbb/Wcc shape difference

» Can you assume that Wbb and Wcc fractions separately can
be described by the Wbb+Wocc fraction?

@ We changed the Wbb/Wcc ratio by =10% and re-calculated
the single top cross section:

@ More Wbb, less Wcc: o(tb+tgb)=4.85+1.4pb
@ Less Wbb, more Wcc: o(tb+tgb)=4.98x+1.5pb
@ Weak dependence based on similarity between Wbb and

Wip =1tag Wip =1tag
Entries 373918 Entries 241581
18 Mean 54389 | Mean 38.94
- RMS 30.28 | 5[ RMS _23.65
- , N
16: Wee =1tag B Wee =1tag
— Entries 77354 [ Entries 55851
14: Mean 5283 ()— Mean 38.83
12— RMS 3018 [ RMS 20.91
- Wbb =1ta - Wbb =1ta
10— Entries 98851 |5— Entries 70788
- Mean 5292 | [ Mean 38.08
ar— RMS 29249 [ RMS 20.27
- —
6— -
a4— L
2—
: 1 | L1l | L | | ! | L1l | L R P T b_l 1l | 111 | 111 | 111 | | I N e T [ | T
% 20 40 60 80 100 120 140 160 180 200 220 240 20 40 60 80 100 120 140 160 180 200 2&'&224“
Leading b-Tagged Jet P P,

T



Error on the HF fraction

» How come a 30% error on HF fraction doesn't destroy all
sensitivity?

@ This (still) is a statistics limited analysis: 1.2pb out of 1.4pb
error comes from stats alone

@ The 30% error (1.5+0.45) covers shape differences in the
NLO distributions and between Wbb and Wcc

@ After tagging, the uncertainty on the total W+jets yield is
reduced from 30% because:

a) Not the entire sample is Wbb+W-cc, the uncertainty on the
sum is smaller than 30%

b) The anti-correlation between Wjj and Wbb+Wcc due to the
normalization before tagging further reduces the uncertainty

@ This uncertainty is still the largest flat systematic in the end
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Systematics

Relative Systematic Uncertainties

tt cross section 18% Primary vertex 3%
Luminosity 6% Electron reco * ID 2%
Electron trigger 3% Electron trackmatch & likelihood 5%
Muon trigger 6% Muon reco * ID 7%
Jet energy scale wide range || Muon trackmatch & isolation 2%
Jet efficiency 2% Ereal—e 2%
Jet fragmentation 5-7% Ereal— 2%
Heavy flavor fraction 30% Efake—e 3-40%
Tag-rate functions 2-16% Efake—p 2-15%
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Boosting

» Single trees can have spikes, even with 1.s: e b
enough statistics of training events It o
» We use the weighted sum of 20 trees "t
0.8F-
@ Smoother distributions 0.65
@ Better separation o2k
. e

= I I BN IR P | NUPRNN PRI B
-04-0.2 0 02040608 1 1.2 1.4
wbb filter output

@ More stability

Measured performance Figure of Merit - Measuring sample
> 1= =
g 8 |
9 | < *
; i 0.23f
® 08— B
m B =
5 | "\
= [ 0.225[—
06 -
0.22[—
0.4 i
B —&— After 0 boosts i
®- After 5 boosts 0215
0.2 »— After 10 boosts g ;
#— After 15 boosts =

o~ After 20 boosts
0.21 Ao on on NURDRINIPIIPS =0

L1 I L1l | Ll L I 1 Ll | Ll | | L1 __1 | L1 L I L Ll J 1 L | L1 1 | 1 L
188 20 22
Boosting cycle
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Correlations

» Take the 50 highest ranked data events in each

method and look for overlap:

Technique Electron  Muon
DTvs ME  52% 58%
DT vs BNN  56% 48%
ME vs BNN  46% 52%

» Calculate the linear correlation

petween the measured
cross sections in the same 2000 members of the SM

ensemble
DT ME BNN
DT  100% 57%  51%
ME 100% 45%
BNN 100%

Ardn Garcia-Bellido
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tb and tgb separately

» Remove the constraint of SM s:t ratio

» Measure model independent s- and t-channel cross sections
D@ Run 11 0.9 fb™

=10
9 o ¢ DO data o(tgb) = 3.8 /{¢ pb
= = S\
© 8 1 std. dev|
= — +
E 70 > <td. dev) o(tb) = 0.9 = 0.9 pb
" oE 3std. dev)| _
2 C -8_ @ Standard Model
2] = = u PRD66, 054024 (2002)
E - E 4 A‘ ¢n  Topflavor (m=1TevV)
T - = A ZcFCNC (gngz)
— 4r o @ “hiamiy (V'=05)
QL n ‘g 3 Top-pion (m =250 GeV)
E 3 :_ 8 PRD63, 014018 (2001)
% 25 é 2" °
- 1 TCJ 1
IIII|IIII|IIII|IIII|IIII|IIII g
123456789105 11 é |
s-channel cross section [pb] s-Channel tb Cross Section [pb]
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Expected p-values and o

Decision Trees
p-value 1.9%
exp. sig. 2.1o

sit-channels, totgp D@ Run Il Preliminary, 910 pb’

z .. -~
L . h
c ] . |
& 025 : ; =
5 F | ; g
& o2+ ! ’ ’ c
] H i : Measured @
e F | e
N ' : +1.8
L | i =275 pb &
0.1 : ' el
B : i Bayes Ratio = 8.0 =
E ; ‘ ; o
0.05 : : : :?-':
- NI DS R B I
% 2 a 6 8 0 12
Cross Section [pb]
b
D@ Run Il Preliminary 910, pb"  Eniries 65150
Maan 0.525
AMS 07963
ot e+|l-channel
Full systematics
10°
1300 entries above

observed cross section
p-value: 1.9e-02
sigma: 2.1

4 5 ] 7 a

<]
Observed ibigb cross seciion [pb]
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Bayesian NN M
p-value 1.6%

exp. sig. 2.20

atrix Elements
p-value 3.1%
exp. sig. 1.9¢

0.5 C .
0.455 (b) All Systematics (Expected) E ’,\ o= 2.8'1%pb
0.4 « electron (e) 0'25%— ' IR ) Bayes Ratio: 10.8
3 © muon () D e Ly O _19
0.35¢ — e+ 0_2j E "",ri AoC
0.3 sl 1
E o=2.7x1.5pb 015k & »
025 S
02t i
0.15F 3:’ 5 i '\ i
= 0.05 = ' ;
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Background-only ensemble

Entries: 44000

p-value: 0.016 °
Std.dev: 2.2
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Evidence for single top at DG

3139 entries above
cross section = 2.9 pb

p-value: 0.031
sigma: 1.9
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