Seminar at Departamento de Física Teórica, UAM

February 12, 2004

Protons in the praire: Status of the DØ detector at Fermilab

- The RunII detector. Operations. Upgrade
- Top physics
- New analysis of M_{top} with Run I data
- B-lifetimes and B_s mixing
- Higgs searches and sensitivity study
- New phenomena searches
- Expected results for the 2004 Winter Conferences

Arán García-Bellido

Tevatron at Fermilab

Run I 1992-95 Top quark discovered! Run II 2001-09(?) $\sqrt{s} = 1.96 \text{ TeV}$ $\Delta t = 396 \text{ ns}$ 36x36 bunchesPeak Lum $5x10^{31} \text{ cm}^{-2}\text{s}^{-1}$ Delivered ~260 pb⁻¹ (~ x2 previously collected) Unprecedented window into the nature of matter...

2/12/04

Chicago

Status of the DØ detector at Fermilab

ð.

The Run II DØ detector

Silicon detector

3m² of silicon Active Channels: 91% of 800k S/N: > 10 all devices Cluster Efficiency: > 97% No fiducial loss

2/12/04

Status of the DØ detector at Fermilab

Central Fiber Tracker

First use of scintillating/VLPC in accelerator 8 layers scintillating fiber doublets

4 axial & 4 stereo Active Channels: 99% of 77k Excellent light yield Hit efficiency > 98%

$\gamma \rightarrow e^+e^-$ tomography

Fine structure of detector is seen and can be studied

LAr Calorimeter with U absorber

Same detector, new electronics 99% channels alive of 50k Improved grounding and isolation during shutdown

Dijet Mass: 838 GeV (x ~ 0.4)

Status of the DØ detector at Fermilab

Muon system

New forward detector and shielding
Coverage to |η | < 2
3 layers of triggering scintillator planes:
99.9% active
3 layers of precise tracking drift tubes:
99.5% active

Runs comfortably up to 5x10³¹ cm⁻²s⁻¹ and will keep pace with luminosity growth as tracking triggers completed, CPUs added.

L1: >100 independent trigger bits

Operating with Cal & Muon

CTT & PS integration is testing

L2:

Operating with Cal, Muon, Global

CTT, STT is commissioning (taking data, not for physics)

Input rate expansion w/ processor replacements

L3: Extensive suite of filters available

DAQ:

Working to reduce Front End Busy rate (~4%, mostly tracking) All commodities solution easily meets 1 kHz L2 accept specification Can monitor from a cell phone!

Offline event reconstruction and analysis

DØ Reconstruction Farm 240 1.8 GHz dual CPU machines 20M event/week capacity events processed within days of collection 400M events processed in Run II so far

Integrated Luminosity

~260 pb⁻¹ on tape: an overall 77% efficiency

Inefficiency due to:

~ 5% FEB ~ 5% losses in store & run transitions ~ 5% "incidentals"

DAQ steadily improved during the run and routinely run at 85% efficiency before the shutdown

Average 8 pb⁻¹ per week after shutdown

Tevatron progress

We just had a major shutdown:

Realignment ⇒ new beam position detectors installed Recycler ⇒ much better pbars now! Tevatron recovered slowly but effectively from shutdown Record peak luminosities almost every day since! Latest record: 5.6x10³¹ cm⁻²s⁻¹ Stores last around 20h

Ongoing analyses

Electroweak

• W/Z cross sections, dibosons and anomalous couplings, charge and rapidity asymmetry, ...

Top Quark

• Top quark pair production cross section measurements, top quark mass and decay properties, search for single top quark production, ...

New phenomena searches

• Higgs bosons, supersymmetry, leptoquarks, large extra dimensions, Z',...

Heavy flavor

 \bullet Resonance reconstructions, masses, lifetimes, branching fractions, rare decays, $\rm B_{s}$ mixing, \ldots

<u>QCD</u>

. . .

• Inclusive jet cross section, dijet mass and angular distributions, diffraction,

2/12/04

Top quark physics in Run II

The Tevatron is the world's only source of top quarks!

Top quark has a special place in the SM: $M_{t} \sim v/\sqrt{2}$

Run I: Identified ~100 top events

Run II: with high precision we hope to answer questions such as:

Why is top so heavy? Is it or the third generation special? Is top involved with EWSB? Is it connected to new physics?

Top quark Production

Pair production through strong interaction <u>σ(tt)</u> ~ 7.5 pb at 1.96TeV (NNLO CTEQ5M, Kidonakis et al.)

Main production mode at Tevatron30% higher $\sigma(tt)$ than in Run IRun I result with ~100 tops/experiment:CDFDØ

 $\sigma(t\bar{t}) = 6.5^{+1.7}_{-1.4} \, pb$

Single top production via EW interaction $\underline{\sigma(t)} \sim 2.86 \text{ pb}$ at 1.96 TeV (NLO, Sullivan et al.)

Flagship measurement at Run II Discovery is possible with ~ 0.5 fb⁻¹ Dominant bkgs: Wjj, tt, QCD Measure s- and t-channel cross sections separately (diff. topologies) First direct probe of $|V_{tb}|$ (measure to 15% with 2fb⁻¹)

~30% of $\sigma(t)$

Status of the DØ detector at Fermilab

Top decays

In the SM: BR(t \rightarrow Wb)~100%, classify topologies according to W decays from ttbar:

dilepton: 2 high p_T leptons, 2 *b*-jets, large E_t^{mis}

Small BR, but cleaner signal and small systematics. No *b*-tagging Physics bkgs: WW/WZ (determined from MC); DY (from data) Instrumental: fake leptons in W+jets and QCD and fake E^{miss} (from data)

lepton+jets: 1 high p_T lepton, 4 jets (2 b's), large E_t^{mis}

Larger yield, larger bkg \Rightarrow Use event topology, *b*-tagging (and SLT) Backgrounds: W+jets and fake leptons in QCD

all jets: 6 jets (2 *b*'s)

Swamped by bkg, very challenging, but impossible at LHC! Use NN

Lifetime *b*-tagging

Top cross section- dilepton channel

Selection criteria:

2 isolated high-p_T leptons, MET_{CAL}, H_T= ΣE_T and more than 2 jets

Top cross section- l+jets channel

Method:

Preselect a sample enriched in W events Evaluate QCD multi-jet (as a function of N_{jets}) Estimate W+4jets assuming Berends scaling Apply topological selection

Require:

1 EM object or muon, MET, soft muon veto +Topological analysis: $n \ge 4$ jets

+Tag *b*-jets with soft lepton tag (SLT): ≥ 3 jets, ≥ 1 SLT, H_T>110 GeV,

 $E_{T}(W) > 60 \text{ GeV}, A > 0.04$

+Tag *b*-jets with *b*-lifetime tag (SVT or IP):

 \geq 3 jets, \geq 1 *b*-tag

jet multiplicity

SVT *b*-tag L=45pb⁻¹ D0 RunII Preliminary

Channel	Lum (pb ⁻¹)	Expected Background	Expected Signal	Obs.
e+jet	50	2.7+/-0.6	1.8	4
μ+jet	40	2.7+/-1.1	2.4	4
e+jet/μ	50	0.2+/-0.1	0.5	2
μ+jet/μ	40	0.6+/-0.3	0.4	0
I+jet/CSIP	90	2.5+/-0.7	4.0	6

Double-tagged μ +jets candidate event

Top cross section $\sigma(t\bar{t}) = \frac{N_{obs} - N_{bkg}}{A \delta L}$

Summer conferences results:

Status of the DØ detector at Fermilab

New M_t analysis with Run I data

Likelihood method using individual event probability and better combinatorial accounting Construct signal and background probability:

Uses DØ Run I statistics (125 pb⁻¹) and selection → 91 events + require 4 jets exclusively (LO ME) → 71 events + cut on bkg prob to improve purity→ 22 events

$$-\ln L(M_{t}) = - \bigotimes_{i=1}^{N} \{ \ln [c_{1}P_{t\bar{t}}(x_{i};M_{t}) + c_{2}P_{bkg}(x_{i})] \} + N \grave{O}A(x) [c_{1}P_{t\bar{t}}(x;M_{t}) + c_{2}P_{bkg}(x)] dx$$

Minimize likelihood and estimate signal and bkg fractions (c_1 and c_2) and M_t

Status of the DØ detector at Fermilab

New M_t analysis with Run I data: results

 $\Delta m_d = 0.502 \pm 0.006 \text{ ps}^{-1} \text{ (world comb.)}$ Measured with great precision by Belle & BaBar To measure B_s mixing, need: B_s fully mixes in <0.15 lifetimes!! $\Delta m_s > 14.4 \text{ ps}^{-1} 95\% \text{CL}$ (world comb.) Only at hadron colliders

Tag initial state flavour (what was produced, a B or a Bbar?) Tag final state flavour (what decayed was a B or a Bbar?) Yield: as much decays as possible (flavour tagging is imperfect) Proper decay length: L_{xy} and $\beta\gamma = p_T/m_B$ (mix prob vs decay time) **Difficult measurement! It's doable, but will take time!** 2/12/04 Status of the DØ detector at Fermilab 28

Towards B_s mixing

Tagging power estimated from $B^{\pm} \rightarrow J/\psi K^{\pm}$ data:WeOpposite side jet charge: $\epsilon D^2 = 3.3 \pm 1.8\%$ andOpposite side soft muon: $\epsilon D^2 = 1.6 \pm 0.6\%$ theSame side track: $\epsilon D^2 = 5 \pm 2\%$ the2/12/04Status of the DØ detector at Fermilab

We have observed B_d signal and are working to optimize the analysis

Bandwidth Issues

Our heavy flavor physics program has shown great potential. However, its potential is currently limited by computing resources available.

We administratively limit the rate to tape at 50 Hz \Rightarrow low pT single muon triggers heavily prescaled and effectively turned off at luminosities above 40E30. Dimuon triggers are prescaled too.

Luminosity (cm-1 s-1)	Trigger R (prescale fa	ate ctor)	[™] [
	pT > 5 GeV	pT > 3 GeV	
20E30	8 Hz <mark>(2)</mark>	27 Hz	
40E30	15 Hz <mark>(61)</mark>	52 Hz	
60E30	23 Hz <mark>(off)</mark>	80 Hz	⁻ 0 1 2 3 4 6 8 7 8 9 10 <i>p</i> ₇ [GeV/c]

To fully explore the potential, we need to increase our rate to tape: Not a problem with the trigger system (prescale at Level 3). Planned Run IIb upgrade will enable our DAQ to run at 100 Hz. The problem: storage, drive, reconstruction and analysis CPUs. The solution: increase our capacity at Fermilab, expand offsite processing resources, speed up reconstruction program.

Reach in Bs Mixing

The upgrade will increase Bs yield by a factor of 3 at low luminosities to more than 5 at high luminosities. Thus it will extend the reach well into "interesting region" from the global fits.

Fermilab PAC, December 13, 2003

Jianming Qian, University of Michigan

Observation of Belle's X(3872)

Higgs searches

With current dataset we don't expect to see a SM Higgs signal Looking for non-standard variants and developing tools:

Background understanding is critical

Need high *b*-tag efficiency and low mistag rate

Excellent dijet mass resolutions to disentangle $H \rightarrow bb$ from multijet bkgs

Results on W(\rightarrow ev)+jets with b-tagging, H \rightarrow WW^{*} and H⁺⁺ \rightarrow µµ

New Higgs sensitivity study

We now have tuned, hit-level simulations of our detectors Use current analysis techniques Event selections can now be based on actual top & EW analyses Concentrate on $115 < m_H < 140$ GeV Combine CDF: WH $\rightarrow l\nu bb$ and DØ: ZH $\rightarrow \nu \nu bb$

Note: no systematics + Si upgrade in! Sadly, we now know we won't have **RunIIb new silicon detectors**

Findings:

2/12/04

Despite some optimistic assumptions of the old study, its conclusions are supported There is room for more optimized analysis, better *b*-tagging (to large η) Fitting the mass distribution amounts to a gain of 20% in luminosity compared to counting in a mass window

New Phenomena Searches Summer 2003

Seven analyses presented at the winter conferences.

Approaching Run I sensitivity.

Data samples: ~30-50 pb⁻¹

SUSY

GMSB SUSY LSP Search: $2\gamma + ME_{T}$ m_{LSP} > 66 GeV @ 95% CL

mSUGRA Chargino/Neutralino $ee+lepton+ME_{\tau}$ (trilepton mode) σxBR < 3.5 (2.2) pb @ 95% CL

Standard SUGRA (χ⁰ LSP) $2jets + ME_{T}$

sets model independent cross-section limit vs ME_T

stalighesteME detevent fil 80 GeV

New Phenomena Searches Summer 2003

New Phenomena Searches: τ Channel

The τ-lepton often plays a relevant role in models of Beyond the SM physics (trileptons in SUSY, 3rd generation LQs, Higgs decays). addition of this channel considerably extends the physics reach

DØ Results from summer 2003

I've shown just a fraction of our program

Masses, or scale limits

 $M(B^{**}_{d}) = 5.71 \pm 0.016 \text{ GeV}$ $m(\chi_0^{-1}) > 80 \text{ GeV}$ $m_{1/2} > 150 \text{ GeV}$ $M_s(GRW) > 1.28 \text{ TeV} (ee/\gamma\gamma)$ $M_{s}(GRW) > 0.88 \text{ TeV} (\mu\mu)$ $M_{1.0}(\mu\mu) > 184 \text{ GeV}$ $M_{LO}(ev) > 159 \text{ GeV}$ $M_{10}(ee) > 231 \text{ GeV}$ $M_{7}(ee) > 719 \text{ GeV}$ $M_{z}(\mu\mu) > 620 \text{ GeV}$ $M(H^{\pm\pm}) > 115 \text{ GeV}$

BR and R

 $BR(B_{s} \rightarrow \mu\mu) < 1.6 \times 10^{-6}$

 $\tau_{_{\Lambda b}} = 1.05 \ ^{_{+0.21}} _{_{-0.18}} \pm 0.12 \ ps$

 $\tau(B \rightarrow D l \nu) = 1.46 \pm 0.08 \text{ ps}$

Cross sections, or limits

 $σ(tt) = 8.1^{+2.2}_{-2.0} + 1.6_{-1.4} \pm 0.8 \text{ pb}$ $σ(Zμμ) = 261.8 \pm 5.0 \pm 8.9 \pm 26.2 \text{ pb}$ $σ(Zττ, π-type) = 235 \pm 137 \text{ pb}$ $σ(Zττ, ρ-type) = 222 \pm 71 \text{ pb}$ σ(W+bb) < 33.4 pb σ*BR(H->WW->ee/eμ) < 0.45 to 2.8 pb σ*BR(H->WW->μμ) < 0.2 to 0.7 pb

$R_{W/Z} = 10.34 \pm 0.35 \pm 0.48$ Expect more for this winter conferences!

Tevatron prospects

300 pb⁻¹

Improved m_t measurement High p_T jets constrain proton structure B Physics: lifetimes, BRs, ... Searches beyond Run I sensitivity

2 fb⁻¹

Measure $m_t (M_w)$ to ±3 GeV (± 15 MeV)

Explore top properties

Directly exclude $m_{H} = 115 \text{ GeV}$

Significant SUSY and SUSY Higgs searches

B-physics: constrain the CKM matrix

5 fb⁻¹

 3σ Higgs signal @ m_H = 115 GeV exclude Higgs 115-125, 155-175 GeV exclude much of SUSY Higgs parameter space

We have entered unexplored territory... who knows what we will find!

Conclusions

Detector is operating well and the performance keeps improving

Just installed forward proton detector

- Making increasing use of tracking triggers
- Silicon track trigger is commissioning
- Intense work on reconstruction improvements: tracking efficiency,
- object identification, etc. Event reconstruction < 3 days

We have a large Run II dataset (x2 Run I) and exploiting upgraded detector

Expect ~210 pb⁻¹ for the summer updates

Promising B-physics program but need new trigger capabilities

Continue to explore the top quark and its properties: have progressed a lot! New algorithms, better understanding of the detector performance, object ID,...

Searches for new phenomena are entering new sensitivity region

And I haven't even mentioned all the EW and QCD results...

2/12/04