University of Rochester — Physics Colloquium November 30, 2011

The life of top quarks

Arán García-Bellido

The SM under attack

- But recently: Neutrino masses, dark matter
- So we know it is not a complete description of Nature
- Many unanswered questions:
 - Why three generations?
 - What is the mechanism responsible for particles' masses?
 - Why that hierarchy of masses?
 - What's with so many free parameters?
 - Gravity is not in the picture
 - Unification of three couplings is not possible

Top quark: not just the sixth quark

Heaviest known particle 40 times heavier than b

As heavy as one Tungsten atom

- Only quark that decays before hadronization lifetime ~10⁻²⁵s
- Couples strongly to EWSB boson Related to the origin of mass?

Unique laboratory to study the SM and beyond

A brief history of top

- 1976: Discovery of Upsilon (bb meson): a 5th quark means there is a 6th A race to find the 6th quark begins:
- > 1984: Petra e^+e^- (Germany) $m_t > 23$ GeV
- 1988: UA1 (CERN) m_t > 44 GeV
- 1992: CDF (Fermilab) m_t > 91 GeV, DØ (1994) m_t > 131 GeV
- 1994: Electroweak fits (LEP/SLC/TeV): 155 GeV < m_t < 185 GeV</p>
- 1995: DØ and CDF announce joint discovery
 - DØ: 50 pb⁻¹, 17 events, σ =6.4±2.2 pb, m_t=199±30 GeV
 - CDF: 67 pb⁻¹, 19 events, $\sigma = 6.8^{+3.6}_{-2.4}$ pb, m_t=176±13 GeV

Tools of the trade

Particle physicists use high energy colliders to probe physics at small distances

Note on units: N[collisions] = σ [pb] L[pb⁻¹]

- **Picobarns** (pb) is a measure of "cross section" (σ =interaction probability). 1 barn = 10⁻²⁴ cm².
- Inverse picobarns (pb⁻¹) is a measure of the "integrated luminosity" (L=collected data)

Example: 1000 $pb^{-1} = 1 fb^{-1} = enough data to observe 1000 events$ of a process having 1 pb cross section

GeV are used interchangeably for mass, energy, and momentum

The Tevatron

▶ 6.3 km pp collider $V = 1.96 \, \text{TeV}$ Run I: 1987-1996 Run II: 2002-2011 36x36 bunches $10^{11} \overline{p}$ per bunch 396 ns bunch spacing 1.8 M crossings/s 4.3·10³² cm²s⁻¹ peak lumi 12 fb⁻¹ delivered luminosity Detectors recorded data with 90% efficiency

Tevatron milestones Integrated Luminosity 11871.03 (1/pb)

General detector and particle ID

We detect particles by the EM and strong interaction fingerprints they leave behind

- Tracking is first (measure p_T)
- Calorimetry (EM and hadronic)

Muons

All the rest is neutrinos

The DØ detector

The real thing: the DØ detector

You better have good tracking

- The Silicon Microstrip Tracker allows resolutions of ~10 μm
- Inner radius: 1.7cm away from the interaction point

Bottom quark decays can be tagged

- B hadrons have a lifetime: $\sim 10^{-12}$ s
- They can travel a few mm in the detector before decaying
- Signature: displaced tracks and secondary vertices

Top quark Tevatron program

Are there signs of new physics anywhere

t', W', Z', H⁺, resonances, FCNC, anomalous charge...

Pair-production in *l*+jets

- **Signal**: $t\bar{t} \rightarrow Wb Wb \rightarrow \ell vb qqb$
 - $\sigma(t\bar{t}) = 7 \text{ pb}$
 - One high energy e or μ
 - Missing energy
 - ≥4 jets
 - 2 b-jets

- **Backgrounds**:
- W+jets: σ ~ o(1000) pb
 - From simulation
 - Rate normalized to data

Multijets ($\sigma \sim 10^9$ pb) Sampled from data, q \overline{q} \overline{q}

A tt candidate event in the data

Run 238436 Evt 2624772 Fri Dec 7 16:14:24 2007 Run 238436 Evt 2624772 Fri Dec 7 16:14:24 2007 ET scale: 64 GeV E scale: 57 GeV

Measuring the tt cross section

Select events with:

- Isolated e or μ with $p_T > 20$ GeV
- Missing energy > 20 GeV
- 2 or more jets with $p_T > 20 \text{ GeV}$
- Leading jet $p_T > 40 \text{ GeV}$
- Other clean-up cuts
- 0, 1, or 2 b-tagged jets

e+mu, ≥4 jets, ≥1 b-tag				
W+jets	131 ± 13			
Multijet	31 ± 4			
Z+jets	12 ± 2			
Other	19 ± 1			
tī	877 ± 45			
Total	1066 ± 38			
Observed	1060			

0 b-tags: kinematic variables discriminant

Combined method (0,1,2 b-tags)

- Combine non tagged and b-tagged data for 3 and 4 jets
- Where S:B is large, just count the signal events
- Production cross section (σ_{tī}) is proportional to the number of databackground events

 $\sigma_{t\bar{t}} = 7.8^{+0.8}$ (stat+sys) pb 8-10% relative uncertainty Expected in SM: $7.5^{+0.5}_{-0.7}$ pb at m_t = 172.5 GeV

- Result is systematics limited
- Main systematic uncertainties: luminosity determination and b-tagging efficiency

	0 b-tag	1 b-tag	2 b-tags
3 jets	discr.	discr.	count
4 jets		count	count

In the SM, R=1. R<1 could indicate new physics (additional quarks)
 Drop assumption of R=1 in σ(ℓ+jets) analysis

• Changes the predicted fraction of events with 0, 1 and 2 b-tags $N_{0,1,2}(R,\sigma_{tt}) = \left[R^2 \varepsilon_{0,1,2}^{bb} + 2R(1-R)\varepsilon_{0,1,2}^{bl} + (1-R)^2 \varepsilon_{0,1,2}^{ll}\right] \sigma_{tt} B^2(t \rightarrow Wq) L$

> Measure simultaneously with the l+jets cross section

$$\sigma_{t\bar{t}} = 7.9^{+0.8}$$
 (stat+sys) pb
R = 0.95 ± 0.07

Another way of producing t quarks

t-channel σ=2.1±0.1 pb

s-channel σ=1.1±0.1 pb

Electroweak production of single top quarks
 This mode was only discovered in 2009!
 Can measure W-t-b coupling directly at production
 Sensitive to new physics:

A candidate event

Run 177034 Evt 10482925

- $M_T(\ell, v) = 82 \text{ GeV}$
- M(ℓ,ν,b) = 177 GeV
- $Qx\eta = 1.88$

A challenging measurement

Combine several machine learning methods

Single top measurement results

	t-channel	s-channel	
Measured σ	2.9 ± 0.6 pb	1.0 ± 0.6 pb	
SM expected σ	2.3 ± 0.1 pb	1.04 ± 0.04 pb	
p-value	5.5 std. dev.	-	

- t-channel can now be measured on its own, independently of s-channel
- Does not assume SM for s-channel
- Obtain 20% precision on t-channel measurement
- Translate tb+tqb measurement in constrain on |V_{tb}| without assuming 3 families:

 $|V_{tb} f_{L}| = 1.02 \pm 0.11$

Top decay lifetime

The decay lifetime (half-life) tends to decrease with larger mass

- $\tau(\mu \rightarrow e^{-}\overline{\nu}_{e} \nu_{\mu}) = 2 \cdot 10^{-6} \text{ s} (m_{\mu} = 0.1 \text{ GeV})$
- $\tau(\overline{u}b \rightarrow c+X) = 1.10^{-12} \text{ s} (m_B = 5 \text{ GeV})$
- SM expected $\tau(t\rightarrow Wb) \sim 10^{-25} \text{ s} (m_t = 173 \text{ GeV})$
- The decay width is easier to measure: $\Gamma = \hbar/\tau$
- F is the spread in measured energy due to Heisenberg's unc. principle

Indirect measurement

Idea: use the partial decay width and decay fraction

- This result assumes that the production (in t-channel) and decay have the same properties
- New particles like b' could modify this width

 $\begin{aligned} \Gamma_{t} &= 2.0^{+0.5} _{-0.4} \text{ GeV} \\ \tau_{t} &= (3.3^{+0.9} _{-0.6}) \ 10^{-25} \text{ s} \\ |V_{th'}| &< 0.59 \end{aligned}$

Search for new physics

Generic lagrangian for W-t-b interaction:

$$\mathcal{L} = \frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (L_V P_L + R_V P_R) t W_{\mu}^{-} + \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (L_T P_L + R_T P_R) t W_{\mu}^{-}$$

SM: only left-handed vector couplings L_v are allowed $(R_v = L_T = R_T = 0)$

- Anomalous top quark couplings would change the kinematics of single top production
- No deviation is seen in the data
- We exclude one new coupling at a time, assuming the the other two are negligible: $(R_v = R_T = 0)$, $(L_T = R_T = 0)$, $(R_v = L_T = 0)$

Top quark Tevatron scorecard

Property	Measurement	SM Prediction	Luminosity (fb^{-1})
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: $7.5\pm0.31(\mathrm{stat})\pm0.34(\mathrm{syst})\pm0.15(\mathrm{theory})~\mathrm{pb}$	$7.46^{+0.48}_{-0.67} { m ~pb}$	up to 4.6
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6
$\sigma_{\mathbf{tbq}}$ (for $M_t = 172.5 \text{ GeV}$)	CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV)	$2.26\pm0.12~\rm{pb}$	3.2
	D0: 2.90 ± 0.59 pb		5.4
$\sigma_{\mathbf{tb}}$ (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb $(M_t = 175 \text{ GeV})$	$1.04\pm0.04~\rm{pb}$	3.2
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	5.3
	D0: 0.196 ± 0.065		5.4
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4
M_t	Tev: 173.2 ± 0.9 GeV	-	up to 5.8
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	$0.17\pm0.03~\rm{pb}$	6.0
$ V_{tb} $	CDF: $ V_{tb} = 0.91 \pm 0.11 (\text{stat} + \text{sys}) \pm 0.07 (\text{theory})$	1	3.2
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4
R = B(t ightarrow Wb)/B(t ightarrow Wq)	CDF: > 0.61 @ 95% CL	1	0.2
	D0: 0.90 ± 0.04		5.4
$\sigma(gg ightarrow tar{t})/\sigma(par{p} ightarrow tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	1
$M_t - M_{ar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6
	D0: 4/3 excluded @ 92% CL		0.37
Γ_t	CDF: < 7.6 GeV @ 95% CL	$1.26 {\rm GeV}$	4.3
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3

The Large Hadron Collider

<image><complex-block>

p-p collider at √s=7 TeV
 26 km long, 100m underground
 Delivered luminosity: 5.5 fb⁻¹
 Peak luminosity: 3.5·10³³ cm²s⁻¹
 Crossing rate: 40 MHz
 Rare processes: 1 in 10¹³

1 fb⁻¹ of LHC data produces 24 times more $t\bar{t}$ pairs than 1 fb⁻¹ of TeV data 18,000 top pairs in one fill of 16 hours!

Diameter: 15 m Length: 21 m Weight: 12500 tons Solenoid: 4 T, 12-m long

tt pairs results from LHC

- Huge production rate: from 7 pb to 165 pb
- Latest CMS analysis has ~13,000 top pairs candidates with 1fb⁻¹

Now moving on to expand the measurements of properties and searches for new physics

Searching for heavy new particles

Conclusions

- After 16 years the Tevatron has studied extensively the top quark production and its properties
 - It behaves as the SM predicts
- This remains an active and exciting topic
 - Some deviations from the SM are seen
 - Will publish results with 2 times larger dataset next year
 - Pushing the precision of theoretical calculations
 - Will focus on studies that cannot be done at LHC
- The top quark discovery and its full study will remain as the main legacy from the Tevatron
- The LHC has re-established the SM at 7 TeV
 - It is a top factory: precision will be much higher soon
- No sign of new physics yet
 - Very important limits on models beyond the SM
- Will collect lots of data next year and then 14 TeV in 2014! 36

Detectors as art

CDF Run I Silicon vertex detector at the Smithsonian museum, Washington

DØ forward preshower module at the Museum of Modern Art, New York

Extra slides

For more information:

Physics at a hadron collider is like... drinking from a fire hose

- ► Collision rate is huge Every 396 ns → ~1.7 MHz (live crossings)
- Total cross section ~0.1b 2-3 interactions per collision at L=10³²
- But W, Z, t, H are rare! Around 20 single top events per day
- Need trigger system to select interesting events Only store manageable size ~25MB/s

Signal selection

Signature:

a One high p_{T} isolated lepton (from W)

MET (ν from W)

- One b-quark jet (from top)
- A light flavor jet and/or another b-jet

Event selection: Only one tight (no loose) lepton: •e: $p_{\tau} > 15$ GeV and $|\eta^{det}| < 1.1$ • μ : p_T >18 GeV and $|\eta^{det}| < 2.0$ MET > 15 GeV ▶ 2-4 jets: $p_{\tau} > 15$ GeV and $|\eta^{det}| < 3.4$ •Leading jet: $p_T > 25 \text{GeV}$; $|\eta^{\text{det}}| < 2.5$ •Second leading jet: $p_{\tau} > 20 \text{ GeV}$ One or two b-tagged jets

Preparing the way for the LHC Studies at the Tevatron will help the LHC:

- Wbb measurement (will also help WH search) (DØ: hep-ex/0410062) Current limit at 4.6 pb for p_T(b)>20GeV
- In general, W+jets background determination techniques tt will be main background, but large uncertainties come from W+jets Effect of jet vetoes (N_{iet}=2), check other methods planned in LHC analyses
- Study charge asymmetries (Bowen, Ellis, Strassler: hep-ph/0412223) Signal shows asymmetry in $(Q_{\ell} \times \eta_{j}, Q_{\ell} \times \eta_{\ell})$ plane at TeV
- Study kinematics of forward jets in t-channel (WW \rightarrow H at LHC)
- Even measure asymmetry in production rate (Yuan: hep-ph/9412214) (probe CP-violation in the top sector):

$$A_{t} = \frac{\sigma(p\bar{p} \rightarrow tX) - \sigma(p\bar{p} \rightarrow \bar{t}X)}{\sigma(p\bar{p} \rightarrow tX) + \sigma(p\bar{p} \rightarrow \bar{t}X)}$$

TeV4LHC workshop report: 0705.3251 [hep-ph]