APS Northwest Section Meeting May 22, 2004

Recent results from the high energy frontier

Arán García-BellidoUniversity of WashingtonOn behalf of the DØ and CDF collaborations

The Fermilab Tevatron

Run I 1992-95 **Top quark discovered!** Run II 2001-2009 √s =1.96 TeV $\Delta t = 396 \, ns$ 36x36 bunches Peak Lum 7x10³¹ cm⁻²s⁻¹ Delivered ~450 pb⁻¹ (> x2 previously collected)

Unprecedented window into the nature of matter...

Current performance

- Continuous improvements
- Excellent running in 2004, beyond expectations
- Around 12 pb⁻¹ per week, stores last an average of 20 hours
- More than 300 pb⁻¹ on tape per experiment
- Data taking efficiency is usually 85-90%
- Analyses shown here with 100-250 pb⁻¹

Arán García-Bellido (UW)

CDF and DØ Runll detectors

Upgraded detectors to enhance physics program

Arán García-Bellido (UW)

Recent results from CDF and DØ

Exploring the TeV frontier

- ► LEP legacy: the Standard Model at VERY HIGH precision
- ► SK, SNO: Neutrinos have mass
- Belle & BaBar exploring the origins of anti-matter asymmetry
- Expanding Universe: dark matter & dark energy

Fermilab Tevatron Run II physics program:

- Continue and improve precision EW measurements
- Jet physics and QCD studies
- ► B-physics: lifetimes, branching ratios, mixing
- Study in detail the top-quark
- Investigate EW symmetry breaking: Higgs hunt
- Expect the unexpected: supersymmetry, extra dimensions, ...

Electroweak measurements

Arán García-Bellido (UW)

Recent results from CDF and DØ

Inclusive Z cross section

 $\sigma \cdot BR(Z \rightarrow \mu\mu) = 261.8 \pm 5.0(stat) \pm 8.9(syst) \pm 26.2(lum) \,\text{pb}$

 $\sigma \cdot BR(Z \rightarrow ee) = 255.2 \pm 3.9(stat) \pm 5.5(syst) \pm 15.3(lum) \text{ pb}$

Arán García-Bellido (UW)

Recent results from CDF and DØ

First hadron collider result on

Arán García-Bellido (UW)

Recent results from CDF and DØ

W/Z σ compared to theory CDF and D0 Runll Preliminary

Results compatible with SM Many other results:

- Diboson (WW, WZ, Wγ, Z γ) σ
 No deviations (...yet!)
- W+jets, Z+jets, Wb, Zb
- σ(Z+b)/σ(Z+jets) sensitive to b PDF
- Γ(W) improves world average
- Forward-backward asymmetry
- W mass is a more complicated beast

Tevatron EW Working Group: http://tevewwg.fnal.gov

Arán García-Bellido (UW)

Recent results from CDF and DØ

QCD and Jet physics

The Tevatron is the highest energy jet-factory: everything is QCD related

- ► Highest Q² probed ~10⁻¹⁷cm → precise test of perturbative QCD at NLO: jet and dijet cross sections, PDFs at high x, W/Z+jets, diphotons, jet evolution, heavy flavor quark production, azimuthal decorrelation,...
- Look for deviations and new physics quark compositeness, α_s,...
- Study of phenomenology on non-perturbative regime: underlying event modeling
- ► Other areas of study: diffraction, hadron spectroscopy,...

Inclusive jet cross section

Run I left an excess at high E_{T} now attributed to high x contribution in the gluon PDF

Central region is most sensitive to new physics and PDFs

Forward regions are less sensitive to new physics but still sensitive to PDFs

Data and theory agree within errors for all rapidity-regions Experimental uncertainties dominated by Jet Energy Scale (JES)

Arán García-Bellido (UW)

Data is well described by NLO MC throughout the whole kinematic region Now working on improving the Jet Energy Scale uncertainty

Arán García-Bellido (UW)

Recent results from CDF and DØ

Arán García-Bellido (UW)

Recent results from CDF and DØ

$W \rightarrow ev + jets$ differential cross section

•Test of QCD predictions at high Q²
•Signature: high-pt isolated e + MET + jets (ET>15)
•Fundamental channel for top/Higgs
•Backgrounds: fakes in all jet bins, top in 4th bin

Arán García-Bellido (UW)

Jet studies: azimuthal decorrelation

DØ has measured $\Delta \Phi_{dijet}$ in two jet events

At higher orders of α_s² additional jets induce azimuthal decorrelation:

 $\Delta \Phi_{dijet} < \pi$ indicates additional hard radiation

 $\lim_{p_{T3}\to 0} \Delta \phi_{dijet} = \pi$

- ΔΦ_{dijet} is sensitive to jet formation without having to measure the third jet directly
- Meas. $d\sigma/d\Delta \Phi_{dijet}$ incompatible with LO MC
- NLO pQCD agrees well in all kinem. regions
- "Tuned" (for underlying event) Pythia gives best agreement

B-physics

The study of B-hadrons is challenging at a hadron collider:

The bb production cross section is huge ~100µb and all B species are produced...

... But huge inelastic cross section: S/B ~ $10^{-3} \rightarrow$ Need specialized triggers:

- ► Single lepton triggers
- \blacktriangleright Dilepton triggers such as J/ $\psi \rightarrow \mu$ ^ μ^-
- ► L2 trigger on displaced tracks using SVX allows CDF to trigger purely hadronic B decays such as $B_0 \rightarrow \pi^+\pi^-$, $B_s \rightarrow D_s^-\pi^+$...

Arán García-Bellido (UW)

B-lifetimes

DØ has collected the world's largest sample of exclusive $B_s \rightarrow J/\psi \Phi(\rightarrow K^+K^-)$

CDF is competitive in all B lifetimes thanks to excellent momentum and vertex resolution

B-hadron	CDF measurement (ps)	PDG value (ps)	cτ (μm)
B⁺	$1.66 \pm 0.04 \pm 0.02$	1.674 ± 0.018	502
B ⁰	$1.49 \pm 0.05 \pm 0.03$	1.542 ± 0.016	462
B _s	$1.33 \pm 0.14 \pm 0.02$	1.461 ± 0.057	438
∧ _b	$1.25 \pm 0.26 \pm 0.10$	1.229 ± 0.080	368

Arán García-Bellido (UW)

Recent results from CDF and DØ

B lifetimes: T (**B**⁺)/**T** (**B**⁰) **ratio** DØ RunII Preliminary, Luminosity=250 pb⁻¹

Arán García-Bellido (UW)

Novel technique to measure τ (B⁺)/ τ (B⁰): Measure directly the ratio $r=N(D^*\mu)/N(D^0\mu)$ at different decay distances

 $\Delta m_{d} = 0.502 \pm 0.006 \text{ ps}^{-1} \text{ (world comb.)}$

B_s fully mixes in <0.15 lifetimes!! $\Delta m_s > 14.4 \text{ ps}^{-1} 95\% \text{CL}$ (world comb.)

Measured with great precision by Belle & BaBar Only reachable at hadron colliders D^{\oslash} Run II Preliminary

DØ uses its large sample of semileptonic B_d decays to measure the oscillation frequency:

 $\Delta m_d = 0.506 \pm 0.055(stat) \pm 0.049(syst) ps^{-1}$

Use opposite side muon to tag initial state:
► Same lepton charge for oscillated mesons
► Opposite lepton charge for non-oscillated mesons

Recent results from CDF and DØ

Towards B_s mixing

Excellent B_d yield, ideal control sample for B_s mixing studies

Semileptonic decays:

► Very good statistics but poorer time resolution

► If $\Delta m_s \cong 15 \text{ ps}^{-1}$ expect a 1-2 σ measurement with 500 pb⁻¹

Fully reconstructed hadronic decays:

- ► Poorer statistics, excellent time resol.
- ► Need a few fb⁻¹ of data to reach

$$\Delta m_s \cong 15 \text{ ps}^{-1}$$

Arán García-Bellido (UW)

Recent results from CDF and DØ

The Tevatron is the world's only source of top quarks!

Top quark has a special place in the SM: $M_t \sim v/\sqrt{2}$

Run I: Identified ~100 top events

Run II: with high precision we hope to answer questions such as:

Top decay modes

In the SM: BR(t \rightarrow Wb)~100%, classify topologies according to W decays from ttbar:

dilepton: 2 high p_T leptons, 2 b-jets, large E_T^{mis} Small BR, but cleaner signal and small systematics. No b-tagging Physics bkgs: WW/WZ, DY

Instrumental: fake leptons in W+jets and QCD and fake E_{T}^{miss}

► lepton+jets: 1 high p_T lepton, 4 jets (2 b's), large E_t^{mis} Larger yield, larger bkg \Rightarrow Use event topology, *b*-tagging (and SLT) Backgrounds: W+jets and fake leptons in QCD

▶all jets: 6 jets (2 b's)

Swamped by bkg, very challenging, but impossible at LHC! Use NN

Top dilepton cross section hep-ex/0404036 $\sigma(t\bar{t}) = 7.0^{+2.4}_{-2.1}(stat)^{+1.6}_{-1.1}(syst) \pm 0.4(lum)$ pb

Flavor distribution is consistent with expectation (there was an excess of eµ in CDF I) Error is statistics dominated Both experiments clearly re-establish top signal!

Arán García-Bellido (UW)

Recent results from CDF and DØ

Tagging b-jets

Both experiments can tag b-jets with up to 55% efficiency for 0.5% fake rate tag (SVX)

Arán García-Bellido (UW)

Tagged Top ℓ+jets cross section

Use MC for diboson and W+heavy flavor estimates Use data for non-W QCD and fake tags

Arán García-Bellido (UW)

Doubly tagged µ+jets event

Arán García-Bellido (UW)

Top cross section measurements

Arán García-Bellido (UW)

Recent results from CDF and DØ

Top quark mass status

All methods rely on templates for different top mass hypothesis
 Build templates which predict the distribution of an observable that depends on m_t
 This "mass estimator" can be:

 Single number like reconstructed top mass from kinematic fit
 Continuous curve: matrix element method using individual event probabilities

DØ Run I ℓ +jets top mass with reduced statistical uncertainty from multidimensional probabilistic estimator has been included on a new Run I Tevatron combination (hep-ex/0404010): Old Run I TeV m_t = 174.3±3.2±4.0 GeV/c² New Run I TeV m_t = 178.0±2.7±3.3 GeV/c² First competitive RunII top mass result from CDF ℓ +jets (L=162pb⁻¹) using prob. estimator:

 $m_t = 177.8^{+4.5}_{-5.0}(stat) \pm 6.2(syst)GeV/c^2$

Mass of the Top Quark M_{top} [GeV/c²] Measurement 167.4 ± 11.4 CDF di-l DØ di-l 168.4 ± 12.8 CDF I+j 176.1 ± 7.3 180.1 ± 5.3 DØ I+i CDF all-i 186.0 ± 11.5 χ^2 / dof = 2.6 / 4 178.0 ± 4.3 **TEVATRON Run-I** 200 150 175 $\mathsf{M}_{\mathsf{top}}$ [GeV/c²]

Arán García-Bellido (UW)

Electroweak fits

New most likely value: $m_{H} = 117^{+67}_{-45}$ GeV or $m_{H} < 251$ GeV (95% C.L.) Excluded with direct searches at LEP2: $m_{H} > 114.4$ GeV (95% C.L.) Tevatron goal with 2 fb⁻¹ measure m_{t} to ±3 GeV and m_{w} to ±15 MeV

Arán García-Bellido (UW)

Simulations performed with Alpgen + Herwig

and detailed detector response

Main backgrounds:

CDF Run II limit: $\sigma(WH \rightarrow \ell Vbb) < 5 pb$ Exceeds CDF's Run I limit: $\sigma < 14 pb$

Mistags, Wbb, Wcc, QCD, tt, single top

Arán García-Bellido (UW)

Heavy Higgs: $H \rightarrow WW^{(*)} \rightarrow \ell^+ \ell^- \nu \nu$

	ee	еμ	μμ
Observed	2	2	5
Expected	2.7 ±0.4	3.1 ±0.3	5.3 ±0.6

Cannot reconstruct H mass Use spin correlations to suppress bkg Good agreement in all final states

Arán García-Bellido (UW)

Recent results from CDF and DØ

Light SUSY Higgs at high tanß

mSUGRA searches: trileptons

Clean signature, but low σ Low SM bkg

L=158pb ⁻¹	ee	еμ	μμ
Observed	1	1	1
Expected	0.27	2.9	0.23

Large extra dimensions

Signature: dileptons or diphotons (also for Z', SUSY RPV, techincolor...) No deviations are observed

CDF Run II $M_s > 1.11 \text{ TeV}$ DØ Run II $M_s > 1.36 \text{ TeV}$ $(M_s \text{ is } (3+n)\text{-dimensional Plank scale})$

Conclusions

- ► The Tevatron Run II is progressing well
- CDF and DØ are collecting data efficiently: more than twice in Run I
- Providing the physics results they were designed for
- First published papers with Run II data and many more on the pipeline
- Electroweak measurements provide ideal scenario to test the SM and are fundamental to understand the detectors
- lncreased \sqrt{s} at Run II allows testing of higher Q²
- Extensive top-quark studies
- Understanding of backgrounds for Higgs searches is improving, new better limits
- Searches limits have now surpassed Run I sensitivity

Run II Iuminosity prospects

Arán García-Bellido (UW)

Recent results from CDF and DØ

Back up: Initial B-flavor tagging

