International Meeting on Fundamental Physics

El Escorial, April 7, 2006

Search for single top quarks at DØ

- Electroweak top quark production
- Signal and background modeling, b-tagging
- Analysis strategy:
 - Loose event selection
 - Multivariate analysis: Likelihood Discriminants
 - Binned likelihood for limit setting
- Results
- Conclusions and outlook

Arán García-Bellido

- Look for new physics: FCNC, 4th generation, W', SUSY,...
- Probe W+jets understanding and help SM higgs searches

Signal and background modeling

Signal: "Effective" NLO CompHEP

- Match 2→2 and 2→3 processes using b p_T for cross over, normalize to NLO
- Resulting distributions agree well with ZTOP & MCFM

W+jets

- Distributions from Alpgen
- Wbb to Wjj fraction from NLO
- Normalization from data
- Top pairs: Alpgen
- Multijet events: from data
 - Misidentified lepton
- Diboson (WZ, WW): Alpgen

New NN tagger now certified with much better efficiency! Arán García-Bellido (UW) Single Top search at DØ

60

Jet p_T [GeV]

DØ

c-jet efficiency

mis-tagging rate (×10)

Analysis strategy

1) Event Selection and yields (370 pb⁻¹)

▶ 1 isolated lepton (e,μ)		s-channel	t-channel	
$p_T > 15 \text{ GeV}$ $ \eta_{e(\mu)} < 1.1 (2.0)$ MET: MET > 15 GeV	Cuts acceptance	23%	22%	
	b-tag eff	54%	38%	
► Jets: $2 \le N_{iots} \le 4$	Signal yield	9.5	15.0	
$E_{T} > 15 \text{ GeV}$	Backgnd yield	45	2	
η <3.4	Data	443		
Jet1: E _T >25 GeV	S/B	1/50	1/30	
Other clean-up cuts	-	·	·	
b-tagging:			Wii	
Pretagged =1	o-tag ≥2 b	-tags 🔤	Whh	
10,000 events 367 e	vents 📕	F T		
			ww/wz	
			t-channel	
			s-channel	
Arán García-Bellido (UW) Single Top search at DØ 7				

2) Separate signals from backgrounds

More distributions

DØ Run II Preliminary, 370 pb⁻¹ 0.2 Probability density function 19.00 Event Yield t-channel (x10) Wjj, Wbb, Qcd 90 Þ s-channel (x10) **80** t-channel tŦ **70**È W+jets, WW, WZ 60 Multijet Data 50 40 0.06 30 0.04 20 0.02 10 0 Lepton charge x η non b-tagged jet 1 2 3 4 Lepton charge x η_{non b-tagged jet} -3 -1 0 -2 -1 a DØ Run II Preliminary, 370 pb⁻¹ **Event Yield** Probability density function 8.0.0 Probability density function 100 t-channel (x10) Wjj, Wbb, Qcd s-channel (x10) s-channel 80 t-channel tŧ W+jets, WW, WZ Multijet 60 Data 40 0.06 0.04 20 0.02 ٥Ē 0 500 600 700 100 200 400 500 600 700 200 300 400 100 300 0 Invariant mass of all jets (GeV/c2) Invariant mass of all jets (GeV)

- Build Wbb and tt discriminants for s- and t-channel, each for e, μ and single and double tags: a total of 16 likelihoods
- Use one tight and one loose tagged jets in the double tag sample
- Between 7-10 variables in the likelihoods
- Achieved similar sensitivity to Neural Networks

3) Results

Use 2D histograms as input for binned likelihood
Including bin-by-bin systematics and correlations
Uncertainties: b-tag 6-17%, JES 5%, trigger 5%, theory σ18%
Set 95% CL upper cross section limit with Bayesian approach to combine channels (e, µ and 1 tag, 2 tags)
Multivariate analysis + shape information from output:

→ factor 2 better than simple cuts

Arán García-Bellido (UW) Sing

Single Top search at DØ

s-channel cross section [pb]

Conclusions & outlook

- DØ embarked in new reconstruction with better CAL calibration, Jet Energy Scale, Data-MC agreement,...
- Will have single top results with 1 fb⁻¹ soon!
- Improved b-tagging and new Matrix Element analysis
- Getting very close to observation!
- New result March 06: m(W')>650 GeV @ 95% CL Working on FCNC search

Latest DØ and CDF results: http://www-d0.fnal.gov/Run2Physics/WWW/results.htm http://www-cdf.fnal.gov/physics/physics.html

TeV4LHC: http://conferences.fnal.gov/tev4lhc/

Extra Slides

Arán García-Bellido (UW)

Single Top search at DØ

DØ for Run II

Data taking

Tevatron luminosity prospects

W+jets normalization

Find fractions of real and fake isolated *l* in the data before btagging. Split samples in loose and tight isolation:

$$N^{loose} = N^{loose}_{fake} + N^{loose}_{real}$$
$$N^{tight} = \varepsilon_{fake} N^{loose}_{fake} + \varepsilon_{real} N^{loose}_{real}$$

Obtain: N_{real}^{loose} and N_{fake}^{loose}

Normalize the MC Wjj and Wbb samples to the real *l* yield found in data, after correcting for the presence of tt and diboson events:

 $\varepsilon_{real} N_{real}^{loose} = SF[Y(Wjj) + Y(Wb\bar{b})] + Y(t\bar{t}) + Y(WW) + Y(WZ) SF = 1.05$

The sum Y(Wjj)+Y(Wbb) is done according to the NLO ratio of cross sections (MCFM) before b-tagging → 25% uncertainty

- Then apply b-tagging
 - Greatly reduce W+jets background (Wbb ~1% of Wjj)
 - Shift distributions, changes flavor composition

Systematic Uncertainites

Monte Carlo Systematic Uncertainties		Yield	180	DØ Run II Preliminary, 230pb ^¹ – ● - Data
Theory cross sections 1	5 %	ent	160	Background sum
SVT modeling, single (double) tag $10\%(20\%)$	0%)	Ĕ	120	s-channel (×10)
Jet Energy Scale 1	0%		100	
Trigger Modeling	6 %		80	<u> </u>
Jet Fragmentation	6 %		60	
Jet ID	5%		40 <u>-</u>	
ℓ ID	5%		0	
				2 3 4 Number of Jets
Some systematic uncertainties also affect shape:		it Yield	60	DØ Run II Preliminary, 230pb ⁻¹ —— Data —— Background sum
JES, b-tag and trigger modeling		Ever	50	t-channel (×10) s-channel (×10)
Total uncertainty:			40_	
1 tag 2 tags			30–	
Signal acceptance 15% 25%			20-	
Background sum 10% 26%			10_	
Result is statistics limited				
			0	100 200 300 400 500 600 700 800
				√ŝ [GeV]

Arán García-Bellido (UW)

Single Top search at DØ

19

Limits from binned likelihood

No evidence for single top signal
Set 95% CL upper cross section limit with Bayesian approach
Use 2D histograms as input for binned likelihood
Including bin-by-bin systematics and correlations

Used for DT and NN analyses Cut-based analysis uses likelihood from event count

tb-tt NN outpu tqb-tt NN output 12 12 10 10 8 8 0.5 0.5 6 6 4 4 s-chan 2 2 DØ Run II Preliminary, 230pb DØ Run II Preliminary, 230pb 0 0.5 Ω th-Whb NN outpu 0.5 1 tb-Wbb NN output tab-Wbb NN output

Arán García-Bellido (UW) Single Top search at DØ

data

single top

Sum bkgd

Sensitivity

With current analysis, we would need several fb⁻¹ for an observation of SM single top

Crash course in Bayesian probability

Bayes' theorem expresses the degree of belief in a hypothesis A, given another B. "Conditional" probability P(A|B):

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In HEP: $B \rightarrow N_{observed}$, $A \rightarrow n_{predicted} = n_{signal} + n_{bkgd}$, $n_s = Acc*L*\sigma$ P(B|A): "model" density, or likelihood: L(N_{observed}|n_{predicted})=n^Ne⁻ⁿ/N!

- P(A): "prior" probability density $\prod(n_{pred}) = \prod(Acc*L,n_b) \prod(\sigma)$ $\prod(n_s,n_b)$ multivariate gaussian ; $\prod(\sigma)$ assumed flat
- P(B): normalization constant Z: P(N_{observed})

P(A|B): "posterior" probability density $P(n_{predicted}|N_{observed})$)

 $P(n_{\text{predicted}} | N_{\text{observed}}) = 1/Z L(N_{\text{observed}} | n_{\text{predicted}}) \prod (n_{\text{pred}})$

Preparing the way for the LHC Studies at the Tevatron will help the LHC:

- Wbb measurement (will also help WH search) (DØ: hep-ex/0410062) Current limit at 4.6 pb for p_T(b)>20GeV
- In general, W+jets background determination techniques tt will be main background, but large uncertainties come from W+jets Effect of jet vetoes (N_{jet}=2), check other methods planned in LHC analyses
- Study charge asymmetries (Bowen, Ellis, Strassler: hep-ph/0412223) Signal shows asymmetry in $(Q_{\ell} \times \eta_{j}, Q_{\ell} \times \eta_{\ell})$ plane at TeV
- Study kinematics of forward jets in t-channel (WW \rightarrow H at LHC)
- Even measure asymmetry in production rate (Yuan: hep-ph/9412214) (probe CP-violation in the top sector):

$$A_{t} = \frac{\sigma(p\bar{p} \rightarrow tX) - \sigma(p\bar{p} \rightarrow \bar{t}X)}{\sigma(p\bar{p} \rightarrow tX) + \sigma(p\bar{p} \rightarrow \bar{t}X)}$$

TeV4LHC workshop report to appear soon

W' search in single top events

W'

 $\sigma(m_{w} = 600) < 1.7 \text{ pb}$

200>m_w>650 GeV

- Heavy W' boson (SM-like coupling to fermions)
- Interference between SM s-channel and W'
- SM t-channel single top as background
- Discriminant distribution the invariant mass of all objects in the event
- Consider $400 < \sqrt{\hat{s}} < 1000$ GeV window
- Use only events with 2 or 3 jets

