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We dedicate this volume in memory of Jean-Marie Souriau, in honor of his
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Jȩdrzej Śniatycki 295

vii

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Preface

Quantization is an important topic in mathematics and physics. From the
physics point of view, methods of quantization are procedures for building models
for quantum mechanical systems from analogous and more intuitive classical me-
chanical systems, which provide strikingly precise experimental predictions. Much
of the development of theoretical physics in the 20th century may be regarded as
the process of refining quantization to give improved experimental predictions, and
the search for a unified field theory is an attempt to quantize general relativity
in a manner compatible with existing quantum theory. On the mathematics side,
problems related to quantization and quantum mechanics was a strong motivation
for the development of functional analysis, the representation theory of Lie groups,
and spectral geometry. More recent developments with much current activity in-
clude geometric quantization, deformation quantization, and quantum analogues of
various classical objects.

Geometric quantization seeks to give as natural as possible a procedure for as-
sociating a Hilbert space to each symplectic manifold satisfying an integrality con-
dition. Geometric quantization was developed by Kirillov, Kostant, and Souriau in
the 1960’s, and was energized by the attempt to prove the “quantization commutes
with reduction” conjecture of Guillemin and Sternberg in the 1980’s and 1990’s,
which was completed in part by work of Meinrenken, and is continued through the
study of its L2-analogues. Much work has been done on the semiclassical asymp-
totics of geometric quantization, such as the proof by Bordemann, Meinrenken, and
Schlichenmaier of a general asymptotic formula for Berezin–Toeplitz quantization
on compact Kähler manifolds. Semiclassical analysis has resulted in applications in
number theory, as in the work of Borthwick and Uribe on relative Poincare series.

The theory of deformation quantization seeks to deform the commutative alge-
bra of functions on a Poisson manifold into a noncommutative algebra in which the
semi-classical limit is given by the Poisson bracket of functions. Kontsevich’s proof
of his formality conjecture showed that every Poisson manifold has a star product
on the formal level, and this work was one of the key results which earned him the
Fields medal. This work was later reinterpreted by Tamarkin and related to path
integrals by Cattaneo and Felder. Ideas from deformation quantization also play
a central role in recent work of Costello giving a rigorous geometric construction
of the Witten genus. Deformation quantization is used by Etingof and Ginzburg
to give a better geometric understanding of the rational Cherednik algebra and its
representations, as well as for other associative algebras.

The papers in this volume are based on talks given at the Center for Mathemat-
ics at Notre Dame program on quantization, which was held from May 31 to June
10 of 2011. The program consisted of a summer school on quantization, followed by

ix
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x PREFACE

a conference titled “Mathematical aspects of quantization”. The papers by Berest–
Samuelson, Dolgushev–Rogers, Lerman, and Meinrenken are based on talks given
at the summer school. The paper by Berest and Samuelson begins with an elegant
proof of properties of the Dunkl operators using a deformation of the de Rham com-
plex, and continues to discuss the representation theory of the Cherednik algebra.
The paper by Dolgushev and Rogers is concerned with the graph complex, which
plays a key role in the Kontsevich formality conjecture, and results of Willwacher
which relate the cohomology of the graph complex to the cohomology of the Ger-
stenhaber operad. Dolgushev and Rogers give a detailed and complete discussion
of Willwacher’s proof and the necessary background. The paper by Lerman gives a
short introduction to geometric quantization, which we hope will make the subject
more accessible to graduate students. The paper by Meinrenken gives a survey of
the theory of group-valued moment maps and its applications to the moduli space
of flat bundles on a surface, which was developed by Meinrenken together with his
collaborators Alekseev, Malkin, and Woodward. The remaining papers are based
on talks at the conference. Barron discusses interactions between quantization and
automorphic forms. Berest, Chen, Eshmatov, and Ramadoss discuss derived ver-
sions of Poisson structures and their applications to Calabi–Yau algebras. Kar and
Rajeev give an elementary explanation of renormalization. Schlichenmaier’s paper
gives a survey of Berezin–Toeplitz quantization and star products in the Kähler set-
ting. Śniatycki gives a survey of his results concerning commutation of geometric
quantization with algebraic reduction.

Jean-Marie Souriau, who was one of the pioneers in the theory of quantization,
passed away on March 15, 2012, as this volume was being prepared. Souriau’s
1966 paper, “Quantification géométrique,” in Communications on Mathematical
Physics was one of the seminal papers leading to the modern theory of geometric
quantization. Souriau also made important contributions to the study of moment
maps and coadjoint orbits, both of which are by now standard tools in the quan-
tization toolbox. Souriau spent most of his career as Professor of Mathematics at
the University of Provence in Marseille.

The Center for Mathematics at Notre Dame provided the resources to run the
program in quantization, and we would like to thank Gregory Crawford, Dean of
the College of Science at Notre Dame, for enabling us to establish this new center.
We would also like to thank our colleagues at Notre Dame for helping organize
the center, and especially thank Lisa Tranberg for her efficient organization of the
conference. Finally, we would like to thank all of the participants in our quantization
program for making the program such an interesting event.

Sam Evens
Michael Gekhtman

Brian C. Hall
Xiaobo Liu

Claudia Polini

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Contemporary Mathematics
Volume 583, 2012
http://dx.doi.org/10.1090/conm/583/11571

Dunkl operators and quasi-invariants of complex reflection
groups

Yuri Berest and Peter Samuelson

Abstract. In these notes we give an introduction to representation theory

of rational Cherednik algebras associated to complex reflection groups. We
discuss applications of this theory in the study of finite-dimensional represen-
tations of the Hecke algebras and polynomial quasi-invariants of these groups.

1. Introduction

These are lecture notes of a minicourse given by the first author at the summer
school on Quantization at the University of Notre Dame in June 2011. The notes
were written up and expanded by the second author who took the liberty of adding
a few interesting results and proofs from the literature. In a broad sense, our goal
is to give an introduction to representation theory of rational Cherednik algebras
and some of its recent applications. More specifically, we focus on the two concepts
featuring in the title (Dunkl operators and quasi-invariants) and explain the relation
between them. The course was originally designed for graduate students and non-
experts in representation theory. In these notes, we tried to preserve an informal
style, even at the expense of making imprecise claims and sacrificing rigor.

The interested reader may find more details and proofs in the following ref-
erences. The original papers on representation theory of the rational Cherednik
algebras are [EG02b], [BEG03a, BEG03b], [DO03] and [GGOR03]; surveys
of various aspects of this theory can be found in [Rou05], [Eti07], [Gor08] and
[Gor10]. The quasi-invariants of Coxeter (real reflection) groups first appeared in
the work of O. Chalykh and A. Veselov [CV90, CV93] (see also [VSC93]); the
link to the rational Cherednik algebras associated to these groups was established
in [BEG03a]; various results and applications of Coxeter quasi-invariants can be
found in [EG02a], [FV02], [GW04], [GW06], [BM08]; for a readable survey, we
refer to [ES03].

The notion of a quasi-invariant for a general complex reflection group was
introduced in [BC11]. This last paper extends the results of [BEG03a], unifies
the proofs and gives new applications of quasi-invariants in representation theory
and noncommutative algebra. It is the main reference for the present lectures.

2010 Mathematics Subject Classification. Primary 16S38; Secondary 14A22, 17B45.
The first author was supported in part by NSF Grant DMS 09-01570.

c©2012 American Mathematical Society
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2 YURI BEREST AND PETER SAMUELSON

2. Lecture 1

2.1. Historical remarks. The theory of rational Cherednik algebras was his-
torically motivated by developments in two different areas: integrable systems and
multivariable special functions. In each of these areas, the classical representa-
tion theory of semisimple complex Lie algebras played a prominent role. On the
integrable systems side, one should single out the work of M. Olshanetsky and
A. Perelomov [OP83] who found a remarkable generalization of the Calogero-Moser
integrable systems for an arbitrary semisimple Lie algebra. On the special functions
side, the story began with the fundamental discovery of Dunkl operators [Dun89]
that transformed much of the present day harmonic analysis. In 1991, G. Heckman
[Hec91] noticed a relationship between the two constructions which is naturally
explained by the theory of rational Cherednik algebras. The theory itself was de-
veloped by P. Etingof and V. Ginzburg in their seminal paper [EG02b]. In fact,
this last paper introduced a more general class of algebras (the so-called symplectic
reflection algebras) and studied the representation theory of these algebras at the
‘quasi-classical’ (t = 0) level1. At the ‘quantum’ (t = 1) level, the representation
theory of the rational Cherednik algebras was developed in [BEG03a, BEG03b],
[DO03] and [GGOR03], following the insightful suggestion by E. Opdam and
R. Rouquier to model this theory parallel to the theory of universal enveloping
algebras of semisimple complex Lie algebras.

In this first lecture, we briefly review the results of [OP83] and [Dun89] in
their original setting and explain the link between these two papers discovered in
[Hec91]. Then, after giving a necessary background on complex reflection groups,
we introduce the Dunkl operators and sketch the proof of their commutativity
following [DO03]. In the next lecture, we define the rational Cherednik algebras
and show how Heckman’s observation can be reinterpreted in the language of these
algebras.

2.2. Calogero-Moser systems and the Dunkl operators.
2.2.1. The quantum Calogero-Moser system. Let h = Cn, and let hreg denote

the complement (in h) of the union of hyperplanes xi − xj = 0 for 1 ≤ i �= j ≤ n.
Write C[hreg] for the ring of regular functions on hreg (i.e., the rational functions
on Cn with poles along xi − xj = 0). Consider the following differential operator
acting on C[hreg]

H =

n∑
i=1

(
∂

∂xi

)2

− c(c+ 1)
∑
i �=j

1

(xi − xj)2
,

where c is a complex parameter. This operator is called the quantum Calogero-
Moser Hamiltonian: it can be viewed as the Schrödinger operator of the system of n
quantum particles on the line with pairwise interaction proportional to (xi−xj)

−2.
It turns out that H is part of a family of n partial differential operators Lj :
C[hreg] → C[hreg] of the form

Lj :=
n∑

i=1

(
∂

∂xi

)j

+ lower order terms ,

1As yet another precursor of the theory of Cherednik algebras, one should mention the
beautiful paper [Wil98] which examines the link between the classical Calogero-Moser systems
and solutions of the (infinite-dimensional) Kadomtsev-Petviashvili integrable system.
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DUNKL OPERATORS AND QUASI-INVARIANTS 3

satisfying the properties:

(1) Lj is Sn-invariant (where Sn is the n-th symmetric group acting on Cn

by permutations of coordinates),
(2) Lj is a homogeneous operator of degree (−j),
(3) L2 = H,
(4) [Lj , Lk] = 0, i.e. the Lj ’s commute.

The last property (commutativity) means that {Lj}1≤j≤n form a quantum inte-
grable system which is called the (quantum) Calogero-Moser system.

2.2.2. A root system generalization. In [OP83], the authors constructed a fam-
ily of commuting differential operators for a Lie algebra g that specializes to the
Calogero-Moser system when g = sln(C). Precisely, let g be a finite-dimensional
complex semisimple Lie algebra, h ⊂ g a Cartan subalgebra of g, h∗ its dual
vector space, W the corresponding Weyl group, R ⊂ h∗ a system of roots of g,
and R+ ⊂ R a choice of positive roots (see, e.g., [Hum78] for definitions of these
standard terms). To each positive root α ∈ R+ we assign a complex number (mul-
tiplicity) cα ∈ C so that two roots in the same orbit of W in R have the same
multiplicities; in other words, we define a W -invariant function c : R+ → C , which
we write as α �→ cα. Now, let hreg denote the complement (in h) of the union of
reflection hyperplanes of W . The operator H of the previous section generalizes to
the differential operator Hg : C[hreg] → C[hreg] , which is defined by the formula

Hg := Δh −
∑

α∈R+

cα(cα + 1)(α, α)

(α, x)2
,

where Δh stands for the usual Laplacian on h.

Theorem 2.1 (see [OP83]). For each P ∈ C[h∗]W , there is a differential
operator

LP = P (∂ξ) + lower order terms

acting on C[hreg] , with lower order terms depending on c, such that

(1) LP is W -invariant with respect to the natural action of W on hreg

(2) LP is homogeneous of degree − deg (P ),
(3) L|x|2 = Hg,

(4) [LP , LQ] = 0 for all P,Q ∈ C[h∗]W .

The assignment P �→ LP defines an injective algebra homomorphism

C[h∗]W ↪→ D(hreg)W ,

where D(hreg)W is the ring of W -invariant differential operators on hreg.

In general, finding nontrivial families of commuting differential operators is a
difficult problem, so it is natural to ask how to construct the operators LP . An inge-
nious idea was proposed by G. Heckman [Hec91]. He observed that the operators
LP can be obtained by restricting the composites of certain first order differential-
reflection operators which are deformations of the usual partial derivatives ∂ξ; the
commutativity [LP , LQ] = 0 is then an easy consequence of the commutativity of
these differential-reflection operators. The commuting differential-reflection opera-
tors were discovered earlier by Ch. Dunkl in his work on multivariable orthogonal
polynomials (see [Dun89]). We begin by briefly recalling the definition of Dunkl
operators.
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4 YURI BEREST AND PETER SAMUELSON

2.2.3. Heckman’s argument. For a positive root α ∈ R+, denote by ŝα the
reflection operator acting on functions in the natural way:

ŝα : C[hreg] → C[hreg] , f(x) �→ f(sα(x)) .

For a nonzero ξ ∈ h, the Dunkl operator ∇ξ(c) : C[h
reg] → C[hreg] is then defined

using the formula2

(2.1) ∇ξ(c) := ∂ξ +
∑

α∈R+

cα
(α, ξ)

(α, x)
ŝα ,

where α �→ cα is the multiplicity function introduced in Section 2.2.2.

Theorem 2.2 ([Dun89]). The operators ∇ξ and ∇η commute for all ξ, η ∈ h.

We will sketch the proof of Theorem 2.2 (in the more general setting of complex
reflection groups) in the end of this lecture. Now, we show how the Dunkl operators
can be used to construct the commuting differential operators LP .

First, observe that the operators (2.1) transform under the action of W in the
same way as the partial derivatives, i. e. ŵ∇ξ = ∇w(ξ) ŵ for all w ∈ W and ξ ∈
h . Hence, for any W -invariant polynomial P ∈ C[h∗]W , the differential-reflection
operator P (∇ξ) : C[h

reg] → C[hreg] preserves the subspace C[hreg]W ofW -invariant
functions. Moreover, it is easy to see that P (∇ξ) acts on this subspace as a purely
differential operator. Indeed, using the obvious relations ŝα ∂ξ = ∂sα(ξ) ŝα and

ŝα f̂ = ŝα(f) ŝα , one can move all nonlocal operators (reflections) in P (∇ξ) ‘to
the right’; then these nonlocal operators will act on invariant functions as the
identity. Thus, for P ∈ C[h∗]W , the restriction of P (∇ξ) to C[hreg]W is a W -

invariant differential operator which we denote by ResW [P (∇ξ)] ∈ D(hreg)W . If
P (x) = |x|2 is the quadratic invariant in C[h∗]W , an easy calculation shows that

ResW |∇ξ|2 = Δh −
∑

α∈R+

cα(cα + 1)(α, α)

(α, x)2
,

which is exactly the generalized Calogero-Moser operatorHg introduced in [OP83].
In general, if we set

LP := ResW [P (∇ξ)] , ∀P ∈ C[h∗]W ,

then all properties of Theorem 2.1 are easily seen to be satisfied. In particular, the
key commutativity property [LP , LQ] = 0 follows from the equations

ResW [P (∇ξ)] Res
W [Q(∇ξ)] = ResW [P (∇ξ)Q(∇ξ)]

= ResW [Q(∇ξ)P (∇ξ)]

= ResW [Q(∇ξ)] Res
W [P (∇ξ)] ,

where P (∇ξ)Q(∇ξ) = Q(∇ξ)P (∇ξ) is a direct consequence of Theorem 2.2. Thus,
the algebra homomorphism of Theorem 2.1 can be defined by the rule

C[h∗]W → D(hreg)W , P �→ ResW [P (∇ξ)] .

Despite its apparent simplicity this argument looks puzzling. What kind of an al-
gebraic structure is hidden behind this calculation? This was one of the questions
that led to the theory of rational Cherednik algebras developed in [EG02b]. In

2Strictly speaking, Dunkl introduced his operators in a slightly different form that is equiv-
alent to (2.1) up to conjugation.
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DUNKL OPERATORS AND QUASI-INVARIANTS 5

the next lecture, we will introduce these algebras in greater generality: for an ar-
bitrary complex (i.e., not necessarily Coxeter) reflection group. The representation
theory of rational Cherednik algebras is remarkably analogous to the classical rep-
resentation theory of semisimple Lie algebras, and we will discuss this analogy in
the subsequent lectures. We will also emphasize another less evident analogy that
occurs only for integral multiplicity values. It turns out that for such values, the
rational Cherednik algebras are closely related to the rings of (twisted) differen-
tial operators on certain singular algebraic varieties with ‘good’ singularities (cf.
Proposition 5.10).

2.3. Finite reflection groups. The family of rational Cherednik algebras is
associated to a finite reflection group. We begin by recalling the definition of such
groups and basic facts from their invariant theory. The standard reference for this
material is N. Bourbaki’s book [Bou68].

Let V be a finite-dimensional vector space over a field k. We define two distin-
guished classes of linear automorphisms of V .

(1) s ∈ GLk(V ) is called a pseudoreflection if it has finite order > 1 and there
is a hyperplaneHs ⊂ V that is pointwise fixed by s. (If s is diagonalizable,
this is the same as saying that all but one of the eigenvalues are equal to
1.)

(2) A pseudoreflection is a reflection if it is diagonalizable and has order 2.
(In this case, the remaining eigenvalue is equal to −1.)

A finite reflection group on V is a finite subgroup W ⊂ GLk(V ) generated
by pseudoreflections. Note that if W1 is a finite reflection group on V1 and W2

is a finite reflection group on V2, then W = W1 ×W2 is a finite reflection group
on V1 ⊕ V2. We say that W is indecomposable if it does not admit such a direct
decomposition.

If k = R , then all pseudoreflections are reflections. The classification of fi-
nite groups generated by reflections was obtained in this case by H. S. M. Cox-
eter [Cox34]. There are 4 infinite families of indecomposable Coxeter groups
(An, Bn, Dn and I2(m)) and 6 exceptional groups (E6, E7, E8, F4, H3, H4). Over
the complex numbers k = C, the situation is much more complicated. A complete
list of indecomposable complex reflection groups was given by G. C. Shephard and
J. A. Todd in 1954: it includes 1 infinite family G(m, p, n) depending on 3 positive
integer parameters (with p dividing m), and 34 exceptional groups (see [ST54]).
A. Clark and J. Ewing used the Shephard-Todd results to classify the groups gen-
erated by pseudoreflections over an arbitrary field of characteristic coprime to the
group order (see [CE74]).

There is a nice invariant-theoretic characterization of finite reflection groups.
Namely, the invariants of a finite group W ⊂ GLk(V ) form a polynomial algebra if
and only if W is generated by pseudoreflections. More precisely, we have

Theorem 2.3. Let V be a finite-dimensional faithful representation of a finite
group W over a field k. Assume that either char(k) = 0 or char(k) is coprime to
|W |. Then the following properties are equivalent:

(1) W is generated by pseudoreflections,
(2) k[V ] is a free module over k[V ]W ,
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6 YURI BEREST AND PETER SAMUELSON

(3) k[V ]W = k[f1, . . . , fn] is a free polynomial algebra3.

Over the complex numbers, this theorem was originally proved by Shephard and
Todd [ST54] using their classification of pseudoreflection groups. Later Chevalley
[Che55] gave a proof in the real case without using the classification, and Serre
extended Chevalley’s argument to the complex case. Below, we will give a homolog-
ical proof of the (most interesting) implication (1) ⇒ (2) , which is due to L. Smith
[Smi85]; it works in general in coprime characteristic.

First, we recall the following well-known result from commutative algebra.

Lemma 2.4. Let A =
⊕

i≥0 Ai be a non-negatively graded commutative k-
algebra with A0 = k, and let M be a non-negatively graded A-module. Then the
following are equivalent:

(1) M is free,
(2) M is projective,
(3) M is flat,

(4) TorA1 (k,M) = 0, where k = A/A+ .

Note that the only nontrivial implication in the above lemma is: (4) ⇒ (1) .
Its proof is standard homological algebra (see, e.g., [Ser00], Lemma 3, p. 92).

Proof of Theorem 2.3, (1) ⇒ (2) . In view of Lemma 2.4, it suffices to
prove that

Tor
k[V ]W

1 (k, k[V ]) = 0 .

Note that the non-negative grading and W -action on k[V ] induce a non-negative

grading and W -action on Tor
k[V ]W

1 (k, k[V ]). There are two steps in the proof.

First, we show that the nonzero elements in Tor
k[V ]W

1 (k, k[V ]) of minimal degree
must be W -invariant, and then we show that W -invariant elements must be 0.

Given a pseudoreflection s ∈ W , choose a linear form αs ∈ V ∗ ⊂ k[V ] such
that Ker(αs) = Hs, and define the following operator

Δs :=
1

αs
(1− s) ∈ Endk[V ]W (k[V ]) .

To see that this operator is well defined on k[V ], expand a polynomial f ∈ k[V ] as
a Taylor series in αs and note that the constant term of (1− s) · f is 0. To see that
Δs is a k[V ]W -linear endomorphism, check the identity

Δs(fg) = Δs(f)g + s(f)Δs(g) , ∀ f, g ∈ k[V ] ,

and note that, for f ∈ k[V ]W , this identity becomes Δs(fg) = fΔs(g). It is clear

that Δs has degree −1. Now, since Tor
k[V ]W

1 (k,−) is a functor on the category of
k[V ]W -modules, we can apply it to the endomorphism Δs :

(Δs)∗ : Tor
k[V ]W

1 (k, k[V ]) → Tor
k[V ]W

1 (k, k[V ]) .

If ξ ∈ Tor
k[V ]W

1 (k, k[V ]) has minimal degree, then (Δs)∗ ξ = 0 (since (Δs)∗ must
decrease degree by one). This implies that s(ξ) = ξ , which proves the claim that

the nonzero elements of Tor
k[V ]W

1 (k, k[V ]) of minimal degree are W -invariant.

3The polynomials fi ∈ k[V ] generating k[V ]W are not unique; however, their degrees di =
deg (fi) depend only on W : they are called the fundamental degrees of W .
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DUNKL OPERATORS AND QUASI-INVARIANTS 7

Now, consider the averaging (Reynolds) operator4

π =
1

|W |
∑
g∈W

g : k[V ] → k[V ]W .

If we write ι : k[V ]W ↪→ k[V ] for the natural inclusion, then ι ◦ π(f) = f for all
f ∈ k[V ]W . The identity π(π(f)g) = π(f)π(g) shows that π is a map of k[V ]W -

modules. Applying then the functor Tor
k[V ]W

1 (k,−) to the composition ι ◦ π , we
get

Tor
k[V ]W

1 (k, k[V ])
π∗−→ Tor

k[V ]W

1 (k, k[V ]W )
ι∗−→ Tor

k[V ]W

1 (k, k[V ])

which is the zero map since Tor
k[V ]W

1 (k, k[V ]W ) = 0 . On the other hand, if

ξ ∈ Tor
k[V ]W

1 (k, k[V ])W is W -invariant, we have ξ = (ι ◦ π)∗ ξ = (ι∗ ◦ π∗) ξ = 0.

Hence Tor
k[V ]W

1 (k, k[V ])W = 0 finishing the proof. �

2.4. Dunkl operators. From now on, we assume that k = C. We fix a finite-
dimensional complex vector space V and a finite reflection group W acting on V
and introduce notation for the following objects:

(1) A is the set of hyperplanes fixed by the generating reflections of W ,
(2) WH is the (pointwise) stabilizer of a reflection hyperplane H ∈ A; it is a

cyclic subgroup of W of order nH ≥ 2,
(3) ( · , · ) : V × V → C is a positive definite Hermitian form on V , linear in

the second factor and antilinear in the first,
(4) x∗ := (x, · ) ∈ V ∗ which gives an antilinear isomorphism V → V ∗,
(5) for H ∈ A, fix vH ∈ V with (vH , x) = 0 for all x ∈ H, and αH ∈ V ∗ such

that H = Ker(αH),
(6) δ :=

∏
H∈A αH ∈ C[V ] and δ∗ :=

∏
H∈A vH ∈ C[V ∗],

(7) eH,i :=
1

nH

∑
w∈WH

detV (w)
−iw ∈ CWH ⊂ CW , i = 0, 1, . . . , nH − 1 .

Some explanations are in order. The elements eH,i are idempotents which are
generalizations of the primitive idempotents (1 − s)/2 and (1 + s)/2 for a real
reflection s. The orders nH = |WH | depend only on the orbit of H in A. Under the
action of W , δ∗ transforms as the determinant character detV : GL(V ) → C and
δ transforms as the inverse determinant. Finally, to simplify notation for sums, we
introduce the convention of conflating W -invariant functions on A with functions
on A/W , and we write indices cyclicly identifying the index sets {0, 1, . . . , nH − 1}
with Z/nHZ.

The rational Cherednik algebras associated to W will depend on complex pa-
rameters kC := {kC,i}nC−1

i=0 , where C runs over the set of orbits A/W ; these pa-
rameters play the role of multiplicities cα in the complex case. We will assume that
kC,0 = 0 for all C ∈ A/W . We will need to extend the ring of differential operators
D = D(Vreg) on Vreg := V \ (∪H∈AH) by allowing group-valued coefficients. The
group W acts naturally on D, so we simply let DW := D � W be the crossed

4Note that this operator is well defined since the characteristic of k is coprime to |W |.
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8 YURI BEREST AND PETER SAMUELSON

product5. Then, for each ξ ∈ V , we define the operator Tξ(k) ∈ DW by

Tξ(k) := ∂ξ −
∑
H∈A

αH(ξ)

αH

nH−1∑
i=0

nHkH,ieH,i

It is an exercise in decoding the notation to check that in the case when W is a
Coxeter group, the operator Tξ(k) agrees with the operator defined in (2.1), up to

conjugation by the function
∏

H∈A αkH

H .
The following result was originally proved by Dunkl [Dun89] in the Coxeter

case and in [DO03] in general. We end this lecture by outlining the proof given in
[DO03].

Lemma 2.5. The operators Tξ(k) satisfy the following properties:

(1) [Tξ(k), Tη(k)] = 0, i.e. the operators commute
(2) wTξ(k) = Tw(ξ)(k)w

Note that one consequence of this lemma is that the linear map ξ �→ Tξ(k)
yields an algebra embedding C[V ∗] ↪→ DW .

We think of the operators Tξ(k) as deformations of the directional derivatives
∂ξ. One strategy for proving commutativity is to find the equations ∂ξ∂η−∂η∂ξ = 0
“in nature,” and then see if the situation in which they appear can be deformed.
A natural place these equations appear is in the de Rham differential: d2f =∑

i<j(∂i∂j − ∂j∂i)fdxi ∧ dxj . In this case, commutativity of the partial derivatives
is equivalent to the fact that the de Rham differential squares to zero.

We now proceed to deform the de Rham differential, with the eventual goal
of showing that the deformed map is actually a differential. It turns out that in
addition to deforming the de Rham differential, it is also convenient to deform the
Euler derivation. First, for each H ∈ A, define

aH(k) :=

nH−1∑
i=0

nHkH,ieH,i ∈ CWH

Let K• = C[V ] ⊗ Λ•V ∗ be the polynomial de Rham complex on V , and define
Ω(k) ∈ End(C[V ])⊗K1 by

Ω(k) :=
∑
H∈A

aH(k)α−1
H dαH

The term α−1
H dαH is the logarithmic differential of αH , and Ω(k) is W -equivariant

with respect to the diagonal action on K1. Next we define d(k) : C[V ] → K1 via

d(k)(p) := dp+Ω(k)(p)

(where d(0) is the standard de Rham differential). We extend it to d(k) : K• →
K•+1 in the usual way - if p⊗ ω ∈ C[V ]⊗ Λ•V ∗, then d(k)(p⊗ ω) := d(k)(p) ∧ ω.
Next, we define the standard Koszul differential ∂ : Kl → Kl−1 using

p⊗ dx1 ∧ · · · ∧ dxl �→
l∑

r=1

(−1)r+1xrp⊗ dx1 ∧ · · · ∧ dx̂r ∧ · · · ∧ dxl

5As a reminder, if W is a finite group acting on an algebra A by algebra automorphisms,
then the crossed product A � W is defined to be the vector space A ⊗ CW with multiplication
(a⊗ w) · (b⊗ v) = aw(b)⊗ wv .
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Finally, we define the (deformed) Euler vector field

E(k) := E(0) +
∑
H∈A

aH(k)

where E(0) is the usual Euler derivation (i.e. the infinitesimal generator of the
diagonal C× action onK•). The spaceK• has a bigrading given byK• = ⊕m⊕dimV

l=0

C[V ]m ⊗ΛlV ∗, and if we let Kl
m be one of the graded pieces and let ω ∈ Kl

m, then

E(0)ω = (l +m)ω, d(k)ω ∈ Kl+1
m−1, ∂ω ∈ Kl−1

m+1

The deformations E(k) and d(k) are compatible in the following sense:

E(k) = ∂d(k) + d(k)∂

The following important lemma is used to determine conditions on k which are
sufficient to show E(k) has a small kernel.

Lemma 2.6 ([DO03], Lemma 2.5). Let z(k) =
∑

H∈A aH(k) ∈ CW . Then

(1) The element z(k) is central in CW .
(2) For an irreducible representation τ of CW , let cτ (k) denote the (unique)

eigenvalue for z(k) on τ . Then cτ (k) is a linear function of k with non-
negative integer coefficients.

The following theorem is the main step in the proof of commutativity of the
Dunkl operators.

Theorem 2.7 ([DO03], Theorem 2.9). Assume that k is a parameter such
that −cτ (k) �∈ N for all irreducible τ . Then there exists a unique W -invariant
linear isomorphism S(k) : K• → K• satisfying the properties

(1) S(k)(Kl
m) ⊂ Kl

m,
(2) The restriction of S(k) to K0

0 is the identity,
(3) S(k)(p⊗ ω) = (S(k)(p))⊗ ω,
(4) d(k)S(k) = S(k)d(0).

The intertwining operator S(k) is constructed by induction onm and l. It is not
too difficult to show that the enumerated conditions imply that S(k) is unique and
invertible. The main point is to show the existence of S(k). The proof of existence
is essentially linear algebra using the fact that the assumption on the parameter k
implies (via the previous lemma) that the kernel of E(k) is exactly K0

0 .

Corollary 2.8. The map d(k) is a differential on K•.

Proof. If we assume −cτ (k) �∈ N for all irreducible τ , then this corollary
follows immediately from the existence of the intertwining operator (and the fact
that d(0) is a differential). However, the condition d2(k) = 0 is a closed condition
(either in Zariski or classical topology), so it must hold on a closed subset of the
space of all parameters k. Since the theorem holds on an open dense set in this
space, it implies the corollary for all parameter values. �

As mentioned above, the commutativity of Dunkl operators (Lemma 2.5) fol-
lows directly from this corollary. Indeed, let ei ∈ V and xi ∈ V ∗ be dual bases, and
write Ti = Tei(k). A straightforward computation shows that for all f ∈ C[V ],

d(k)2f =
∑
i<j

(TiTj − TjTi)f ⊗ dxi ∧ dxj .

A different proof of commutativity can be found in [EG02b], Section 4.
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10 YURI BEREST AND PETER SAMUELSON

Remark 2.9. At first glance, the definition of the Dunkl operators may seem
to be quite general. Indeed, at least in the real case, the formulas defining Tξ(k)
make sense for an arbitrary finite hyperplane arrangement A (with prescribed mul-
tiplicities). However, the operators Tξ thus defined will commute if and only if the
hyperplane arrangement A comes from a finite reflection group (cf. [Ves94]).

3. Lecture 2

In this lecture, we introduce the rational Cherednik algebras and discuss their
basic properties. We also define category O, which is a category of modules over the
Cherednik algebra subject to certain finiteness restrictions. This is a close analogue
of the eponymous category of g-modules defined by J. Bernstein, I. Gelfand, and
S. Gelfand for a semi-simple Lie algebra g (see [Hum08]).

3.1. Rational Cherednik algebras. In this section, we will use the notation
introduced in Section 2.4. We begin with the main definition.

Definition 3.1 (cf. [DO03]). The rational Cherednik algebra Hk(W ) is the
subalgebra of DW generated by C[V ], C[V ∗] and CW . (The subalgebras C[V ] and
CW are embedded in DW in the natural way and are independent of k. On the
other hand, the embedding of C[V ∗] in DW is defined via the Dunkl operators
Tξ(k) which certainly depend on k.)

It is also possible to give an ‘abstract’ definition of Cherednik algebras in terms
of generators and relations. From this point of view, the previous definition is
called the Dunkl representation. The key point is that the Dunkl representation is
faithful. The algebra Hk(W ) is generated by the elements of V , V ∗ and W subject
to the following relations

[x, x′] = 0 , [ξ, ξ′] = 0 , w xw−1 = w(x) , w ξ w−1 = w(ξ) ,

[ξ, x] = 〈ξ, x〉+
∑
H∈A

〈αH , ξ〉 〈x, vH〉
〈αH , vH〉

nH−1∑
i=0

nH(kH,i − kH,i+1) eH,i .

where x, x′ ∈ V ∗ and ξ, ξ′ ∈ V and w ∈ W .

Example 3.2. In the caseW = Z2, the above relations are actually very simple.
Specifically, Hk(Z2) is generated by x, ξ and s satisfying

s2 = 1 , sx = −xs , sξ = −ξs , [ξ, x] = 1− 2ks .

The Dunkl operator corresponding to ξ is given by d
dx−

k
x (1−s) which acts naturally

on Vreg = C[x, x−1], preserving C[x] ⊂ C[x, x−1].

3.2. Basic properties of Hk(W ). First, note that if k = 0, then H0 =
D(V )�W ⊆ D(Vreg)�W , so we can view the Cherednik algebra as a deformation
of the crossed product of a Weyl algebra D(V ) with the groupW . The next theorem
collects several key properties of Hk(W ).

Theorem 3.3 (see [EG02b]). Let Hk = Hk(W ) be the family of Cherednik
algebras associated to a complex reflection group W .

(1) Universality: {Hk} is the universal deformation of H0.
(2) PBW property: the linear map C[V ] ⊗ CW ⊗ C[V ∗] → Hk induced by

multiplication in Hk is a C[V ]-module isomorphism.
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(3) Let Hreg = Hk[δ
−1] denote the localization of Hk at the Ore subset {δk}k∈N.

Then the induced map Hreg → DW is an isomorphism of algebras.

Remark 3.4. Each statement deserves a comment:

(1) In general, universal deformations can rarely be realized algebraically, so
the family of Cherednik algebras is somewhat exceptional.

(2) The name ‘PBW property’ comes from the Poincare-Birkhoff-Witt Theo-
rem in Lie theory, which has a very similar statement. It is a fundamental
property for many reasons. In particular, it is not obvious a priori that
the generators and relations listed above give a nonzero algebra, so in
some sense the important part of this statement is the “lower bound” on
the size of Hk. (The “upper bound” is easy to see from the relations.)

(3) This justifies the notation Hreg := Hk[δ
−1], since it shows that the local-

ization is independent of the parameters k.

There are two filtrations on DW which are commonly used. The first is the
standard filtration, where deg x = 1 = deg ξ and degw = 0. The second is the
differential filtration, where deg x = 0 = degw, and deg ξ = 1. Through the Dunkl
embedding Hk ↪→ DW , these filtrations induce filtrations on Hk (with the same
names), and for both filtrations we have gr(Hk) ∼= C[V ⊕ V ∗]�W .

3.3. The spherical subalgebra. Each Hk contains a distinguished (nonuni-
tal) subalgebra Uk = Uk(W ) called the spherical subalgebra. We set e := 1

|W |
∑

w∈W w ∈
DW and define

Uk := eHke

(The additive and multiplicative structure of eHke are induced from Hk, but the
unit of eHke is e, not 1 ∈ Hk.)

The spherical subalgebra Uk is closely related to Hk, however the exact rela-
tionship depends crucially on values of the parameter k. For each k, there is an
algebra isomorphism Uk

∼= EndHk
(eHk), and although eHk is a f. g. projective

module over Hk, this does not imply that Uk and Hk are Morita equivalent6. The
problem is that for certain special values of k, the module eHk is not a generator
in the category of right Hk-modules. Such special values are called singular, and
it is an interesting (and still open) question to precisely determine these values of
k for a given W . For generic k, one can prove that Hk is a simple algebra (see
Theorem 4.5 below), so in that case, the algebras Hk and Uk are Morita equivalent.

For k = 0, we know that H0 = D(V ) � W . Since D(V ) is isomorphic to a
Weyl algebra, it is simple, which implies that D(V ) �W is simple. This implies,
in turn, that H0 is Morita equivalent to U0. We also remark that U0 = e(D(V )�
W )e ∼= D(V )W via the identification ede ↔ d. This allows a theorem analogous to
Theorem 3.3(1):

Theorem 3.5. The family {Uk} is a universal deformation of D(V )W . Also,
we have gr(Uk) ∼= C[V ⊕ V ∗]W .

In general, the algebra map Hk ↪→ DW restricts to a map Uk = eHke →
e(DW )e which is an injective homomorphism of unital algebras. Heckman’s re-
striction operation now becomes

(3.1) ResWk : Uk = eHke ↪→ e(DW )e
∼→ D(Vreg)

W

6We recall that two rings are Morita equivalent if their categories of left (or right) modules
are equivalent. We refer to [MR01], Section 3.5, for basic Morita theory.
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12 YURI BEREST AND PETER SAMUELSON

U(g) = U(n−)⊗ U(h)⊗ U(n+) Hk(W ) = C[V ]⊗ CW ⊗ C[V ∗]
Weights for U(g) are irreducible
U(h)-modules, i.e. μ ∈ h∗

‘Weights’ for Hk are irreducible
W -modules

central character of M the parameter k
the BGG category O category O′

k

blocks Oχ of O blocks Ok(λ̄)

Table 1. Analogies between U(g) and Hk

where the second map is an isomorphism given by eDe �→ D. We call ResWk :

Uk ↪→ D(Vreg)
W the spherical Dunkl representation of Uk. Note that ResWk is a

deformation of the canonical embedding D(V )W ↪→ D(Vreg)
W in the same way as

the Dunkl embedding Hk ↪→ DW is a deformation of the canonical map D(V ) �
W ↪→ DW .

3.4. Category O. In this section we discuss a subcategory of Hk-modules
that shares many properties with the Berstein-Gelfand-Gelfand category O in Lie
theory. (The BGG category O is a subcategory of representations of the universal
enveloping algebra U(g) which are subject to certain finiteness conditions. A good
exposition of this theory can be found in [Hum08].) Some analogies between U(g)
and Hk(W ) are listed in Table 1.

Definition 3.6. We introduce the following subcategories of the category
mod(Hk) of finitely generated Hk-modules:

O′
k := {M ∈ mod(Hk) | dimC(C[V

∗] ·m) < ∞}
Ok(λ̄) := {M ∈ O′

k | (P − λ̄(P ))N ·m = 0, N � 0}
Ok := {M ∈ O′

k | ξN ·m = 0, N � 0} = Ok(0)

In these definitions, λ̄ ∈ V ∗/W , (i.e. λ̄ : C[V ]W → C), and the conditions are
to hold for arbitrary elements m, P , and ξ (where m ∈ M and P ∈ C[V ∗]W and
ξ ∈ V ):

From now on, we mainly discuss Ok, which is called the principal block of
category O′

k. The following lemma is standard and closely mirrors the Lie situation.

Lemma 3.7. The objects of O′
k and Ok have the following properties:

(1) Each M ∈ O′
k (resp. M ∈ Ok) is finitely generated over C[V ] ⊂ Hk.

(2) O′
k (resp. Ok) is a stable Serre subcategory of mod(Hk) (i.e. is it an

abelian subcategory closed under taking subobjects, quotients, and exten-
sions).

(3) O′
k (resp. Ok) is Artinian.

Just as in the Lie case, the most important objects in Ok are obtained by
inducing modules from subalgebras of Hk. In particular, fix an irreducible repre-
sentation τ of W , and give it a C[V ∗] module structure using P · x = P (0)x for
P ∈ C[V ∗] and x ∈ τ . Since this action is W -invariant, it gives τ the structure of
a C[V ∗]�W -module. We then define the standard module associated to τ by

M(τ ) := IndHk

C[V ∗]�W (τ ) = Hk

⊗
C[V ∗]�W

τ
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These standard modules are analogues of Verma modules in Lie theory. (Of course,
we can also induce other modules of C[V ∗] � W , but since we are working with
the principal block Ok, this definition is sufficient for our purposes.) The PBW
property for Hk shows that M(τ ) ∼= C[V ]⊗ τ as a C[V ]-module. Also, the relations
in Hk make it clear that M(τ ) ∈ Ok.

Theorem 3.8. As in the Lie case, the following properties hold.

(1) The set {M(τ )}τ∈Irr(W ) is a complete list of pairwise non-isomorphic in-
decomposable objects in Ok.

(2) Each M(τ ) has a unique simple quotient L(τ ), and the L(τ ) are a com-
plete list of simple objects in Ok

(3) The Jordan-Hölder property: Each M ∈ Ok has a finite filtration whose
associated graded module is isomorphic to a sum of the L(τ ) and is inde-
pendent of the filtration.

(4) Ok is a highest weight category (in the sense of [CPS88]).

For the proof of this theorem, we refer to [DO03], Proposition 2.27, and
[GGOR03], Proposition 2.11 and Corollary 2.16.

4. Lecture 3

The category O defined at the end of the last lecture is related to the category
of finite-dimensional representations of the Iwahori-Hecke algebra associated to W .
The relation is given by a certain additive functor (called the KZ functor) which
plays a fundamental role in representation theory of Hk. In this lecture, we will
introduce this functor and discuss some of its applications. In particular, we define
certain operations (KZ twists) on the set of isomorphism classes of irreducible W -
modules depending on the (integral) parameter k and discuss interesting relations
between these operations (conjectured by E. Opdam [Opd95, Opd00] and proved
in [BC11]).

If A is an algebra, we write Mod(A) (respectively, mod(A)) for the category of
left (respectively, finitely generated left) A-modules.

4.1. The Knizhnik-Zamolodchikov (KZ) functor. The KZ functor is de-
fined as a composition of several functors, and we describe each one in turn. The
key property that allows this construction is the well-known fact that a DX -module
on a smooth algebraic variety X which is coherent as an OX -module is the same
thing as a vector bundle with a flat connection on X.

The Dunkl embedding provides a natural functor Mod(Hk) → Mod(DW ) given
by M �→ DW ⊗Hk

M . We denote the output of this functor by Mreg. Next, we
note that Mod(DW ) is naturally equivalent to the category of W -equivariant D-
modules on Vreg. SinceW acts freely on Vreg, this gives an equivalence Mod(DW ) ∼=
Mod(D(Vreg/W )). The category Mod(D(Vreg/W )) contains a full subcategory ofO-
coherent D-modules (which are automatically O-locally-free). There is an interpre-

tation functor ModO(D(Vreg/W )) ∼= Vectf (Vreg/W ) which interprets an O-locally-
free D-module as a vector bundle with a flat connection. Finally, the Riemann-
Hilbert correspondence gives an equivalence of categories Vectf (Vreg/W ) ∼= mod(BW ),
where BW := π1(Vreg/W, ∗) is the Artin braid group.

Definition 4.1. The KZ functor is defined by the composition of functors

KZk : Ok → mod(DW ) ∼= mod(D(Vreg/W )) ∼= Vectf (Vreg/W ) ∼= mod(CBW )
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14 YURI BEREST AND PETER SAMUELSON

For the standard modules M(τ ) this composition of functors can be made
quite explicit. Since M(τ ) ∼= C[V ]⊗ τ as a C[V ]-module, it is free of rank dimC(τ ),
and its localization M(τ )reg is isomorphic to C[Vreg]⊗ τ as a C[Vreg]-module. This
identification allows one to interpretM(τ )reg as (sections of) a trivial vector bundle
of rank dimC τ . The D-module structure on M(τ )reg is given by

∂ξ(f ⊗ v) = (∂ξf)⊗ v + f ⊗ (∂ξv)

By definition, inM we have ξ ·v = 0, and since ξ �→ Tξ under the Dunkl embedding,
we know Tξ(v) = 0. Rewriting this, we see

(4.1) ∂ξv −
∑
H∈A

αH(ξ)

αH

nH−1∑
i=0

nHkH,ieH,i(v) = 0

Combining these formulas, we obtain

(4.2) ∂ξ(f ⊗ v) = ∂ξ(f)⊗ v +
∑
H∈A

αH(ξ)

αH

nH−1∑
i=0

nHkH,if ⊗ eH,i(v)

The right hand side is an explicit formula for the KZ connection, which is the
regular flat connection on Mreg = C[V ] ⊗ τ given by the KZ functor. (Note the
change in sign between the formula for the connection and for the Dunkl operator.)
Horizontal sections y : Vreg → τ satisfy the KZ equations

(4.3) ∂ξ(y) +
∑
H∈A

αH(ξ)

αH

nH−1∑
i=0

nHkH,ieH,i(y) = 0

Remark 4.2. The formulas (4.1) and (4.3) look very similar (other than the
sign), but there is an important distinction. In the KZ connection (4.1) group
elements act on the arguments of the functions involved, while in the KZ equation
(4.3) they act on their values.

4.2. The Hecke algebra of W . It is natural to ask what the image of the KZ
functor is. The answer is that for generic k, its image is the subcategory of CBW -
modules that factor through a natural quotient of BW called the Hecke algebra of
W . We first record two facts about complex reflection groups the proofs of which
can be found in [BMR98]:

(1) For all H ∈ A, there is a unique sH ∈ WH such that det(sH) = e2πi/nH .
(2) The braid group BW is generated by the elements σH which are mon-

odromy operators (around the H ∈ A) corresponding to the sH .

Following [BMR98], we define the Hecke algebra of W by

Hk(W ) := CBW

/⎛⎝nH−1∏
j=0

(σH − (det sH)−je2πikH,j ) = 0

⎞⎠
H∈A

If kH,i ∈ Z, then the relations simplify to σnH

H = 1, which shows that there is a
canonical isomorphism Hk(W ) ∼= CW . In particular, dimC Hk(W ) = |W |. Fur-
thermore, if k is generic, then Hk(W ) is semi-simple, and by rigidity of semisimple
algebras , Hk(W ) is generically isomorphic to CW . However, it seems to be the
case that the equality dimC Hk(W ) = |W | is still conjectural for a few exceptional
W . (The equality is known for all Coxeter groups and for all but finitely many W .)
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DUNKL OPERATORS AND QUASI-INVARIANTS 15

Theorem 4.3 (see [BEG03a], [GGOR03], [DO03]). For each k, the functor
KZk : Ok → mod(BW ) is an exact functor with image contained in mod(Hk) ↪→
mod(BW ) (where the inclusion is induced by restriction of scalars).

It is natural to ask whether this can be an equivalance. One obvious obstruction
to a positive answer is the fact that the localization Hk → DW can kill some
modules. It turns out that this is the only obstruction. More precisely, if we let
Otor

k := {M ∈ Ok | Mreg = 0}, then we have the following theorem.

Theorem 4.4 (see [GGOR03]). Assume that dimHk = |W |. Then

(1) The KZk functor induces an equivalence KZk : Ok/Otor
k → mod(Hk).

(2) There is a ‘big projective’ P ∈ Ob(Ok) and Q ∈ Ob(mod(Hk)) such that
Hk

∼= EndOk
(P ) and Ok

∼= mod(EndHk
(Q)).

One can interpret this theorem as showing that the structure of the category Ok

is controlled by Hk for all k. The following result shows that the algebra structure
of Hk also depends crucially on Hk.

Theorem 4.5. Assume that dimC Hk = |W |. Then the following are equivalent:

(1) Hk is a semisimple algebra,
(2) Ok is a semisimple category,
(3) Hk is a simple algebra.

If one of these conditions hold, then Otor
k = 0 and Ok

∼= mod(Hk). Furthermore,
in this case the M(τ ) are simple, i.e. M(τ ) = L(τ ) for all τ ∈ Irr(W ).

For a detailed proof of Theorem 4.5, we refer to [BC11], Theorem 6.6, which
combines the earlier results of [BEG03a], [GGOR03], [DO03] and is based on
R. Vale’s Ph.D. thesis (2006).

Corollary 4.6. If the conditions of Theorem 4.5 hold, then Hk is Morita
equivalent to its spherical subalgebra Uk.

Proof. Since Hk is simple, the two-sided ideal HkeHk must be Hk, which
implies that eHk is a generator in mod(Hk). Since Uk

∼= EndHk
(eHk) and eHk is

projective, Uk and Hk are Morita equivalent. �
When the corollary applies the mutual equivalences can be written explicitly.

The functor mod(Hk) → mod(Uk) is given by M �→ eM := eHk ⊗Hk
M , and the

functor mod(Uk) → mod(Hk) is given by N �→ Hke⊗Uk
N .

4.3. Shift functors and KZ twists. The goal of this section is to relate the
categories Ok for different values of k. There are several constructions of ‘shift
functors,’ i.e. functors between different Ok, the first of which was introduced in
[BEG03a]. In this lecture we will focus on the functor introduced in [BC11]. The
main idea is that the Dunkl embeddings all have the same target, and we can ‘push
forward’ a module along one embedding and ‘pull back’ along another. This is
analogous to the so-called Enright completion in Lie theory (see [Jos82]).

The first step is to enlarge Ok by defining Oln
k ⊂ Mod(Hk) to be all Hk-

modules on which the ξ ∈ V act locally nilpotently. Then ιk : Ok ↪→ Oln
k is

the natural inclusion whose image is the finitely generated modules. The inclusion
Oln ↪→ Mod(Hk) has a right adjoint rk : Mod(Hk) → Oln

k which outputs the largest
submodule in Oln

k . In other words,

rk(M) := {m ∈ M | ξdm = 0, ∀ξ ∈ V, d � 0}
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16 YURI BEREST AND PETER SAMUELSON

Recall DW = D(Vreg)�W , and that the Dunkl embedding gives us an identification
Hk[δ

−1] ∼= DW . Write θk : Hk → DW for the localization map (which is just the
Dunkl embedding). Also, write θ∗k : Mod(Hk) → Mod(DW ) for extension of scalars
and (θk)∗ : Mod(DW ) → Mod(Hk) for the restriction of scalars.

Definition 4.7. For k, k′ two parameter values, define Tk→k′ : Mod(Hk) →
Mod(Hk′)

Tk→k′ = rk′(θk′)∗θ
∗
k

Proposition 4.8. Tk→k′ restricts to a functor Ok → Ok′ .

Proof. Given M ∈ Ok, let N := (θk′)∗(θk)
∗M ∈ Mod(Hk′). To prove the

claim we need only to show that rk′(N) is a finitely generated module over Hk′ .
Assuming the contrary, we may construct an infinite strictly increasing chain of
submodules N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ rk′(N) ⊂ Mreg, with Ni ∈ Ok′ . Localizing this
chain, we get an infinite chain of Hreg-submodules of Mreg. Since Mreg is finite over
C[Vreg] and C[Vreg] is Noetherian, this localized chain stabilizes at some i. Thus,
omitting finitely many terms, we may assume that (Ni)reg = (N0)reg for all i. In
that case all the inclusions Ni ⊂ Ni+1 are essential extensions, and since each
Ni ∈ Ok′ , the above chain of submodules can be embedded into an injective hull
of N0 in Ok′ and hence stabilizes for i � 0. (The injective hulls in Ok′ exist and
have finite length, since Ok′ is a highest weight category, see [GGOR03], Theorem
2.19.) This contradicts the assumption that the inclusions are strict. Thus, we
conclude that rk′(N) is finitely generated. �

As one may expect, the properties of the shift functor depend on the parameters
k and k′. We call a parameter k regular if Hk is semisimple, and we write Reg(W )
for the set of regular parameters. It is proved in [BC11], Lemma 6.9, that Reg(W )
is a connected set. We list some basic properties of the shift functor:

Lemma 4.9. Let k, k′, k′′ be arbitrary complex multiplicites, and let M ∈ Ok.

(1) If k ∈ Reg(W ), then Tk→k(M) = M .
(2) If k, k′ ∈ Reg(W ) and M is simple, then Tk→k′(M) is either 0 or simple.
(3) If k, k′, k′′ ∈ Reg(W ), then (Tk′→k′′) ◦ (Tk→k′) ∼= Tk→k′′ .

Corollary 4.10. If k,′ k ∈ Reg(W ), then the following are equivalent:

(1) Tk→k′ [Mk(τ )] ∼= Mk′(τ ′);
(2) Mk(τ )reg ∼= Mk′(τ ′) as Hreg-modules.

4.4. KZ twists. In this section we assume that the parameter k is integral.
Summarizing what we have said before, in this case we know that there is a canonical
isomorphism Hk

∼= CW , that the functor KZk : Ok → mod(W ) is an equivalence,
and that the standard modules Mk(τ ) are all simple.

Definition 4.11. The KZ twist kzk : Irr(W ) → Irr(W ) is the map induced
by the KZ functor, i.e. [τ ] �→ KZk[Mk(τ )].

This map was defined by Opdam in [Opd95] without the use of the Cherednik
algebras (which hadn’t been defined at the time). He showed that the maps satisfied
the additivity property kzk ◦ kzk′ = kzk+k′ and conjectured that each kzk was a
permutation. This conjecture was proved as a corollary of the following theorem.

Theorem 4.12 (see [BC11], Theorem 7.11). Let k and k′ be complex multi-
plicities such that k′H,i − kH,i ∈ Z for all H and i. Then
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DUNKL OPERATORS AND QUASI-INVARIANTS 17

(1) Tk→k′(M) �= 0 for each standard module M = M(τ ) ∈ Ok;
(2) if k, k′ ∈ Reg(W ), then Tk→k′ [M(τ )] = Mk′(τ ′) with τ ′ = kzk−k′(τ ).

The theorem is first proved for integral k, k′ and is then extended to all parame-
ters using a deformation argument (and the fact that the integers are Zariski-dense
in C). The following is essentially a direct corollary of the second statement of the
theorem and Lemma 4.9:

Corollary 4.13 ([BC11]). The map k �→ kzk is a homomorphism from the
additive group of integral multiplicities to the permutation group of {Irr(W )}.

This result was conjectured by E. Opdam (see [Opd95] and [Opd00]).

5. Lecture 4

The notion of a quasi-invariant polynomial for a finite Coxeter group was in-
troduced by O. Chalykh and A. Veselov in [CV90]. Although quasi-invariants are
a natural generalization of invariants, they first appeared in a slightly disguised
form (as symbols of commuting differential operators). More recently, the algebras
of quasi-invariants and associated varieties have been studied in [FV02, EG02a,
BEG03a] by means of representation theory and have found applications in other
areas. In this lecture, we define quasi-invariants for an arbitrary complex reflection
group and give new applications. This material is borrowed from [BC11].

5.1. Quasi-invariants for complex reflection groups. We will introduce
a family of submodules of C[V ] depending on the parameter k that interpolate
between C[V ]W and C[V ]. These submodules are defined for integral values of k and
can be interpreted as torsion-free coherent sheaves on certain (singular) algebraic
varieties. The ring of invariant differential operators on such a variety turns out
to be isomorphic to a spherical subalgebra Uk, and the modules of quasi-invariants
become (via this isomorphism) objects of (the spherical analogue of) category Ok.
This explains the comment at the end of Section 2.2.

We first recall the definition of quasi-invariants for Coxeter groups from [CV90].
Let W be a Coxeter group with H a reflection hyperplane, and recall that sH is
the unique element of WH (the pointwise stabilizer of H in W ) with determinant
−1. Then f ∈ C[V ]W if and only if sH(f) = f for all H ∈ A. Let k : A/W → Z≥0.

Definition 5.1. The quasi-invariants (for W a Coxeter group) of parameter
k are defined as Qk(W ) := {f ∈ C[V ] | sH(f) ≡ f mod〈αH〉2kH}.

Note that for extreme parameter values, Q0(W ) = C[V ] and Q∞[W ] = C[V ]W .

We now return to the generality of complex reflection groups. Recall the idem-
potents eH,i =

1
nH

∑
w∈WH

(detw)−iw for i = 0, 1, . . . , nH − 1.

Definition 5.2. For an arbitrary complex reflection group W , the quasi-
invariants Qk ⊂ C[V ] are defined by

Qk(W ) := {f ∈ C[V ] | eH,−i(f) ≡ 0mod〈αH〉nHkH,i , ∀ 0 ≤ i ≤ nH − 1, H ∈ A}

Note that in the Coxeter case, sH(f) ≡ f is equivalent to (1+det(sH)sH)(f) ≡
0, so the two definitions agree in this case. Also, the condition holds automatically
for i = 0, as we assumed that kH,0 = 0 for all H ∈ A.
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18 YURI BEREST AND PETER SAMUELSON

Example 5.3. If W = Z/nZ and V = C, then s(x) = e2iπ/nx, the parameter
k is k = {k0 = 0, k1, . . . , kn−1}, and

(5.1) Qk(Z/nZ) =
n−1⊕
i=0

xnki+1C[xn]

In the Coxeter case, Qk(W ) is a subring of C[V ], but as the above example
shows, this is not always true in the general case. However, there is a natural
subring of C[V ] associated to Qk(W ), namely:

(5.2) Ak(W ) := {P ∈ C[V ] | pQk(W ) ⊂ Qk(W )}
We write Xk = Spec[Ak(W )].

Lemma 5.4. We list some properties of Ak and Qk:

(1) Ak(W ) = Qk′(W ) for some parameter k′. In particular, both Ak and Qk

contain C[V ]W and are stable under the action of W .
(2) Ak is a finitely generated graded subalgebra of C[V ], and Qk is a finitely

generated graded module over Ak of rank one.
(3) The field of fractions of Ak is C(V ), and the integral closure of Ak in

C(V ) is C[V ].
(4) Xk is an irreducible affine variety, and the normalization of Xk is Cn.
(5) The normalization map πk : Cn → Xk is bijective7.
(6) The preimage of the singular locus of Xk under πk is the divisor (A, k).

5.1.1. CW -valued quasi-invariants. Our goal now is to show that Qk ⊂ C[V ]
is preserved by the action of the spherical subalgebra Uk. However, this would be
impossible to show by direct calculation, since for some complex reflection groups
the minimial order of a non-constant W -invariant polynomial is 60. We therefore
give a definition of quasi-invariants at the level of the Cherednik algebra itself,
and then show that symmetrizing the CW -valued quasi-invariants produces the
quasi-invariants defined in the previous section.

The algebra DW can be viewed as a ring ofW -equivariant differential operators
on Vreg, and as such it acts naturally on the space of CW -valued functions. More
precisely, using the canonical inclusion C[Vreg] ⊗ CW ↪→ DW , we can identify
C[Vreg]⊗CW with the cyclic DW -module DW/J , where J is the left ideal of DW
generated by ∂ξ ∈ DW , ξ ∈ V . Explicitly, in terms of generators, DW acts on
C[Vreg]⊗ CW by

g(f ⊗ u) = gf ⊗ u , g ∈ C[Vreg] ,

∂ξ(f ⊗ u) = ∂ξf ⊗ u , ξ ∈ V ,(5.3)

w(f ⊗ u) = fw ⊗ wu , w ∈ W .

Now, the restriction of scalars via the Dunkl representation Hk(W ) ↪→ DW
makes C[Vreg]⊗CW anHk(W )-module. We will call the corresponding action ofHk

the differential action. It turns out that, in the case of integral k’s, the differential
action of Hk is intimately related to quasi-invariants Qk = Qk(W ).

Besides the diagonal action (5.3), we will use another action of W on C[Vreg]⊗
CW , which is trivial on the first factor: i. e., f ⊗ s �→ f ⊗ ws , where w ∈ W and
f ⊗ s ∈ C[Vreg]⊗ CW . We denote this action by 1⊗ w .

7The normalization map is bijective as a map of sets, but it is not an isomorphism of schemes.
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DUNKL OPERATORS AND QUASI-INVARIANTS 19

Now, we define Qk to be the subspace of C[Vreg]⊗CW spanned by the elements
ϕ satisfying

(5.4) (1⊗ eH,i)ϕ ≡ 0 mod 〈αH〉nHkH,i ⊗ CW ,

for all H ∈ A and i = 0, 1, . . . , nH − 1 . Here, as in Definition 5.2, 〈αH〉 stands
for the ideal of C[V ] generated by αH .

Theorem 5.5. If k is integral, then C[Vreg] ⊗ CW contains a unique Hk-
submodule Q′

k = Q′
k(W ), such that Q′

k is finite over C[V ] ⊂ Hk and

(5.5) eQ′
k = e(Qk ⊗ 1) in C[Vreg]⊗ CW .

In fact, we have the equality Qk = Q′
k.

As a simple consequence of the theorem, we get the following corollary.

Corollary 5.6. Qk is stable under the action of Uk on C[Vreg] via the Dunkl
representation (3.1). Thus Qk is a Uk-module, with Uk acting on Qk by invariant
differential operators.

Proof. Theorem 5.5 implies that eHke(eQk) ⊆ eQk. Recall that for every
element eLe ∈ eHke we have eLe = eResL, by the definition of the map (3.1).
As a result,

e (ResL[Qk]⊗ 1) = eResL [Qk ⊗ 1] = (eL e)[Qk] ⊆ eQk = e(Qk ⊗ 1) .

It follows that (ResL)[Qk] ⊆ Qk , since e (f ⊗ 1) = 0 in C[Vreg] ⊗ CW forces
f = 0 . �

Example 5.7. We illustrate Theorem 5.5 in the one-dimensional case. Let
W = Z/nZ and k = (k0, . . . , kn−1) be as in Example 5.3. Then

(5.6) Qk =

n−1⊕
i=0

xnkiC[x]⊗ ei , ei =
1

n

∑
w∈W

(detw)−iw .

Clearly, Qk is stable under the action of W and C[x]. On the other hand, if ki ∈ Z ,

a short calculation shows that the Dunkl operator T := ∂x − x−1
∑n−1

i=0 nkiei
annihilates the elements xnki ⊗ ei, and hence preserves Qk as well. Now, acting on
Qk by e = e0 and using (5.1), we get

(5.7) eQk =
n−1⊕
i=0

xnki+iC[xn]⊗ ei =
n−1⊕
i=0

e (xnki+iC[xn]⊗ 1) = e (Qk ⊗ 1) ,

which agrees with Theorem 5.5.

5.1.2. Differential operators on quasi-invariants. We briefly recall the defini-
tion of differential operators in the algebro-geometric setting (see [MR01], Chap. 15).

Let A be a commutative algebra over C, and let M be an A-module. The
filtered ring of (linear) differential operators on M is defined by

DA(M) :=
⋃
n≥0

Dn
A(M) ⊆ EndC(M) ,

where D0
A(M) := EndA(M) and Dn

A(M) , with n ≥ 1, are given inductively:

Dn
A(M) := {D ∈ EndC(M) | [D, a ] ∈ Dn−1

A (M) for all a ∈ A} .
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20 YURI BEREST AND PETER SAMUELSON

The elements of Dn
A(M) \ Dn−1

A (M) are called differential operators of order n on
M . Note that the commutator of two operators in Dn

A(M) of orders n and m
has order at most n + m − 1. Hence the associated graded ring grDA(M) :=⊕

n≥0 Dn
A(M)/Dn−1

A (M) is a commutative algebra.

If X is an affine variety with coordinate ring A = O(X), we denote DA(A) by
D(X) and call it the ring of differential operators on X. If X is irreducible, then
each differential operator on X has a unique extension to a differential operator
on K := C(X), the field of rational functions of X, and thus we can identify (see
[MR01], Theorem 15.5.5):

D(X) = {D ∈ D(K) | D(f) ∈ O(X) for all f ∈ O(X) } .
Slightly more generally, we have

Lemma 5.8. Suppose that M ⊆ K is a (nonzero) A-submodule of K. Then

DA(M) = {D ∈ D(K) | D(f) ∈ M for all f ∈ M } .

We apply these concepts for A = Ak and M = Qk , writing D(Qk) instead of
DA(M) in this case. By Lemma 5.4(3), Xk = Spec(Ak) is an irreducible variety
with K = C(V ), so, by Lemma 5.8, we have

(5.8) D(Qk) = {D ∈ D(K) |D(f) ⊆ Qk for all f ∈ Qk } .
Note that the differential filtration on D(Qk) is induced from the differential filtra-
tion on D(K). Thus (5.8) yields a canonical inclusion grD(Qk) ⊆ grD(K) , with
D0(Qk) = Ak , see (5.2). In particular, if k = {0} , then Qk = C[V ] and (5.8)
becomes the standard realization of D(V ) as a subring of D(K) .

Apart from Qk, we may also apply Lemma 5.8 to C[Vreg], which is naturally a
subalgebra of K = C(V ). This gives the identification

(5.9) D(Vreg) = {D ∈ D(K) |D(f) ⊆ C[Vreg] for all f ∈ C[Vreg] } .

Lemma 5.9. With identifications (5.8) and (5.9), we have

(i) D(Qk) ⊆ D(Vreg) and (ii) grD(Qk) ⊆ grD(V ) .

5.1.3. Invariant differential operators. Recall that, by Lemma 5.4, Qk is stable
under the action of W on C[Vreg]. Hence W acts naturally on D(Qk), and this
action is compatible with the inclusion of Lemma 5.9(i). It follows that D(Qk)

W ⊆
D(Vreg)

W . Now, we recall the algebra embedding (3.1), which defines the Dunkl
representation for the spherical subalgebra of Hk.

Proposition 5.10. The image of Res : Uk ↪→ D(Vreg)
W coincides with D(Qk)

W .
Thus, the Dunkl representation of Uk yields an algebra isomorphism Uk

∼= D(Qk)
W .

Proposition 5.10 explains the remark at the end of Section 2.2.

Corollary 5.11. grD(V ) is a finite module over grD(Qk) . Consequently
grD(Qk) is a finitely generated (and hence, Noetherian) commutative C-algebra.

We are now in a position to state some of the main results of [BC11]. The first
theorem can be viewed as a generalization of the Chevalley-Serre-Shephard-Todd
Theorem (cf. Theorem 2.3, (1) ⇒ (2) ).

Theorem 5.12 ([BC11], Theorem 1.1). Qk is a free module over C[V ]W of
rank |W |.
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It would be nice to have a direct proof of this theorem generalizing the homolog-
ical arguments presented in Section 2.3. Unfortunately, we are not aware of such a
generalization. Instead, Theorem 5.12 is deduced as a consequence of the following
much deeper result on the algebra of differential operators on quasi-invariants.

Theorem 5.13 ([BC11], Theorem 1.2). D(Qk) is a simple ring, Morita equiv-
alent to D(V ).

This result is surprising since, as explained above, D(Qk) is isomorphic to the
ring of (twisted) differential operators on a singular algebraic variety, and such
rings usually do not have good properties. Combined with standard Morita theory
Theorem 5.13 implies that P := {D ∈ D(K) : D(f) ∈ Qk for all f ∈ C[V ]} is
a projective right ideal of D(V ). This gives one of the only families of examples
of non-free projective modules over higher Weyl algebras. In the Coxeter case,
the Morita equivalence between the algebras D(Qk) for integral k’s was originally
proved in [BEG03a].

Theorem 5.13 and Proposition 5.10 have another interesting consequence es-
tablished in [BC11] using K-theoretic arguments.

Theorem 5.14 ([BC11], Corollary 4.6). D(Qk) is a non-free projective module
over D(Qk)

W .

This result can be viewed as a noncommutative counterpart of Theorem 5.12.
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Notes on algebraic operads, graph complexes, and
Willwacher’s construction
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To Orit and Rosie

Abstract. We give a detailed proof of T. Willwacher’s theorem (T. Willwacher,
arXiv:1009.1654) which links the cohomology of the full graph complex fGC
to the cohomology of the deformation complex of the operad Ger, governing
Gerstenhaber algebras. We also present various prerequisites required for un-
derstanding the material of T. Willwacher (arXiv:1009.1654). In particular,
we review operads, cooperads, and the cobar construction. We give a detailed
exposition of the convolution Lie algebra and its properties. We prove a useful
lifting property for maps from a dg operad obtained via the cobar construction.
We describe in detail Willwacher’s twisting construction, and then use it to
work with various operads assembled from graphs, in particular, the full graph
complex and its subcomplexes. These notes are loosely based on lectures given
by the first author at the Graduate and Postdoc Summer School at the Center
for Mathematics at Notre Dame (May 31 - June 4, 2011).
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Appendix C. Filtered dg Lie algebras. The Goldman-Millson theorem
Appendix D. Solutions to selected exercises
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1. Introduction

In his seminal paper [22], M. Kontsevich constructed an L∞ quasi-isomorphism
from the graded Lie algebra PVd of polyvector fields on the affine space Rd to the
differential graded (dg) Lie algebra of Hochschild cochains

(1.1) C•(A) =
∞⊕

m=0

Hom(A⊗m, A)

for the polynomial algebra A = R[x1, x2, . . . , xd] . Among other things, this result
implies that formal associative deformations of the algebra A can be described in
terms of formal Poisson structures on Rd.

According to [23], there exist many homotopy inequivalent L∞ quasi-isomor-
phisms

(1.2) PVd � C•(A)

from PVd to C•(A) . More precisely, the full graph complex fGC (see Section 8)
maps to the Chevalley-Eilenberg complex of PVd and, using this map, one can
define an action of the Lie algebra H0(fGC) on the homotopy classes of L∞ quasi-
isomorphisms (1.2).

In 1998, D. Tamarkin [20], [37] proposed a completely different approach to
constructing L∞ quasi-isomorphisms (1.2). His approach works for an arbitrary
field K of characteristic zero and it is based on several deep results such as a proof
of Deligne’s conjecture on Hochschild complex [6], [25], [33], the formality for the
operad of little discs [38], and the existence of a Drinfeld associator [8].

The main idea of Tamarkin’s approach to Kontsevich’s formality theorem is
to use the existence of a Ger∞-structure on the Hochschild complex C•(A) (1.1),
whose structure maps are expressed in terms of the cup product and insertions of
cochains into a cochain. Showing the existence of such a Ger∞-structure is the most
difficult and the most interesting part of the proof. The construction of this Ger∞-
structure involves the choice of a Drinfeld associator. Furthermore, it is known
[39] that different choices of Drinfeld associators result in homotopy inequivalent
Ger∞-structures.

According to [8], the set of Drinfeld associators forms a torsor (i.e. principle
homogeneous space) for an infinite dimensional algebraic group GRT, which is called
the Grothendieck-Teichmueller group1. This group is related to moduli of curves,
to the absolute Galois group of the field of rationals, and to the theory of motives
[11].

In preprint [42], T. Willwacher established remarkable links2 between three
objects: the group GRT, the full graph complex fGC and the deformation complex

1Following [1] we denote by GRT the unipotent radical of the group introduced by Drinfeld.
2We believe that the same link between the group GRT and the deformation complex of the

operad Ger was established via different methods in paper [10] by B. Fresse.
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of the operad Ger governing Gerstenhaber algebras. Using these links one can
connect the above seemingly unrelated stories:

• Tamarkin’s approach to Kontsevich’s formality theorem based on the use
of Drinfeld associators, and

• the action of the full graph complex fGC on L∞ quasi-isomorphisms (1.2).

We refer the reader to [4], [5], and [41] for more details.
It is already clear that Willwacher’s results have important consequences for

deformation quantization, and they will certainly play a very influential role in
future research. The details presented in [42], however, are technically subtle and
difficult to access – even for experts. Many intermediate steps in the proofs are
either left for the reader, or embedded in remarks and comments throughout the
text. Moreover, several key statements are proved for a particular case, and then
used in their full generality.

The goal of these notes is to give a detailed proof of T. Willwacher’s theorem
(See Theorem 13.2) which links the cohomology of the full graph complex fGC to
the cohomology of the deformation complex of the operad Ger .

In addition, we also present here various prerequisites required for understand-
ing the material of [42]. Thus, in Section 3, we review operads, cooperads, and the
cobar construction. This construction assigns to a coaugmented cooperad C a free
operad Cobar(C) with the differential defined in terms of the cooperad structure on
C . In Section 4, we give a detailed exposition of the convolution Lie algebra and its
properties. In Section 5, we discuss homotopies of maps from Cobar(C) and prove
a useful lifting property for such maps.

In Section 6 we describe in detail Willwacher’s twisting construction Tw which
assigns to a dg operad O and a map3 (of dg operads)

(1.3) ΛLie∞ → O

another dg operad TwO . We refer to TwO as the twisted version of the (dg) operad
O .

Algebras over TwO (satisfying minor technical conditions) can be identified
with O-algebras equipped with a chosen Maurer-Cartan element for the ΛLie∞-
structure induced by the map (1.3). It is the twisting construction which gives us
a convenient framework for working with various operads assembled from graphs,
in particular, the full graph complex and its subcomplexes.

In Section 7, we introduce the operad Gra and define an embedding from the
operad Ger to Gra .

In Section 8, we introduce the full graph complex fGC and its “connected part”
fGCconn ⊂ fGC . We also present a link between fGC and its subcomplex fGCconn .
This link allows us to reduce the question of computing cohomology of fGC to the
question of computing cohomology of fGCconn .

Section 9 is devoted to a thorough analysis of the dg operad TwGra and its
various suboperads. Several useful statements about suboperads of TwGra and the
operad Ger are assembled in the commutative diagram (9.75) at the end of Section
9.

3The dg operad ΛLie∞ differs from the dg operad Lie∞ governing L∞-algebras by a degree
shift. Namely, ΛLie∞-structures on a cochain complex V are in bijection with Lie∞-structures on
s−1 V .
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In Section 10, we use the results of the previous section to deduce deeper state-
ments about the full graph complex fGC . In particular, we prove the decomposition
theorem for the graph cohomology (see Theorem 10.4).

In Section 11, we introduce the deformation complex (11.2) of the operad Ger
and prove a technical statement about this complex.

In Section 12, we consider the convolution Lie algebra Conv(Ger∨,Gra) with
the differential coming from a natural composition Cobar(Ger∨) → Ger → Gra . We
prove that the cohomology of Conv(Ger∨,Gra) is spanned by the class of a single
given vector. In particular, Conv(Ger∨,Gra) does not have non-zero cohomology
classes “coming from arities ≥ 3”. This statement is a version of Tamarkin’s rigidity
theorem for the Gerstenhaber algebra PVd of polyvector fields on Kd , which is one
of the corner stones of Tamarkin’s proof of Kontsevich’s formality theorem.

Section 13 is the culmination of our notes. In this section, we give a proof
of Theorem 13.2 which links the cohomology of the “connected part” of the full
graph complex fGC to the cohomology of the “connected part” of the deformation
complex of the operad Ger . The cohomology of the full graph complex and the
cohomology of the deformation complex of the operad Ger can be easily expressed
in terms of the cohomology of their “connected parts”.

The proof of Theorem 13.2 is assembled from several building blocks. First,
this proof relies on Corollary 9.25 which links the operad Ger to a suboperad of the
dg operad TwGra . Second, it relies on technical Theorem 11.9 which is given in
Subsection 11.2. This theorem states that the (extended) deformation complex of
the operad Ger is quasi-isomorphic to a certain subcomplex. Finally, the proof of
Theorem 13.2 relies on a version of Tamarkin’s rigidity (see Corollary 12.2).

We should remark that the proof of Theorem 13.2 given here is not different
from the one outlined in Willwacher’s preprint [42]. We only make the logic “more
linear” and fill in many omitted details.

Appendices A, B, C contain proofs of three useful statements: a lemma on a
quasi-isomorphism between filtered complexes, the theorem on the Harrison homol-
ogy of the cofree cocommutative coalgebra, and a version of the Goldman-Millson
theorem [19]. Although all these statements are well known, it is hard to find in
the literature proofs which are formulated in the desired generality.

Many minor steps in proofs are left as exercises, which are formulated in the
body of the text. Appendix D at the end of the paper contains solutions to some
of these exercises.

Theorem 13.2 accounts for only 30% of results of T. Willwacher’s preprint [42].
So we hope to write a separate paper, in which we will give a detailed proof of
Willwacher’s theorem which links the full graph complex to the Lie algebra grt of
the Grothendieck-Teichmueller group GRT.

In our exposition, we tried to follow (or rather not to follow) Serre’s suggestions
from his famous lecture [36]. We hope that this text will be useful both for special-
ists working on operads and deformation quantization, and for graduate students
interested in this subject.

Acknowledgment. We would like to thank Thomas Willwacher for numerous
illuminating discussions. We are also thankful to Thomas for his patience with
explaining to us various unwritten but implied claims in his paper [42]. These
notes are loosely based on lectures given by V.A.D. at the Graduate and Postdoc
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Summer School at the Center for Mathematics at Notre Dame (May 31 - June 4,
2011). We would like to thank Samuel Evens and Michael Gekhtman for organizing
such a wonderful summer school. We are thankful to our previous institution, the
UC Riverside, in which we started discussing topics related to this paper. V.A.D.
would like to thank Ezra Getzler for his kind offer to use his office during V.A.D.’s
visit of Northwestern University in May of 2011. V.A.D. is also thankful to Brian
Paljug for his remarks about early versions of the draft.

1.1. Notation and Conventions. The base field K has characteristic zero.
For a set X we denote by K〈X〉 the K-vector space of finite linear combinations of
elements in X .

The underlying symmetric monoidal category C is often the category ChK of
unbounded cochain complexes of K-vector spaces or the category grVectK of Z-
graded K-vector spaces. We will frequently use the ubiquitous combination “dg”
(differential graded) to refer to algebraic objects in ChK . For a homogeneous vector
v in a cochain complex (or a graded vector space), |v| denotes the degree of v . We
denote by s (resp. s−1) the operation of suspension (resp. desuspension). Namely,
for a cochain complex (or a graded vector space) V , we have(

sV
)•

= V•−1 ,
(
s−1 V

)•
= V•+1 .

The notation 1 is reserved for the unit of the underlying symmetric monoidal cat-
egory C

By a commutative algebra we always mean commutative and associative alge-
bra. The notation Lie (resp. Com, Ger) is reserved for the operad governing Lie
algebras (resp. commutative algebras without unit, Gerstenhaber algebras without
unit). Dually, the notation coLie (resp. coCom) is reserved for the cooperad govern-
ing Lie coalgebras (resp. cocommutative coalgebras without counit). The notation
CH(x, y) is reserved for the Campbell-Hausdorff series in x and y.

The notation Sn is reserved for the symmetric group on n letters and Shp1,...,pk

denotes the subset of (p1, . . . , pk)-shuffles in Sn, i.e. Shp1,...,pk
consists of elements

σ ∈ Sn, n = p1 + p2 + · · ·+ pk such that

σ(1) < σ(2) < · · · < σ(p1),

σ(p1 + 1) < σ(p1 + 2) < · · · < σ(p1 + p2),

. . .

σ(n− pk + 1) < σ(n− pk + 2) < · · · < σ(n) .

For i ≤ j ≤ n we denote by ςi,j the following cycle in Sn

(1.4) ςi,j =

{
(i, i+ 1, . . . , j − 1, j) if i < j ,

id if i = j .

It is clear that

(1.5) ς−1
i,j =

{
(j, j − 1, . . . , i+ 1, i) if i < j ,

id if i = j .

For example, the set {ςi,n}1≤i≤n is exactly the set Shn−1,1 of (n− 1, 1)-shuffles and

{ς−1
1,i }1≤i≤n is the set Sh1,n−1 of (1, n− 1)-shuffles.
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30 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

For a group G and a G-module W , the notation WG (resp. WG) is reserved
for the subspace of G-invariants (resp. the quotient space of G-coinvariants).

For an operad O (resp. a cooperad C) and a cochain complex V , the notation
O(V ) (resp. C(V )) is reserved for the free O-algebra (resp. cofree C-coalgebra).
Namely,

(1.6) O(V ) :=
⊕
n≥0

(
O(n)⊗ V ⊗n

)
Sn

,

(1.7) C(V ) :=
⊕
n≥0

(
C(n)⊗ V ⊗n

)Sn

.

For an augmented operad O (in ChK) we denote by O◦ the kernel of the aug-
mentation. Dually, for a coaugmented cooperad C (in ChK) we denote by C◦ the
cokernel of the coaugmentation. (We refer the reader to Subsections 3.3.1 and 3.5.1
for more details.)

For a groupoid G the notation π0(G) is reserved for the set of its isomorphism
classes.

A directed graph (resp. graph) Γ is a pair (V (Γ), E(Γ)), where V (Γ) is a finite
non-empty set and E(Γ) is a set of ordered (resp. unordered) pairs of elements of
V (Γ). Elements of V (Γ) are called vertices and elements of E(Γ) are called edges.
We say that a directed graph (resp. graph) Γ is labeled if it is equipped with a
bijection between the set V (Γ) and the set of numbers {1, 2, . . . , |V (Γ)|} . We allow
a graph with the empty set of edges.

v1

v2

v3

v4

Fig.

1. A
graph Γ

v1

v2

v3

v4

Fig.

2. A
directed
graph
Γ′

1

2

3

4

Fig.

3. A
labeled
graph
Γ′′

For example, the graph Γ on figure 1 has

V (Γ) = {v1, v2, v3, v4} and E(Γ) = {{v1, v1}, {v2, v1}, {v1, v3}} .

For the directed graph Γ′ on figure 2 we have

V (Γ′) = {v1, v2, v3, v4} and E(Γ′) = {(v1, v1), (v1, v2), (v1, v3)} .

Finally, figure 3 gives us an example of a labeled graph.
A valency of a vertex v in a (directed) graph Γ is the total number of its

appearances in the pairs E(Γ). For example, vertex v1 in the graph on figure 2 has
valency 4.
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2. Trees

A connected graph without cycles is called a tree. In this paper all trees are
planted, i.e. each tree has a marked vertex (called the root) and this marked vertex
has valency 1 . (In particular, each tree has at least one edge.) The edge adjacent
to the root vertex is called the root edge. Non-root vertices of valency 1 are called
leaves. A vertex is called internal if it is neither a root nor a leaf. We always orient
trees in the direction towards the root. Thus every internal vertex has at least 1
incoming edge and exactly 1 outgoing edge. An edge adjacent to a leaf is called
external. We allow a degenerate tree, that is a tree with exactly two vertices (the
root vertex and a leaf) connected by a single edge. A tree t is called planar if, for
every internal vertex v of t, the set of edges terminating at v carries a total order.

Let us recall that for every planar tree t the set V (t) of all its vertices is
equipped with a natural total order. To define this total order on V (t) we introduce
the function

(2.1) N : V (t) → V (t) .

To a non-root vertex v the function N assigns the next vertex along the (unique)
path connecting v to the root vertex. Furthermore N sends the root vertex to the
root vertex.

Let v1, v2 be two distinct vertices of t . If v1 lies on the path which connects v2
to the root vertex then we declare that

v1 < v2 .

Similarly, if v2 lies on the path which connects v1 to the root vertex then we declare
that

v2 < v1 .

If neither of the above options realize then there exist numbers k1 and k2 such that

(2.2) N k1(v1) = N k2(v2)

but

N k1−1(v1) �= N k2−1(v2) .

Since the tree t is planar the set of N−1(N k1(v1)) is equipped with a total or-
der. Furthermore, since both vertices N k1−1(v1) and N k2−1(v2) belong to the set
N−1(N k1(v1)), we may compare them with respect to this order.

We declare that, if N k1−1(v1) < N k2−1(v2), then

v1 < v2 .

Otherwise we set v2 < v1 .
It is not hard to see that the resulting relation < on V (t) is indeed a total

order.
The total order on V (t) can be defined graphically. Indeed, draw a planar tree

t on the plane. Then choose a small tubular neighborhood of t on the plane and
walk along its boundary starting from a vicinity of the root vertex in the clockwise
direction. On our way, we will meet each vertex of t at least once. So we declare
that v1 < v2 if the first occurrence of v1 precedes the first occurrence of v2.

For example, consider the planar tree depicted on figure 4. Following the path
drawn around this tree we get

r < v1 < v2 < v3 < v4 < v5 < v6 .
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r

v1

v2

v3 v4 v5

v6

Fig. 4. We start walking around the planar tree from the gray circle

Keeping this order in mind, we can say things like “the first vertex”, “the
second vertex”, and “the i-th vertex” of a planar tree t . In fact, the first vertex of
a tree is always its root vertex.

We have an obvious bijection between the set of edges E(t) of a tree t and the
subset of vertices:

(2.3) V (t) \ {root vertex} .

This bijection assigns to a vertex v in (2.3) its outgoing edge.
Thus the canonical total order on the set (2.3) gives us a natural total order

on the set of edges E(t) .
For our purposes we also extend the total orders on the sets V (t)\{root vertex}

and E(t) to the disjoint union

(2.4) V (t) \ {root vertex} � E(t)

by declaring that a vertex is bigger than its outgoing edge. For example, the root
edge is the minimal element in the set (2.4).

2.1. Groupoid of labeled planar trees. Let n be a non-negative integer.
An n-labeled planar tree t is a planar tree equipped with an injective map

(2.5) l : {1, 2, . . . , n} → L(t)

from the set {1, 2, . . . , n} to the set L(t) of leaves of t . Although the set L(t) has
a natural total order we do not require that the map (2.5) is monotonous.

The set L(t) of leaves of an n-labeled planar tree t splits into the disjoint union
of the image l({1, 2, . . . , n}) and its complement. We call leaves in the image of l
labeled.

A vertex x of an n-labeled planar tree t is called nodal if it is neither a root
vertex, nor a labeled leaf. We denote by Vnod(t) the set of all nodal vertices of t.
Keeping in mind the canonical total order on the set of all vertices of t we can say
things like “the first nodal vertex”, “the second nodal vertex”, and “the i-th nodal
vertex”.

Example 2.1. An example of a 4-labeled planar tree is depicted on figure 5.
On figures we use small white circles for nodal vertices and small black circles for
labeled leaves and the root vertex.
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1

2 4 3

Fig. 5. A 4-labeled planar tree

For our purposes we need to upgrade the set of n-labeled planar trees to the
groupoid Tree(n) . Objects of Tree(n) are n-labeled planar trees and morphisms
are non-planar isomorphisms of the corresponding (non-planar) trees compatible
with labeling. The groupoid Tree(n) is equipped with an obvious left action of the
symmetric group Sn .

As far as we know the groupoid Tree(n) was originally introduced by E. Getzler
and M. Kapranov in [17]. However, here we do not exactly follow the notation from
[17].

The notation Tree2(n) is reserved for the full sub-category of Tree(n) whose
objects are n-labeled planar trees with exactly 2 nodal vertices. It is not hard to
see that every object in Tree2(n) has at most n + 1 leaves. Due to Exercise 2.2,
isomorphism classes of Tree2(n) are in bijection with the union

(2.6)
⊔

0≤p≤n

Shp,n−p .

Exercise 2.2. Let us assign to a shuffle τ ∈ Shp,n−p the n-labeled planar tree
depicted on figure 6. Prove that this assignment gives us a bijection between the

τ(1)
. . .

τ(p)

τ(p+ 1)
. . .

τ(n)

Fig. 6. Here τ is a (p, n− p)-shuffle

set (2.6) and the set of isomorphism classes in Tree2(n) .

Remark 2.3. The groupoid Tree2(0) has exactly one object (see figure 7) and
hence exactly one isomorphism class. The groupoid Tree2(1) has three objects and
two isomorphisms classes. Representatives of isomorphism classes in Tree2(1) are
depicted on figures 8 and 9.

2.2. Insertions of trees. Let t̃ be an n-labeled planar tree with a non-empty
set of nodal vertices. If the i-th nodal vertex of t̃ has mi incoming edges then for
every mi-labeled planar tree t we can define the insertion •i of the tree t into the
i-th nodal vertex of t̃ . The resulting planar tree t̃•it is also n-labeled.

If mi = 0 then t̃•it is obtained via identifying the root edge of t with edge
originating at the i-th nodal vertex.

If mi > 0 then the tree t̃•it is built following these steps:
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Fig. 7. The
unique object in
Tree2(0)

1

Fig.

8. A
tree in
Tree2(1)

1

Fig.

9. A
tree in
Tree2(1)

• First, we denote by Ei(t̃) the set of edges terminating at the i-th nodal

vertex of t̃ . Since t̃ is planar, the set Ei(t̃) comes with a total order;

• second, we erase the i-th nodal vertex of t̃;
• third, we identify the root edge of t with the edge of t̃ which originates
at the i-th nodal vertex;

• finally, we identify the edges of t adjacent to labeled leaves with the edges
in the set Ei(t̃) following this rule: the external edge with label j gets

identified with the j-th edge in the set Ei(t̃) . In doing this, we keep the

same planar structure on t, so, in general, branches of t̃ move around.

Example 2.4. Let t̃ be the 4-labeled planar tree depicted on figure 5 and t
be the 3-labeled planar tree depicted on figure 10. Then the insertion t̃ •1 t of t
into the first nodal vertex of t̃ is shown on figure 11. Figure 12 illustrates the
construction algorithm of t̃ •1 t step by step.

1

2 3

Fig. 10. A
3-labeled planar
tree t

21

4 3

Fig. 11. The 4-
labeled planar tree
t̃ •1 t

3. Operads, pseudo-operads, and their dual versions

3.1. Collections. By a collection we mean the sequence {P (n)}n≥0 of objects
of the underlying symmetric monoidal category C such that for each n, the object
P (n) is equipped with a left action of the symmetric group Sn .

Given a collection P we form covariant functors for n ≥ 0

Pn : Tree(n) → C .

To an n-labelled planar tree t the functor Pn assigns the object

(3.1) Pn(t) =
⊗

x∈Vnod(t)

P (m(x)) ,
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1

2 4 3

−→ 1

2

2

1

3

4 3

−→ 1

2

2

1

3

4 3

−→

1

2 3

1

2

2

1

3

4 3

−→

21

4 3

Fig. 12. Algorithm for constructing t̃ •1 t

where Vnod(t) is the set of all nodal vertices of t, the notation m(x) is reserved for
the number of edges terminating at the vertex x, and the order of the factors in the
right hand side of the equation agrees with the natural order on the set Vnod(t).

To define the functor Pn on the level of morphisms we use the actions of the
symmetric groups and the structure of the symmetric monoidal category C in the
obvious way.

Example 3.1. Let t1 (resp. t2) be a 2-labeled planar tree depicted on figure
13 (resp. figure 14). There is a unique morphism λ from t1 to t2 in Tree(2) . For

1 2

Fig. 13. A 2-
labeled planar tree
t1

2 1

Fig. 14. A 2-
labeled planar tree
t2

these trees we have

P 2(t1) = P (2)⊗ P (3)⊗ P (0)⊗ P (0) ,

P 2(t2) = P (2)⊗ P (0)⊗ P (3)⊗ P (0) ,

and the morphism

P 2(λ) : P (2)⊗ P (3)⊗ P (0)⊗ P (0) → P (2)⊗ P (0)⊗ P (3)⊗ P (0)

is the composition

P 2(λ) = (1⊗ β) ◦ (σ12 ⊗ σ13 ⊗ 1⊗ 1),
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where σ12 (resp. σ13) is the corresponding transposition in S2 (resp. in S3) and β
is the braiding

β :
(
P (3)⊗ P (0)

)
⊗ P (0) → P (0)⊗

(
P (3)⊗ P (0)

)
.

3.2. Pseudo-operads. We now recall that a pseudo-operad is a collection
{P (n)}n≥0 equipped with multiplication maps

(3.2) μt : Pn(t) → P (n)

for all n-labeled trees t and for all n ≥ 0 . These multiplications should satisfy the
axioms which we list below.

First, we require that for the standard corolla qn (see figures 15, 16) the mul-

Fig. 15. The corolla q0

1 2
. . .

n

Fig. 16. The corolla
qn for n ≥ 1

tiplication map μqn
is the identity morphism on P (n)

(3.3) μqn
= idP (n) .

Second, we require that the operations (3.2) are Sn-equivariant

(3.4) μσ(t) = σ ◦ μt , ∀ σ ∈ Sn, t ∈ Tree(n) .

Third, for every morphism λ : t → t′ in Tree(n) we have

(3.5) μt′ ◦ Pn(λ) = μt .

Finally, we need to formulate the associativity axiom for multiplications (3.2).

For this purpose we consider the following quadruple (t̃, i,mi, t) where t̃ is an n-
labeled planar tree with k nodal vertices, 1 ≤ i ≤ k, mi is the number of edges
terminating at the i-th nodal vertex of t̃, and t is an mi-labeled planar tree.

The associativity axioms states that for each such quadruple (t̃, i,mi, t) we
have

(3.6) μt̃ ◦ (id⊗ · · · ⊗ id⊗ μt︸︷︷︸
i-th spot

⊗id⊗ · · · ⊗ id) ◦ β t̃,i,mi,t
= μ t̃•it

where t̃ •i t is the n-labeled planar tree obtained by inserting t into the i-th nodal
vertex of t̃ and β t̃,i,mi,t

is the isomorphism in C which is responsible for “putting
tensor factors in the correct order”.

To define the isomorphism β t̃,i,mi,t
we observe that the source of the map μ t̃•it

is

(3.7)
⊗

x∈Vnod (̃t•it)

P (m(x))

where m(x) denotes the number of edges of t̃ •i t terminating at the nodal vertex

x and the order of factors agrees with the total order on the set Vnod(t̃ •i t) . The
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source of the map

(3.8) μt̃ ◦ (id⊗ · · · ⊗ id⊗ μt︸︷︷︸
i−th spot

⊗id⊗ · · · ⊗ id)

is also the product (3.7) with a possibly different order of tensor factors. The map
β t̃,i,mi,t

in (3.6) is the isomorphism in C which connects the source of μ t̃•it
to the

source of (3.8).
Given integers n ≥ 1, k ≥ 0, 1 ≤ i ≤ n and a permutation σ ∈ Sn+k−1 we can

form the (n+ k − 1)-labeled planar tree tn,k,iσ shown on figure 17.

σ(1) σ(2)
. . .
σ(i− 1)

σ(i)
. . .
σ(i+ k − 1)

σ(i+ k)
. . .

σ(n+ k − 1)

Fig. 17. The (n+ k − 1)-labeled planar tree tn,k,iσ

In the case when C = ChK or C = grVectK, it is convenient to use a slightly
different notation for values of the multiplication map μtn,k,i

σ
corresponding to the

tree tn,k,iσ . More precisely, for a vector v ∈ P (n) and w ∈ P (k) of a pseudo-operad
P we set
(3.9)
v
(
σ(1), . . . σ(i−1), w

(
σ(i), . . . , σ(i+k−1)

)
, σ(i+k), . . . , σ(n+k−1)

)
:= μtn,k,i

σ
(v, w) .

Recall that, for σ = id ∈ Sn+k−1, the multiplication

μtn,k,i
id

: P (n)⊗ P (k) → P (n+ k − 1)

is called the elementary insertion and often denoted by ◦i . Namely, for v ∈ P (n)
and w ∈ P (k) we have4

(3.10) v ◦i w := μtn,k,i
id

(v, w) .

It is not hard to see that a pseudo-operad structure on a collection P (in ChK or
grVectK) is uniquely determined by elementary insertions (3.10). All the remaining
multiplications (3.2) can be expressed in terms of (3.10) using the axioms of a
pseudo-operad.

Thus, it is not hard to see that, the following definition of a pseudo-operad is
equivalent to ours.

Definition 3.2 (Definition 17, [32]). A pseudo-operad in ChK (resp. grVectK)
is a collection P in ChK (resp. grVectK) equipped with maps

(3.11) ◦i : P (n)⊗ P (k) → P (n+ k − 1) , 1 ≤ i ≤ n

4Numbers n and k are suppressed from the notation.
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satisfying the associativity axiom and equivariance axioms. The associativity axiom
states that for all homogeneous vectors a, b, c in P (na), P (nb), and P (nc), respec-
tively and for all 1 ≤ i ≤ na and 1 ≤ j ≤ na + nb − 1

(3.12) (a ◦i b) ◦j c =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)|b||c|(a ◦j c) ◦i+nc−1 b if j < i ,

a ◦i (b ◦j−i+1 c) if i ≤ j ≤ i+ nb − 1 ,

(−1)|b||c|(a ◦j−nb+1 c) ◦i b if j ≥ i+ nb .

The equivariance axioms state that for all 1 ≤ p ≤ nb − 1 and 1 ≤ k ≤ na − 1 we
have

(3.13) a ◦i (σp (p+1)b) = σ(p+i−1) (p+i)(a ◦i b) ,

(3.14) (σk (k+1)a) ◦i b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σk (k+1)(a ◦i b) if k + 1 < i

ςi−1, i+nb−1(a ◦i−1 b) if k + 1 = i

ς−1
i, i+nb

(a ◦i+1 b) if k + 1 = i

σ(k+nb−1) (k+nb)(a ◦i b) if k > i .

Here σi1 i2 denotes the transposition (i1, i2) and ςi1,i2 is the cycle defined in (1.4).

In [32] a pseudo-operad is called non-unital Markl’s operad.

3.3. Operads. An operad is a pseudo-operad P with unit, that is a map

(3.15) u : 1 → P (1)

for which the compositions

(3.16)
P (n) ∼= P (n)⊗ 1

id⊗u−→ P (n)⊗ P (1)
◦i−→ P (n)

P (n) ∼= 1⊗ P (n)
u⊗id−→ P (1)⊗ P (n)

◦1−→ P (n)

coincide with the identity map on P (n) .
Morphisms of pseudo-operads and operads are defined in the obvious way.

Example 3.3. For an object V of C we denote by EndV the following collection5

(3.17) EndV(n) = Hom(V⊗n,V) .
This collection is equipped with the obvious structure of an operad. Namely, the
elementary insertions

◦i : EndV(n)⊗ EndV(m) → EndV(n+m− 1)

are defined by the equation

f ◦i g := f ◦ (id⊗ (i−1) ⊗ g ⊗ id⊗ (n−i))

and the unit
u : 1 → Hom(V ,V)

corresponds to the isomorphism 1⊗V ∼= V . We call EndV the endomorphism operad
of V .

5We tacitly assume that the symmetric monoidal category C has inner Hom.
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This example plays an important role because it is used in the definition of an
algebra over an operad. Namely, an algebra over an operad P (in C) is an object V
of C together with an operad map

P → EndV .

It is not hard to see that an object V in C is an algebra over an operad P if
and only if V is equipped with a collection of multiplication maps

(3.18) μV : P (n)⊗ V⊗n → V n ≥ 0 ,

satisfying the associativity axiom, the equivariance axiom and the unitality axiom
formulated, for instance, in [32, Proposition 24] .

Exercise 3.4. Let C = grVectK . Consider the collections

(3.19) Comu(n) = K ,

and

(3.20) Com(n) =

{
K if n ≥ 1 ,

0 if n = 0 .

with the trivial Sn-action on Com(n) (resp. Comu(n)) . The collections Com and
Comu are equipped with the obvious operad structures. For Comu we have

◦i = id : Comu(n)⊗ Comu(k) ∼= K⊗K → Comu(n+ k − 1) ∼= K ,

u = id : K → Comu(1) ∼= K ,

and for Com we have

◦i = id : Com(n)⊗ Com(k) ∼= K⊗K → Com(n+ k − 1) ∼= K ,

if k �= 0, and
u = id : K → Com(1) ∼= K .

Show that Comu-algebras (resp. Com-algebras) are exactly unital (resp. non-unital)
commutative algebras.

Exercise 3.5. Let P and O be operads (resp. pseudo-operad) in C . Show
that the collection P ⊗O with

P ⊗O(n) = P (n)⊗O(n)

is naturally an operad (resp. pseudo-operad) . For this exercise it may be more
convenient to use Markl’s definition [32, Definition 17].

Exercise 3.6 (The operad Λ). Let C = grVectK or C = ChK . Consider the
collection Λ

(3.21) Λ(n) =

{
s1−nsgnn if n ≥ 1

0 if n = 0

with sgnn being the sign representation of Sn . Let

◦i : Λ(n)⊗ Λ(k) → Λ(n+ k − 1)

be the operations defined by

(3.22) 1n ◦i 1k = (−1)(1−k)(n−i)1n+k−1 ,

where 1m denotes the generator s1−m1 ∈ s1−msgnm . Prove that (3.22) together
with the obvious unit map u = id : K → Λ(1) ∼= K equip the collection Λ with a
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structure of an operad. Show that Λ-algebra structures on V are in bijection with
Com-algebra structure on s−1V .

Exercise 3.7. For an operad O in the category ChK (resp. grVectK) we denote
by ΛO the operad

(3.23) ΛO := Λ⊗O .

Show that ΛO-algebra structures on a cochain complex (resp. graded vector space)
V are in bijection with O-algebra structures on s−1 V .

Example 3.8. Let Lie be the operad which governs Lie algebras. An algebra
over ΛLie in grVectK is a graded vector space V equipped with the binary operation:

{ , } : V ⊗ V → V
of degree −1 satisfying the identities:

{v1, v2} = (−1)|v1||v2|{v2, v1} ,

{{v1, v2}, v3}+ (−1)|v1|(|v2|+|v3|){{v2, v3}, v1}+ (−1)|v3|(|v1|+|v2|){{v3, v1}, v2} = 0 ,

where v1, v2, v3 are homogeneous vectors in V .

Exercise 3.9 (Free algebra over an operad O). Let O be an operad in the
category ChK (resp. grVectK). Show that for every cochain complex (resp. graded
vector space) V the direct sum

(3.24) O(V) :=
∞⊕

n=0

(
O(n)⊗ V⊗n

)
Sn

carries a natural structure of an algebra over O . Prove that the O-algebra O(V) is
free. In other words, the assignment

V → O(V)
upgrades to a functor which is left adjoint to the forgetful functor from the category
of O-algebras to the category ChK (resp. grVectK).

3.3.1. Augmented operads. In this subsection C is either ChK or grVectK .
Let us observe that the collection

(3.25) ∗(n) =
{
K if n = 1

0 otherwise

is equipped with the unique structure of an operad. In fact, ∗ is the initial object
in the category of operads (in C) .

An augmentation of an operad O is an operad morphism

ε : O → ∗ .
Given a pseudo-operad P in C we can always form an operad by formally

adjoining a unit. The resulting operad is naturally augmented.
Furthermore, the kernel of the augmentation for any augmented operad is nat-

urally a pseudo-operad. According to [32, Proposition 21], these two constructions
give us an equivalence between the category of augmented operads and the category
pseudo-operads.

For an augmented operad O we denote by O◦ the kernel of its augmentation.
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Exercise 3.10. Show that the operads Com and Lie have natural augmenta-
tions. Prove that the operad Comu (from Exercise 3.4) does not admit an augmen-
tation.

3.3.2. Example: the operad Ger. Let us recall that a Gerstenhaber algebra is
a graded vector space V equipped with a commutative (and associative) product
(without identity) and a degree −1 binary operation { , } which satisfies the follow-
ing relations:

(3.26) {v1, v2} = (−1)|v1||v2|{v2, v1} ,

(3.27) {v, v1v2} = {v, v1}v2 + (−1)|v1||v|+|v1|v1{v, v2} ,

(3.28)

{{v1, v2}, v3}+ (−1)|v1|(|v2|+|v3|){{v2, v3}, v1}+ (−1)|v3|(|v1|+|v2|){{v3, v1}, v2} = 0 .

In particular, (V, { , }) is a ΛLie-algebra.
To define spaces of the operad Ger governing Gerstenhaber algebras we intro-

duce the free Gerstenhaber algebra Gern in n dummy variables a1, a2, . . . , an of
degree 0 . Next we set Ger(0) = 0 and Ger(1) = K . Then we declare that, for
n ≥ 2, Ger(n) is spanned by monomials of Gern in which each dummy variable ai
appears exactly once.

The symmetric group Sn acts on Ger(n) by permuting the dummy variables
and the elementary insertions are defined in the obvious way.

Example 3.11. Let us consider the monomials u = {a2, a3}a1{a4, a5} ∈ Ger(5)
and w = {a1, a2} ∈ Ger(2) and compute the insertions u ◦2 w, u ◦4 w and w ◦1 u .
We get

u ◦2 w = −{{a2, a3}, a4}a1{a5, a6} , u ◦4 w = {a2, a3}a1{{a4, a5}, a6} ,

w ◦1 u = {{a2, a3}a1{a4, a5}, a6} =

= {a6, {a2, a3}a1{a4, a5}} = {a6, {a2, a3}}a1{a4, a5}

−{a2, a3}{a6, a1}{a4, a5} − {a2, a3}a1{a6, {a4, a5}} .
(Note that the insertions obey the usual Koszul rule for signs.)

It is easy to see that the operad Ger is generated by the monomials a1a2, {a1, a2} ∈
Ger(2) and algebras over the operad Ger are Gerstenhaber algebras. It is also easy
to see that the monomial {a1, a2} generates a suboperad of Ger isomorphic to ΛLie .
The operad Ger carries the obvious augmentation.

We would like to remark that the space Ger(n) is spanned by monomials v ∈
Ger(n) of the form
(3.29)

v = v1(ai11 , ai12 , . . . , ai1p1 ) v2(ai21 , ai22 , . . . , ai2p2 ) . . . vt(ait1 , ait2 , . . . , aitpt ) ,

where v1, v2, . . . , vt are ΛLie-words in p1, p2, . . . , pt variables, respectively, without
repetitions and

{i11, i12, . . . , i1p1
} � {i21, i22, . . . , i2p2

} � · · · � {it1, it2, . . . , itpt
}

is a partition of the set of indices {1, 2, . . . , n} . So, from now on, by a monomial
in Ger(n) we mean a monomial of the form (3.29) .
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Exercise 3.12. Consider the ordered partitions of the set {1, 2, . . . , n}

(3.30) {i11, i12, . . . , i1p1
} � {i21, i22, . . . , i2p2

} � · · · � {it1, it2, . . . , itpt
}

satisfying the following properties:

• for each 1 ≤ β ≤ t the index iβpβ
is the biggest among iβ1, . . . , iβ(pβ−1)

• i1p1
< i2p2

< · · · < itpt
(in particular, itpt

= n).

Prove that the monomials

(3.31) {ai11 , . . . , {ai1(p1−1)
, ai1p1}..} . . . {ait1 , . . . , {ait(pt−1)

, aitpt}..}

corresponding to all ordered partitions (3.30) satisfying the above properties form
a basis of Ger(n) . Use this fact to show that

dim(Ger(n)) = n! .

3.4. Pseudo-cooperads. Reversing the arrows in the definition of a pseudo-
operad we get the definition of a pseudo-cooperad. More precisely, a pseudo-
cooperad is a collection Q equipped with comultiplication maps

(3.32) Δt : Q(n) → Q
n
(t) ,

which satisfy a similar list of axioms.
Just as for pseudo-operads, we have

(3.33) Δqn
= idQ(n) ,

where qn is the standard corolla (see figures 15, 16).
We also require that the operations (3.32) are Sn-equivariant

(3.34) Δσ(t) ◦ σ = Δt , ∀ σ ∈ Sn, t ∈ Tree(n) .

For every morphism λ : t → t′ in Tree(n) we have

(3.35) Δt′ = Q
n
(λ) ◦Δt .

Finally, to formulate the coassociativity axiom for (3.32), we consider the follow-

ing quadruple (t̃, i,mi, t) where t̃ is an n-labeled planar tree with k nodal vertices,

1 ≤ i ≤ k, mi is the number of edges terminating at the i-th nodal vertex of t̃, and
t is an mi-labeled planar tree.

The coassociativity axioms states that for each such quadruple (t̃, i,mi, t) we
have

(3.36) (id⊗ · · · ⊗ id⊗ Δt︸︷︷︸
i-th spot

⊗id⊗ · · · ⊗ id) ◦Δt̃ = β t̃,i,mi,t
◦Δ t̃•it

,

where t̃ •i t is the n-labeled planar tree obtained by inserting t into the i-th nodal
vertex of t̃ and β t̃,i,mi,t

is the isomorphism in C which is responsible for “putting
tensor factors in the correct order”.

Just as for pseudo-operads, a pseudo-cooperad structure on a collection Q is
uniquely determined by the comultiplications:

(3.37) Δi := Dtn,k,i
id

: Q(n+ k − 1) → Q(n)⊗Q(k) ,

where {tn,k,iσ }σ∈Sn+k−1
is the family of labeled planar trees depicted on figure 17.

The comultiplications (3.37) are called elementary co-insertions.
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3.5. Cooperads. We recall that a cooperad is a pseudo-cooperad Q with
counit, that is a map

(3.38) u∗ : Q(1) → 1

for which the compositions

(3.39)
Q(n)

Δi−→ Q(n)⊗Q(1)
id⊗u∗
−→ Q(n)⊗ 1 ∼= Q(n)

Q(n)
Δ1−→ Q(1)⊗Q(n)

u∗⊗id−→ 1⊗Q(n) ∼= Q(n)

coincide with the identity map on Q(n) .
Morphisms of pseudo-cooperads and cooperads are defined in the obvious way.
Unfortunately there is no natural notion of “endomorphism cooperad”. So a

coalgebra over a cooperadQ is defined as an object V in C equipped with a collection
of comultiplication maps

(3.40) ΔV : V → Q(n)⊗ V⊗n n ≥ 0 ,

satisfying axioms which are dual to the associativity axiom, the equivariance axiom
and the unitality axiom from [32, Proposition 24].

3.5.1. Coaugmented cooperads. In this subsection C is either ChK or grVectK .
It is not hard to see that the collection ∗ (3.25) is equipped with the unique

cooperad structure. Furthermore, ∗ is the terminal object in the category of coop-
erads.

We say that a cooperad C is coaugmented if we have a cooperad morphism

(3.41) ε′ : ∗ → C .

Given a pseudo-cooperad C we can always form a cooperad by formally adjoin-
ing a counit. The resulting cooperad is naturally coaugmented.

Furthermore, the cokernel of the coaugmentation for any coaugmented coop-
erad is naturally a pseudo-cooperad. Dualizing the line of arguments in [32, Propo-
sition 21] we see that these two constructions give an equivalence between the cat-
egory of coaugmented cooperads and the category of pseudo-cooperads.

For a coaugmented cooperad C we will denote by C◦ the cokernel of the coaug-
mentation.

Just as for operads (see Exercise 3.5), the tensor product of two cooperads is
naturally a cooperad. Furthermore, the collection Λ (3.21) introduced in Exercise
3.6 carries a cooperad structure with the following elementary co-insertions:

(3.42) Δi(1n+k−1) = (−1)(1−k)(n−i)1n ⊗ 1k ,

where 1m denotes the generator s1−m1 ∈ s1−msgnm .
For a cooperad C in the category ChK or grVectK we denote by ΛC the cooperad

(3.43) ΛC := Λ⊗ C .

Just as for operads (see Exercise 3.7), it is easy to see that ΛC-coalgebra structures
on a cochain complex (or a graded vector space) V are in bijection with C-coalgebra
structures on s−1V .

Exercise 3.13 (Cofree coalgebra over a cooperad C). Let C be a cooperad
in the category ChK (resp. grVectK). Show that for every cochain complex (resp.
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graded vector space) V the direct sum

(3.44) C(V) :=
∞⊕

n=0

(
C(n)⊗ V⊗n

)Sn

carries a natural structure of a coalgebra over C . Prove that the C-coalgebra C(V)
is cofree6. In other words, the assignment

V → C(V)
upgrades to a functor which is right adjoint to the forgetful functor from the cate-
gory of C-coalgebras to the category ChK (resp. grVectK).

3.6. Free operad. In this section C = ChK or grVectK .
Let Q be a collection. Following [2, Section 5.8] the spaces

{
ΨOP(Q)(n)

}
n≥0

of the free pseudo-operad generated by the collection Q are

(3.45) ΨOP(Q)(n) = colimQ
n

where Q
n
is the functor from the groupoid Tree(n) to C defined in Subsection 3.1.

The pseudo-operad structure on ΨOP(Q) is defined in the obvious way us-
ing grafting of trees and the free operad OP(Q) generated by Q is obtained from
ΨOP(Q) by formally adjoining the unit.

Unfolding (3.45) we see that ΨOP(Q)(n) is the quotient of the direct sum

(3.46)
⊕

t∈Tree(n)

Q
n
(t)

by the subspace spanned by vectors of the form

(t, X)− (t′, Q
n
(λ)(X))

where λ : t → t′ is a morphism in Tree(n) and X ∈ Q
n
(t) .

Thus it is convenient to represent vectors in ΨOP(Q) and in OP(Q) by labeled
planar trees with nodal vertices decorated by vectors in Q . The decoration is
subject to this rule: if m(x) is the number of edges which terminate at a nodal
vertex x then x is decorated by a vector vx ∈ Q(m(x)) .

If a decorated tree t′ is obtained from a decorated tree t by applying an element
σ ∈ Sm(x) to incoming edges of a vertex x and replacing the vector vx by σ−1(vx)
then t′ and t represent the same vectors in ΨOP(Q) (and in OP(Q)).

Example 3.14. Let Q be a collection. Figure 18 shows a 4-labeled planar tree
t decorated by vectors v1 ∈ Q(3), v2 ∈ Q(2) and v3 ∈ Q(1) . Figure 19 shows
another decorated tree with v′1 = σ23(v1) and v′2 = σ12(v2), where σ23 and σ12
are the corresponding transpositions in S3 and S2, respectively. According to our
discussion, these decorated trees represent the same vector in OP(Q)(4) .

Remark 3.15. In view of the above description, generators X ∈ Q(n) of the
free operad OP(Q) can be also written in the form

(qn, X) ,

where qn is the standard n-corolla (see figures 15, 16).

6All C-coalgebras are assumed to be nilpotent in the sense of [20, Section 2.4.1].
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2 1 4 3

v2

v1

v3

Fig. 18. A 4-
labeled decorated
tree t

1 2

4

3

v′2

v′1

v3

Fig. 19. A 4-
labeled decorated
tree t̃. Here
v′1 = σ23(v1) and
v′2 = σ12(v2)

3.7. Cobar construction. The underlying symmetric monoidal category C

is the category ChK of unbounded cochain complexes of K-vector spaces.
The cobar construction Cobar [9], [16], [18], [27, Section 6.5] is a functor

from the category of coaugmented cooperads in ChK to the category of augmented
operads in ChK. It is used to construct free resolutions for operads.

Let C be a coaugmented cooperad in ChK . As an operad in the category
grVectK, Cobar(C) is freely generated by the collection s C◦
(3.47) Cobar(C) = OP(s C◦) ,
where C◦ denotes the cokernel of the coaugmentation.

To define the differential ∂Cobar on Cobar(C), we recall that Tree2(n) is the full
subcategory of Tree(n) which consists of n-labeled planar trees with exactly 2 nodal
vertices and π0(Tree2(n)) is the set of isomorphism classes in the groupoid Tree2(n).
Due to Exercise 2.2, the set π0(Tree2(n)) is in bijection with (p, n− p)-shuffles for
all 0 ≤ p ≤ n .

Since the operad Cobar(C) is freely generated by the collection s C◦, it suffices
to define the differential ∂Cobar on generators.

We have

∂Cobar = ∂′ + ∂′′ ,

with

(3.48) ∂′(X) = −s ∂Cs
−1X ,

and

(3.49) ∂′′(X) = −
∑

z∈π0(Tree2(n))

(s⊗ s)
(
tz; Δtz (s

−1X)
)
,

whereX ∈ s C◦(n), tz is any representative of the isomorphism class z ∈ π0(Tree2(n)),
and ∂C is the differential on C . The axioms of a pseudo-cooperad imply that the
right hand side of (3.49) does not depend on the choice of representatives tz .

Exercise 3.16. Identity

∂′ ◦ ∂′ = 0

readily follows from (∂C)
2 = 0 . Use the compatibility of the differential ∂C with the

cooperad structure and the coassociativity axiom (3.36) to deduce the identities

(3.50) ∂′ ◦ ∂′′ + ∂′′ ◦ ∂′ = 0
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and

(3.51) ∂′′ ◦ ∂′′ = 0 .

4. Convolution Lie algebra

Let P (resp. Q) be a dg pseudo-operad (resp. a dg pseudo-cooperad).
We consider the following cochain complex

(4.1) Conv(Q,P ) =
∏
n≥0

HomSn
(Q(n), P (n)) .

with the binary operation • defined by the formula

(4.2) f • g(X) =
∑

z∈π0(Tree2(n))

μtz (f ⊗ g Δtz (X)) ,

f, g ∈ Conv(Q,P ), X ∈ Q(n) ,

where tz is any representative of the isomorphism class z ∈ π0(Tree2(n)) . The
axioms of pseudo-operad (resp. pseudo-cooperad) imply that the right hand side
of (4.2) does not depend on the choice of representatives tz .

It follows directly from the definition that the operation • is compatible with
the differential on Conv(Q,P ) coming from Q and P . Furthermore, we claim that

Proposition 4.1. The bracket

[f, g] =
(
f • g − (−1)|f | |g|g • f

)
satisfies the Jacobi identity.

Proof. We will prove the proposition by showing that the operation (4.2)
satisfies the axiom of the pre-Lie algebra

(4.3) (f • g) • h− f • (g • h) = (−1)|g||h|(f • h) • g − (−1)|g||h|f • (h • g) ,
where f, g, h are homogeneous vectors in Conv(Q,P ) .

The expression
(
(f • g) • h− f • (g • h)

)
(X) can be rewritten as(

(f • g) • h− f • (g • h)
)
(X) =∑

z∈π0(Tree2(n))

∑
z′∈π0(Tree2(m1(z)))

μtz ◦ (μtz′ ⊗ id) ◦ (f ⊗ g⊗h) ◦ (Δtz′ ⊗ id) ◦Δtz (X)−

∑
z∈π0(Tree2(n))

∑
z′∈π0(Tree2(m2(z)))

μtz ◦ (id⊗ μtz′ ) ◦ (f ⊗ g⊗ h) ◦ (id⊗Δtz′ ) ◦Δtz (X) ,

where m1(z) (resp. m2(z)) is the number of edges terminating at the first (resp.
the second) nodal vertex of the planar tree tz .

Due to the axioms for the maps μt and Δt, we get(
(f • g) • h− f • (g • h)

)
(X)∑

p,q≥0

∑
τ∈Shp,q,n−p−q

μtτ

(
(f ⊗ g ⊗ h)Δtτ (X)

)
where tτ is the n-labeled planar tree depicted on figure 20.

The set {tτ | τ ∈ Shp,q,n−p−q} is stable under the obvious isomorphism λ which
switches the second nodal vertex with the third one. Hence, we have(

(f • g) • h− f • (g • h)
)
(X) =
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τ(1)
. . .

τ(p) τ(p+ 1)
. . .

τ(p+ q)

τ(p+ q + 1)
. . .

τ(n)

Fig. 20. τ is a (p, q, n− p− q)-shuffle

∑
p,q≥1

∑
τ∈Shp,q,n−p−q

μλ(tτ )

(
(f ⊗ g ⊗ h)Δλ(tτ )(X)

)
.

Using axioms (3.5) and (3.35) and the fact that f is equivariant with respect to
the action of the symmetric group, we can rewrite the latter expression as follows(

(f • g) • h− f • (g • h)
)
(X) =∑

p,q≥1

∑
τ∈Shp,q,n−p−q

μtτ ◦ Pn(λ) ◦ (f ⊗ g ⊗ h) ◦Q
n
(λ)Δtτ (X) =

∑
p,q≥1

∑
τ,α

(−1)|X
τ,α
2 | |Xτ,α

3 | μtτ ◦ Pn(λ) ◦ (f ⊗ g ⊗ h) (σ12(X
τ,α
1 ), Xτ,α

3 , Xτ,α
2 ) =

(4.4)
∑
p,q≥1

∑
τ,α

(−1)ε(τ,α,g,h) μtτ ◦ Pn(λ) (σ12f(X
τ,α
1 ), g(Xτ,α

3 ), h(Xτ,α
2 ))

where σ12 is the transposition (1, 2),

(4.5) Δtτ (X) =
∑
α

(Xτ,α
1 , Xτ,α

2 , Xτ,α
3 ),

and

(4.6) ε(τ, α, g, h) = |Xτ,α
2 | |Xτ,α

3 |+ |h|(|Xτ,α
1 |+ |Xτ,α

3 |) + |g||Xτ,α
1 | .

Applying Pn(λ) to (σ12f(X
τ,α
1 ), g(Xτ,α

3 ), h(Xτ,α
2 )) in (4.4) we get(

(f • g) • h− f • (g • h)
)
(X) =∑

p,q≥1

∑
τ,α

(−1)ε(τ,α,g,h)(−1)(|g|+|Xτ,α
3 |)(|h|+|Xτ,α

2 |) μtτ (f(X
τ,α
1 ), h(Xτ,α

2 ), g(Xτ,α
3 )) =

∑
p,q≥1

∑
τ,α

(−1)ε̃(τ,α,g,h) μtτ

(
(f ⊗ h⊗ g)Δtτ (X)

)
,

where
(4.7)
ε̃(τ, α, g, h) = ε(τ, α, g, h)+(|g|+|Xτ,α

3 |)(|h|+|Xτ,α
2 |)+|h||Xτ,α

1 |+|g|(|Xτ,α
1 |+|Xτ,α

2 |) .

The direct computation shows that

ε̃(τ, α, g, h) = |g||h| mod 2

and the proposition follows. �
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4.1. A useful modification Conv⊕(Q,P ). Let us observe that for every dg
pseudo-operad P and every dg pseudo-cooperad Q the subcomplex

(4.8) Conv⊕(Q,P ) :=
⊕
n≥0

HomSn
(Q(n), P (n)) ⊂ Conv(Q,P )

is closed with respect to the pre-Lie operation (4.2). Thus Conv⊕(Q,P ) is a dg Lie
subalgebra of Conv(Q,P ) .

We often use this subalgebra in our notes to prove facts about its completion
Conv(Q,P ) .

4.2. Example: the dg Lie algebra Conv(C◦,EndV ). Let V be a cochain
complex, C be a coaugmented dg cooperad, and C◦ be the cokernel of the coaugmen-
tation. We denote by C(V ) the cofree C-coalgebra cogenerated by V . Furthermore,
we denote by pV the natural projection

(4.9) pV : C(V ) → V .

In this subsection we interpret Conv(C◦,EndV ) as a subalgebra in the dg Lie algebra
coDer(C(V )) of coderivations of C(V ) .

Let us recall [16, Proposition 2.14] that the map

(4.10) D �→ pV ◦ D

defines an isomorphism of cochain complexes

coDer(C(V )) ∼= Hom(C(V ), V ) .

Then we observe that coderivations D ∈ coDer(C(V )) satisfying the property

(4.11) D
∣∣∣
V
= 0

form a dg Lie subalgebra of coDer(C(V )) . We denote this dg Lie subalgebra by
coDer′(C(V )) .

Next, we remark that the formula

(4.12) p ◦ Df (γ; v1, v2, . . . , vn) = f(γ)(v1, v2, . . . , vn)

f ∈ Conv(C◦,EndV ), γ ∈ C◦(n) , v1, v2, . . . , vn ∈ V

defines a map (of graded vector spaces)

(4.13) f �→ Df : Conv(C◦,EndV ) → coDer′(C(V )) .

Finally, we claim that7

Proposition 4.2. For every cochain complex V and for every coaugmented dg
cooperad C the map (4.13) is an isomorphism of dg Lie algebras

Conv(C◦,EndV ) ∼= coDer′(C(V )) .

A proof of this proposition is straightforward so we leave it as an exercise.

Exercise 4.3. Prove Proposition 4.2.

7Proposition 4.2 is a version of [16, Proposition 2.15].
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4.3. What if Q(n) is finite dimensional for all n? Let us assume that the
pseudo-cooperad Q satisfies the property

Property 4.4. For each n the graded vector space Q(n) is finite dimensional.

Due to this property we have

(4.14) Conv(Q,P ) ∼=
∏
n≥0

(
P (n)⊗Q∗(n)

)Sn .

where Q∗(n) denotes the linear dual of the vector space Q(n) .
The collection Q∗ := {Q∗(n)}n≥0 is naturally a pseudo-operad and we can

express the pre-Lie structure (4.2) in terms of elementary insertions on P and Q∗.
Namely, given two vectors

X =
∑
n≥0

vn ⊗ wn, X ′ =
∑
n≥0

v′n ⊗ w′
n

in ∏
n≥0

(
P (n)⊗Q∗(n)

)Sn ,

we have

(4.15) X •X ′ =
∑

n≥1,m≥0

(−1)|v
′
m||wn|

∑
σ∈Shm,n−1

σ(vn ◦1 v′m)⊗ σ(wn ◦1 w′
m) .

4.4. The functors Conv(Q, ?) and Conv(?, P ) preserve quasi-isomorphisms.
It often happens that a pseudo-cooperad Q is equipped with a cocomplete ascending
filtration

(4.16) 0 = F0Q ⊂ F1Q ⊂ F2Q ⊂ . . .

colimm FmQ(n) = Q(n) ∀ n

which is compatible with comultiplications Δt in the following sense:

(4.17) Δt

(
FmQ(n)

)
⊂

⊕
q1+q2+···+qk=m

Fq1Q(r1)⊗Fq2Q(r2)⊗ · · · ⊗ FqkQ(rk) ,

where t is an n-labeled planar tree with k nodal vertices and ri is the number of
edges terminating at the i-th nodal vertex of t .

Definition 4.5. If a pseudo-cooperad Q is equipped with such a filtration then
we say that Q is cofiltered.

Exercise 4.6. Let us recall that a coaugmented (dg) cooperad C is called
reduced if

C(0) = 0 , and C(1) = K .

For every reduced coaugmented cooperad C, the cokernel of the coaugmentation C◦
carries the ascending filtration “by arity”:

(4.18) FmC◦(n) =
{
C◦(n) if n ≤ m+ 1

0 otherwise .

Show that this filtration is cocomplete and compatible with comultiplications Δt

in the sense of (4.17).
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50 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

For any dg operad P and for any cofiltered dg pseudo-cooperad Q the dg Lie
algebra Conv(Q,P ) is equipped with the descending filtration

(4.19) Conv(Q,P ) = F1Conv(Q,P ) ⊃ F2Conv(Q,P ) ⊃ F3Conv(Q,P ) ⊃ . . . ,

FmConv(Q,P ) = {f ∈ Conv(Q,P ) | f(X) = 0 ∀ X ∈ Fm−1(Q)} .
Inclusion (4.17) implies that the filtration on Conv(Q,P ) is compatible with

the Lie bracket. Furthermore, since the filtration on Q is cocomplete, the filtration
(4.19) is complete

(4.20) lim
m

Conv(Q,P )
/
FmConv(Q,P ) = Conv(Q,P ) .

Any morphism of dg pseudo-operads

(4.21) f : P → P ′ .

induces the obvious map of dg Lie algebras

(4.22) f∗ : Conv(Q,P ) → Conv(Q,P ′) .

We claim that

Theorem 4.7. If the map ( 4.21) is a quasi-isomorphism then so is the map
( 4.22). In addition, if Q is cofiltered, then the restriction of f∗ onto FmConv(Q,P )

f∗

∣∣∣
FmConv(Q,P )

: FmConv(Q,P ) → FmConv(Q,P ′)

is a quasi-isomorphism for all m .

Proof. According to [40, Section 1.4], every cochain complex of K-vector
spaces is chain homotopy equivalent to its cohomology.

Therefore, there exist collections of maps

(4.23) gn : P ′(n) → P (n)

(4.24) χn : P (n) → P (n)

(4.25) χ′
n : P ′(n) → P ′(n)

such that

(4.26) fn ◦ gn − idP ′(n) = ∂χ′
n + χ′

n∂ ,

and

(4.27) gn ◦ fn − idP (n) = ∂χn + χn∂ .

In other words, fn ◦ gn (resp. gn ◦ fn) is homotopic to idP ′(n) (resp. idP (n)).
In general, the set of maps {gn}n≥0 gives us neither a map of operads nor a

map of the underlying collections. Similarly, the maps (4.24) and (4.25) may not
be Sn-equivariant.

For this reason we switch from the set {gn}n≥0 to the set

(4.28) g̃n =
1

(n!)2

∑
σ,τ∈Sn

σ ◦ gn ◦ τ .

It is easy to see these new maps g̃n give us a morphism of the underlying
collections. Moreover, equations (4.26) and (4.27) imply the identities

(4.29) fn ◦ g̃n − idP ′(n) = ∂χ̃′
n + χ̃′

n∂ ,
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and

(4.30) g̃n ◦ fn − idP (n) = ∂χ̃n + χ̃n∂

with Sn-equivariant homotopy operators

(4.31) χ̃n =
1

(n!)2

∑
σ,τ∈Sn

σ ◦ χn ◦ τ ,

(4.32) χ̃′
n =

1

(n!)2

∑
σ,τ∈Sn

σ ◦ χ′
n ◦ τ .

Let us now consider the map

(4.33) g̃∗ : Conv(Q,P ′) → Conv(Q,P )

In general g̃∗ is not compatible with the Lie brackets. Regardless, using equa-
tions (4.29), (4.30) and Sn-equivariance of the homotopy operators (4.31), (4.32),
it is not hard to see that the compositions f∗ ◦ g̃∗ and g̃∗ ◦ f∗ are homotopic to
idConv(Q,P ′) and idConv(Q,P ), respectively.

Thus f∗ is indeed a quasi-isomorphism.
To prove the second statement we denote by fm

∗ and g̃m∗ the restriction of f∗
and g̃∗ onto

FmConv(Q,P ) and FmConv(Q,P ′)

respectively.
Using the same homotopy operators (4.31), (4.32), it is not hard to see that the

compositions fm
∗ ◦g̃m∗ and g̃m∗ ◦fm

∗ are homotopic to idFmConv(Q,P ′) and idFmConv(Q,P ),
respectively.

Theorem 4.7 is proved. �

Exercise 4.8. Using the ideas of the above proof, show that the (contravariant)
functor Conv(?, P ) also preserves quasi-isomorphisms.

5. To invert, or not to invert: that is the question

Let C be a coaugmented dg cooperad and C◦ be the cokernel of the coaugmen-
tation. This section is devoted to the lifting property for maps from the dg operad
Cobar(C) . The material contained in this section is an adaptation of constructions
from [34] to the setting of dg operads.

First, we observe that, since Cobar(C) is freely generated by s C◦, any map of
dg operads

(5.1) F : Cobar(C) → O
is uniquely determined by its restriction to generators:

F
∣∣∣
s C◦

: s C◦ → O .

Hence, composing the latter map with the suspension operator s, we get a
degree one element

(5.2) αF ∈ Conv(C◦,O)

in the dg Lie algebra Conv(C◦,O) .
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52 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

Exercise 5.1. Prove that the compatibility of F with the differentials on
Cobar(C) and O is equivalent to the Maurer-Cartan equation for the element αF

(5.2) in Conv(C◦,O) .

Thus we arrive at the following proposition

Proposition 5.2. For an arbitrary coaugmented dg cooperad C and for an
arbitrary dg operad O, the correspondence

F �→ αF

is a bijection between the set of maps (of dg operads) (5.1) and the set of Maurer-
Cartan elements in Conv(C◦,O) . �

Combining Proposition 4.2 with 5.2 we deduce the following Corollary

Corollary 5.3. For every coaugmented dg cooperad C and for every cochain
complex V the set of Cobar(C)-algebra structures on V is in bijection with the set
of Maurer-Cartan elements in the dg Lie algebra

coDer′(C(V )) :=
{
D ∈ coDer(C(V ))

∣∣∣ D∣∣∣
V
= 0

}
. �

5.1. Homotopies of maps from Cobar(C). Let Ω•(K) = K[t] ⊕ K[t]dt be
the polynomial de Rham algebra on the affine line with dt sitting in degree 1. We
denote by

OI := O ⊗ Ω•(K)

the dg operad with underlying collection

{O(n)⊗ Ω•(K)}n≥0.

We also denote by p0, p1 the obvious maps of dg operads

(5.3)

p0 : OI → O, p0(X) = X
∣∣∣
t=0, dt=0

,

p1 : OI → O, p1(X) = X
∣∣∣
t=1, dt=0

.

For our purposes we will use the following “pedestrian” definition of homotopy

between maps F, F̃ : Cobar(C) → O .

Definition 5.4. We say that maps of dg operads

F, F̃ : Cobar(C) → O
are homotopic if there exists a map of dg operads

H : Cobar(C) → OI

such that
F = p0 ◦H and F̃ = p1 ◦H .

Remark 5.5. Definition 5.4 leaves out many questions and some of these ques-
tions may be answered by constructing a closed model structure on a subcategory
of dg operads satisfying certain technical conditions. Unfortunately, many dg op-
erads which show up in applications do not satisfy required technical conditions.
We hope that all such issues will be resolved in yet another “infinity” treatise [30]
of J. Lurie.

We now state a theorem which characterizes homotopic maps from Cobar(C)
in terms of the corresponding Maurer-Cartan elements in Conv(C◦,O) .
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Theorem 5.6. Let O be an arbitrary dg operad and C be a coaugmented dg
cooperad for which the pseudo-operad C◦ is cofiltered (see Definition 4.5) and the
vector space

(5.4)
⊕
n≥0

FmC◦(n)

is finite dimensional for all m . Then two maps of dg operads

F, F̃ : Cobar(C) → O
are homotopic if and only if the corresponding Maurer-Cartan elements

αF , αF̃ ∈ Conv(C◦,O)

are isomorphic8.

Proof. Let

(5.5) Conv(C◦,O){t}
be the dg Lie subalgebra of Conv(C◦,O)[[t]] which consists of infinite series

(5.6) f =
∞∑
k=0

fkt
k , fk ∈ Fmk

Conv(C◦,O)

satisfying the condition

(5.7) m1 ≤ m2 ≤ m3 ≤ . . . lim
k→∞

mk = ∞ .

Combining condition (5.7) together with the fact that the filtration on C◦ is
cocomplete, we conclude that, for every X ∈ C◦(n) and for every f in (5.5), the
sum

∞∑
k=0

fk(X)tk

has only finitely many non-zero terms.
Therefore, the formula

(5.8) Ψ(f)(X) =
∞∑
k=0

fk(X)tk , X ∈ C◦(n)

defines a map

Ψ : Conv(C◦,O){t} → Conv(C◦,O[t]) .

Let us now consider a vector g ∈ Conv(C◦,O[t]) .
Since the vector spaces ⊕

n≥0

Fm−1C◦(n)

are finite dimensional, for each m there exists a positive integer Nm such that the
polynomials

g(X) =
∑
k≥0

gk(X)tk

8We view Maurer-Cartan elements as objects of the Deligne groupoid. See Appendix C for
details.
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have degrees ≤ Nm for all X ∈ Fm−1C◦(n) and for all n . Moreover, the integers
{Nm}m≥1 can be chosen in such a way that

N1 ≤ N2 ≤ N3 ≤ . . . .

Therefore, the formula:

(5.9) Ψ′(g) =
∞∑
k=0

Ψ′
k(g)t

k

Ψ′
k(g)(X) := gk(X) , X ∈ C◦

defines a map

Ψ′ : Conv(C◦,O[t]) → Conv(C◦,O){t} .
Furthermore, it is easy to see that Ψ′ is the inverse of Ψ .

Thus the dg Lie algebras Conv(C◦,O[t]) and Conv(C◦,O){t} are naturally iso-
morphic.

To prove the “only if” part we start with a map of dg operads

H : Cobar(C) → OI

which establishes a homotopy between F and F̃ and let

(5.10) αH = α
(1)
H + α

(0)
H dt ∈ Conv(C◦,OI)

be the Maurer-Cartan element corresponding to H . Here α
(1)
H (resp. α

(0)
H ) is a

degree 1 (resp. degree 0) vector in Conv(C◦,O[t]) ∼= Conv(C◦,O){t} .
The Maurer-Cartan equation for αH

dt
d

dt
αH + ∂αH +

1

2
[αH , αH ] = 0

is equivalent to the pair of equations

(5.11) ∂α
(1)
H +

1

2
[α

(1)
H , α

(1)
H ] = 0

and

(5.12)
d

dt
α
(1)
H = ∂α

(0)
H − [α

(0)
H , α

(1)
H ] .

Using equations (5.11) and (5.12) we deduce from [4, Theorem C.1, App. C]
that the Maurer-Cartan elements

α
(1)
H

∣∣∣
t=0

and α
(1)
H

∣∣∣
t=1

in Conv(C◦,O) are connected by the action of the group

exp
(
Conv(C◦,O)

)
.

Since

α
(1)
H

∣∣∣
t=0

= αF and α
(1)
H

∣∣∣
t=1

= αF̃

we conclude that the “only if” part is proved.
We leave the easier “if” part as an exercise. (See Exercise 5.7 below.) �

Exercise 5.7. Prove the “if” part of Theorem 5.6.

We now deduce the following corollary.
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Corollary 5.8. Let C be a coaugmented dg cooperad which satisfies the con-
ditions of Theorem 5.6. If U : O → O′ is a quasi-isomorphism of dg operads
then for every operad morphism F ′ : Cobar(C) → O′ there exists a morphism
F : Cobar(C) → O such that the diagram

(5.13) Cobar(C)
F

��

F ′

��

O U �� O′

commutes up to homotopy. Moreover the morphism F is determined uniquely up
to homotopy.

Proof. The map U induces the homomorphism of dg Lie algebras

U∗ : Conv(C◦,O) → Conv(C◦,O′) .

Due to Theorem 4.7 U∗ is a quasi-isomorphism of dg Lie algebras. Moreover,
the restriction of U∗

U∗

∣∣∣
FmConv(C◦,O)

: FmConv(C◦,O) → FmConv(C◦,O′)

is also a quasi-isomorphism of dg Lie algebras for all m .
Hence, Theorem C.2 from Appendix C implies that U∗ induces a bijection

between the isomorphism classes of Maurer-Cartan elements in Conv(C◦,O) and in
Conv(C◦,O′) .

Thus, the statements of the corollary follow immediately from Theorem 5.6. �
5.2. Models for homotopy algebras. Developing the machinery of alge-

braic operads is partially motivated by the desire to blend together concepts of
abstract algebra and concepts of homotopy theory [28], [30], [31].

Thus, in homotopy theory, the notions of Lie algebra, commutative algebra, and
Gerstenhaber algebra are replaced by their ∞-versions (a.k.a homotopy versions):
L∞-algebras, Com∞-algebras and Ger∞-algebras, respectively. These are examples
of homotopy algebras.

In this paper we will go into a general philosophy for homotopy algebras and
instead limit ourselves to conventional definitions.

Definition 5.9. An Lie∞-algebra (a.k.a. L∞-algebra) is an algebra (in ChK)
over the operad

(5.14) Lie∞ = Cobar(ΛcoCom) .

Definition 5.10. A Com∞-algebra is an algebra (in ChK) over the operad

(5.15) Com∞ = Cobar(ΛcoLie) .

Finally,

Definition 5.11. A Ger∞-algebra is an algebra (in ChK) over the operad

(5.16) Ger∞ = Cobar(Ger∨) ,

where

(5.17) Ger∨ =
(
Λ−2Ger

)∗
,

and ∗ is the operation of taking linear dual.
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56 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

The above definitions are partially motivated by the observation that the op-
erads Lie∞, Com∞ and Ger∞ are free resolutions of the operads Lie, Com and Ger,
respectively.

Thus the canonical quasi-isomorphism of dg operads

(5.18) ULie : Lie∞ = Cobar(ΛcoCom) → Lie

corresponds to the Maurer-Cartan element9

αLie = [a1, a2]⊗ b1b2 ∈ Conv(ΛcoCom◦, Lie) ∼=
∏
n≥2

(
Lie(n)⊗ Λ−1Com(n)

)Sn

,

where [a1, a2] (resp. b1b2) denotes the canonical generator of Lie(2) (resp. Λ
−1Com(2)) .

Similarly, the canonical quasi-isomorphism of dg operads

(5.19) UCom : Com∞ = Cobar(ΛcoLie) → Com

corresponds to the Maurer-Cartan element

αCom = a1a2 ⊗ {b1, b2} ∈ Conv(ΛcoLie◦,Com) ∼=
∏
n≥2

(
Com(n)⊗ Λ−1Lie(n)

)Sn

,

where a1a2 (resp. {b1, b2}) denotes the canonical generator of Com(2) (resp. Λ−1Lie(2)) .
Finally the canonical quasi-isomorphism of dg operads

(5.20) UGer : Ger∞ = Cobar(Ger∨) → Ger

corresponds to the Maurer-Cartan element

αGer = a1a2⊗{b1, b2}+{a1, a2}⊗b1b2 ∈ Conv(Ger∨◦ ,Ger) =
∏
n≥2

(
Ger(n)⊗Λ−2Ger(n)

)Sn

,

where a1a2, {a1, a2} are the canonical generators of Ger(2) and b1b2, {b1, b2} are
the canonical generators of Λ−2Ger(2) .

We should remark that here, instead of Lie algebras and L∞-algebras we often
deal with ΛLie∞-algebras. It is not hard to see that ΛLie∞-algebras are algebras in
ChK over the operad

(5.21) ΛLie∞ = Cobar(Λ2coCom) .

Furthermore, the canonical quasi-isomorphism

(5.22) UΛLie : ΛLie∞ = Cobar(Λ2coCom) → ΛLie

corresponds to the Maurer-Cartan element

αΛLie = {a1, a2}⊗ b1b2 ∈ Conv(Λ2coCom◦,ΛLie) ∼=
∏
n≥2

(
ΛLie(n)⊗Λ−2Com(n)

)Sn

,

where {a1, a2} (resp. b1b2) denotes the canonical generator of ΛLie(2) (resp. Λ−2Com(2)) .

9Recall that, due to Proposition 5.2, operads maps from Cobar(C) to O are identified with
Maurer-Cartan element of Conv(C◦,O).
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5.2.1. ΛLie∞-algebras. Let V be a cochain complex.
Since ΛLie∞ = Cobar(Λ2coCom), Corollary 5.3 implies that ΛLie∞-algebra

structure on V is a choice of degree 1 coderivation

D ∈ coDer(Λ2coCom(V ))

satisfying the Maurer-Cartan equation

(5.23) ∂D +
1

2
[D,D] = 0

together with the condition

D
∣∣∣
V
= 0 .

On the other hand, according to [16, Proposition 2.14], any coderivation of
Λ2coCom(V ) is uniquely determined by its composition pV ◦D with the projection

pV : Λ2coCom(V ) → V .

Thus, since

Λ2coCom(V ) = s2S(s−2V ),

an ΛLie∞-structure on V is determined by the infinite sequence of multi-ary oper-
ations

(5.24) {, , . . . , }n = pV ◦ D s2n−2 : Sn(V ) → V , n ≥ 2

where the n-th operation {, , . . . , }n carries degree 3− 2n .
The Maurer-Cartan equation (5.23) is equivalent to the sequence of the follow-

ing quadratic relations on operations (5.24):

(5.25) ∂{v1, v2, . . . , vn}n +

n∑
i=1

(−1)|v1|+···+|vi−1|{v1, . . . , vi−1, ∂vi, vi+1, . . . , vn}n+

n−1∑
p=2

∑
σ∈Shp,n−p

(−1)ε(σ,v1,...,vn){{vσ(1), . . . , vσ(p)}p, vσ(p+1), . . . , vσ(n)}n−p+1 = 0 ,

where ∂ is the differential on V and (−1)ε(σ,v1,...,vn) is the sign factor determined
by the usual Koszul rule.

Remark 5.12. Even though there is an obvious bijection between ΛLie∞-
structures on V and L∞-structures on s−1 V , it is often easier to deal with signs in
formulas for ΛLie∞-structures.

6. Twisting of operads

Let O be a dg operad equipped with a map

(6.1) ϕ̂ : ΛLie∞ → O .

Let V be an algebra over O . Using the map ϕ̂, we equip V with an ΛLie∞-
structure.

If we assume, in addition, that V is equipped with a complete descending
filtration

(6.2) V ⊃ F1V ⊃ F2V ⊃ F3V ⊃ . . . , V = lim
k
V
/
FkV
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and the O-algebra structure on V is compatible with this filtration then we may
define Maurer-Cartan elements of V as degree 2 elements α ∈ F1V satisfying the
equation

(6.3) ∂(α) +
∑
n≥2

1

n!
{α, α, . . . , α}n = 0 ,

where ∂ is the differential on V and {·, ·, . . . , ·}n is the n-th operation of the ΛLie∞-
structure on V .

Given such a Maurer-Cartan element α we can twist the differential on V and
insert α into various O-operations on V . This way we get a new algebra structure
on V .

It turns out that this new algebra structure is governed by an operad TwO
which is built from the pair (O, ϕ̂) .

This section is devoted to the construction of TwO .

6.1. Intrinsic derivations of an operad. Let O be an dg operad. We recall
that a K-linear map

δ :
⊕
n≥0

O(n) →
⊕
n≥0

O(n)

is an operadic derivation if for every a ∈ O(n), δ(a) ∈ O(n) and for all homogeneous
vectors a1 ∈ O(n), a2 ∈ O(k)

δ(a1 ◦i a2) = δ(a1) ◦i a2 + (−1)|δ||a1|a1 ◦i δ(a2) , ∀ 1 ≤ i ≤ n .

Let us now observe that the operation ◦1 equips O(1) with a structure of a
dg associative algebra. We consider O(1) as a dg Lie algebra with the Lie bracket
being the commutator.

We claim that

Proposition 6.1. The formula

(6.4) δb(a) = b ◦1 a− (−1)|a||b|
n∑

i=1

a ◦i b

with

b ∈ O(1), and a ∈ O(n)

defines an operadic derivation of O for every b ∈ O(1) .

Operadic derivations of the form (6.4) are called intrinsic.

Proof. Let a1 ∈ O(n1) and a2 ∈ O(n2) . Then for every b ∈ O(1) and
1 ≤ j ≤ n1 we have

δb(a1 ◦j a2) = b ◦1 (a1 ◦j a2)− (−1)(|a1|+|a2|)|b|
n1+n2−1∑

i=1

(a1 ◦j a2) ◦i b =

(b ◦1 a1) ◦j a2 − (−1)|a1||b|
1≤i≤n1∑

i �=j

(a1 ◦i b) ◦j a2 − (−1)(|a1|+|a2|)|b|
n2∑
i=1

a1 ◦j (a2 ◦i b)

= (b ◦1 a1) ◦j a2 − (−1)|a1||b|
n1∑
i=1

(a1 ◦i b) ◦j a2
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+(−1)|a1||b|(a1 ◦j b) ◦j a2 − (−1)(|a1|+|a2|)|b|
n2∑
i=1

a1 ◦j (a2 ◦i b)

= (b ◦1 a1) ◦j a2 − (−1)|a1||b|
n1∑
i=1

(a1 ◦i b) ◦j a2

+(−1)|a1||b|a1 ◦j (b ◦1 a2)− (−1)(|a1|+|a2|)|b|
n2∑
i=1

a1 ◦j (a2 ◦i b)

= δb(a1) ◦j a2 + (−1)|a1||b|a1 ◦j δb(a2) .
Hence δb is indeed an operadic derivation of O .

It remains to verify the identity

(6.5) [δb1 , δb2 ] = δ[b1,b2]

and we leave this step as an exercise. �

Exercise 6.2. Verify identity (6.5).

6.2. Construction of the operad T̃wO. Let us recall that, since ΛLie∞ =
Cobar(Λ2coCom), the morphism (6.1) is determined by a Maurer-Cartan element

(6.6) ϕ ∈ Conv(Λ2coCom◦,O) .

The n-th space of Λ2coCom◦ is the trivial Sn-module placed in degree 2− 2n:

Λ2coCom(n) = s2−2nK .

So we have

Conv(Λ2coCom◦,O) =
∏
n≥2

HomSn
(s2−2nK,O(n)) =

∏
n≥2

s2n−2
(
O(n)

)Sn
.

For our purposes we will need to extend the dg Lie algebra Conv(Λ2coCom◦,O)
to

(6.7) LO = Conv(Λ2coCom,O) =
∏
n≥1

HomSn
(s2−2nK,O(n)) .

It is clear that

LO =
∏
n≥1

s2n−2
(
O(n)

)Sn .

For n, r ≥ 1 we realize the group Sr as the following subgroup of Sr+n

(6.8) Sr
∼=
{
σ ∈ Sr+n | σ(i) = i , ∀ i > r

}
.

In other words, for every n ≥ 1, the group Sr may be viewed as subgroup of Sr+n

permuting the first r letters. We set S0 to be the trivial group.
Using this embedding of Sr into Sn+r we introduce the following collection

(n ≥ 0)

(6.9) T̃wO(n) =
∏
r≥0

HomSr
(s−2rK,O(r + n)) .

It is clear that

T̃wO(n) =
∏
r≥0

s2r
(
O(r + n)

)Sr .
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To define an operad structure on (6.9) we denote by 1r the generator s−2r 1 ∈
s−2rK . Then the identity element u in T̃wO(1) is given by

(6.10) u(1r) =

{
uO if r = 0 ,

0 otherwise ,

where uO ∈ O(1) is the identity element for the operad O .

Next, for f ∈ T̃wO(n) and g ∈ T̃wO(m), we define the i-th elementary insertion
◦i 1 ≤ i ≤ n by the formula

(6.11) f ◦i g(1r) =
r∑

p=0

∑
σ∈Shp,r−p

μtσ,i

(
f(1p)⊗ g(1r−p)

)
.

where the tree tσ,i is depicted on figure 21.

σ(1)
. . .

σ(p) r + 1
. . .

r + i− 1

σ(p+ 1)
. . .

σ(r) r + i
. . .

r + i+m− 1

r + i+m
. . .

r + n+m− 1

Fig. 21. Here σ is a (p, r − p)-shuffle

To see that the element f ◦i g(1r) ∈ O(r+n+m−1) is Sr-invariant one simply
needs to use the fact that every element τ ∈ Sr can be uniquely presented as the
composition τsh◦τp,r−p, where τsh is a (p, r − p)-shuffle and τp,r−p ∈ Sp × Sr−p .

Let f ∈ T̃wO(n), g ∈ T̃wO(m), h ∈ T̃wO(k), 1 ≤ i ≤ n, and 1 ≤ j ≤ m . To
check the identity

(6.12) f ◦i (g ◦j h) = (f ◦i g) ◦j+i−1 h

we observe that

f ◦i (g ◦j h)(1r) =
r∑

p=0

∑
σ∈Shp,r−p

μtσ,i

(
f(1p)⊗ (g ◦j h)(1r−p)

)
=

∑
p1+p2+p3=r

∑
σ∈Shp1,p2+p3

∑
σ′∈Shp2,p3

μtσ,i
◦ (1⊗ μtσ′,j )

(
f(1p1

)⊗ g(1p2
)⊗ h(1p3

)
)

=
∑

p1+p2+p3=r

∑
τ∈Shp1,p2,p3

μtτ,i,j

(
f(1p1

)⊗ g(1p2
)⊗ h(1p3

)
)
,

where the tree tτ,i,j is depicted on figure 22. Similar calculations show that

(f ◦i g) ◦j+i−1 h =
∑

p1+p2+p3=r

∑
τ∈Shp1,p2,p3

μtτ,i,j

(
f(1p1

)⊗ g(1p2
)⊗ h(1p3

)
)
,

with tτ,i,j being the tree depicted on figure 22.
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τ(1) τ(p1) r + 1 r + i− 1 r + i+m+ k − 1

r + n+m+ k − 2

τ(p1 + 1)

τ(p1 + p2)

r + i r + i+ j − 2

r + i+ j + k − 1

r + i+m+ k − 2

τ(p1 + p2 + 1)

τ(r) r + i+ j − 1

r + i+ j + k − 2

. .
.

. .
.

. . .

. . .

. . .

· · ·

· · ·· · ·

Fig. 22. Here τ is a (p1, p2, p3)-shuffle and r = p1 + p2 + p3

We leave the verification of the remaining axioms of the operad structure for
the reader.

Our next goal is to define an auxiliary action of LO on the operad T̃wO . For

a vector f ∈ T̃wO(n) the action of v ∈ LO (6.7) on f is defined by the formula

(6.13) v · f(1r) = −(−1)|v||f |
r∑

p=1

∑
σ∈Shp,r−p

μt′σ,p,r−p
(f(1r−p+1)⊗ v(1cp)) ,

where 1cp is the generator s2−2p 1 ∈ Λ2coCom(p) ∼= s2−2p K and the tree t′σ,p,r−p is
depicted on figure 23.

σ(p+ 1) σ(r)

r + 1 r + n

σ(1) σ(p)

· · ·
· · ·

· · ·

Fig. 23. Here σ is a (p, r − p)-shuffle
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We claim that

Proposition 6.3. Formula (6.13) defines an action of LO ( 6.7) on the operad

T̃wO .

Proof. A simple degree bookkeeping shows that the degree of v ·f is |v|+ |f | .
Then we need to check that for two homogeneous vectors v, w ∈ LO we have

(6.14) [v, w] · f(1r) = (v · (w · f))(1r)− (−1)|v||w|(w · (v · f))(1r)

Using the definition of the operation · and the associativity axiom for the operad
structure on O we get

(6.15) (v · (w · f))(1r)− (−1)|v||w|(w · (v · f))(1r) =

(−1)|f |(|v|+|w|)+|v||w|
∑

p≥1 q≥0

∑
τ∈Shp,q,r−p−q

μtp,qτ
(f(1r−p−q+1)⊗ w(1cq+1)⊗ v(1cp))

+(−1)|f |(|v|+|w|)+|v||w|
∑
p,q≥1

∑
τ∈Shp,q,r−p−q

μt̃p,qτ
(f(1r−p−q+2)⊗ w(1cq)⊗ v(1cp))

−(−1)|v||w|(v ↔ w) ,

where the trees tp,qτ and t̃p,qτ are depicted on figures 24 and 25 , respectively.

τ(p+ q + 1) τ(r)

r + 1 r + n

τ(p+ 1) τ(p+ q)

τ(1) τ(p)

· · ·

· · ·

· · ·

· · ·

Fig. 24. The tree tp,qτ

Since f(1r−p−q+2) is invariant with respect to the action of Sr−p−q+2 the sums
involving μt̃p,qτ

cancel each other.
Furthermore, it is not hard to see that the sums involving μtp,qτ

form the ex-
pression

[v, w] · f(1r) .
Thus equation (6.14) follows.

Due to Exercise 6.4 below, the operation f �→ v · f is an operadic derivation.
Proposition 6.3 is proved. �
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τ(p+ q + 1) τ(r)

r + 1 r + n

τ(1) τ(p)

τ(p+ 1) τ(p+ q)

· · ·

· · ·

· · ·

· · ·

Fig. 25. The tree t̃p,qτ

Exercise 6.4. Prove that for every triple of homogeneous vectors f ∈ T̃wO(n),

g ∈ T̃wO(k), and v ∈ LO we have

v · (f ◦i g) = (v · f) ◦i g + (−1)|v||f |f ◦i (v · g) ∀ 1 ≤ i ≤ n .

6.3. The action of LO on T̃wO. Let us view T̃wO(1) as the dg Lie algebra
with the bracket being commutator.

We have an obvious degree zero map

κ : LO → T̃wO(1)

defined by the formula

(6.16) κ(v)(1r) = v(1cr+1) ,

where, as above, 1r is the generator s
−2r 1 ∈ s−2r K and 1cr is the generator s

2−2r 1 ∈
Λ2coCom(r) ∼= s2−2r K .

We have the following proposition.

Proposition 6.5. Let us form the semi-direct product LO � T̃wO(1) of the dg

Lie algebras LO and T̃wO(1) using the action of LO on T̃wO defined in Proposition
6.3. Then the formula

(6.17) Θ(v) = v + κ(v)

defines a Lie algebra homomorphism

Θ : LO → LO � T̃wO(1) .

Proof. First, let us prove that for every pair of homogeneous vectors v, w ∈
LO we have

(6.18) κ([v, w]) = [κ(v), κ(w)] + v · κ(w)− (−1)|v||w|w · κ(v) .
Indeed, unfolding the definition of κ we get10

(6.19)

κ([v, w])(1r) =

r∑
p=1

∑
τ∈Shp,r−p

vr−p+2

(
wp(τ (1), . . . , τ (p)), τ (p+ 1), . . . , τ (r), r + 1

)
10Here we use the notation (3.9) introduced in Subsection 3.2.
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+
r∑

p=0

∑
τ∈Shp,r−p

vr−p+1

(
wp+1(τ (1), . . . , τ (p), r + 1), τ (p+ 1), . . . , τ (r)

)
−(−1)|v||w|(v ↔ w) ,

where vt = v(1ct) and wt = w(1ct) .
The first sum in (6.19) equals

−(−)|v||w|(w · κ(v))(1r) .

Furthermore, since v(1ct) is invariant under the action of St, we see that the second
sum in (6.19) equals (

κ(v) ◦1 κ(w)
)
(1r) .

Thus equation (6.18) holds.
Now, using (6.18), it is easy to see that

[v + κ(v), w + κ(w)] = [v, w] + v · κ(w)− (−1)|v||w|w · κ(v) + [κ(v), κ(w)] =

= [v, w] + κ([v, w])

and the statement of proposition follows. �

The following corollaries are immediate consequences of Proposition 6.5

Corollary 6.6. For v ∈ LO and f ∈ T̃wO(n) the formula

(6.20) f → v · f + δκ(v)(f)

defines an action of the Lie algebra LO on the operad T̃wO .

Corollary 6.7. For every Maurer-Cartan element ϕ ∈ LO, the sum

ϕ+ κ(ϕ)

is a Maurer-Cartan element of the Lie algebra LO � T̃wO(1) .

We finally give the definition of the operad TwO.

Definition 6.8. Let O be an operad in ChK and ϕ be a Maurer-Cartan element
in LO (6.7) corresponding to an operad morphism ϕ̂ (6.1). Let us also denote by

∂O the differential on T̃wO coming from the one on O . We define the operad TwO
in ChK by declaring that TwO = T̃wO as operads in grVectK and letting

(6.21) ∂Tw = ∂O + ϕ · + δκ(ϕ)

be the differential on TwO .

Corollaries 6.6 and 6.7 imply that ∂Tw is indeed a differential on TwO .

Remark 6.9. It is easy to see that, if O(0) = 0 then the cochain complexes
s−2TwO(0) and LO (6.7) are tautologically isomorphic.
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6.4. Algebras over TwO. Let us assume that V is an algebra overO equipped
with a complete descending filtration (6.2). We also assume that the O-algebra
structure on V is compatible with this filtration.

Given a Maurer-Cartan element α ∈ F1V the formula

(6.22) ∂α(v) = ∂(v) +
∞∑
r=1

1

r!
ϕ(1cr+1)(α, . . . , α︸ ︷︷ ︸

r times

, v)

defines a new (twisted) differential on V .
We will denote by V α the cochain complex V with this new differential.
In this setting we have the following theorem

Theorem 6.10. If V α is the cochain complex obtained from V via twisting the
differential by α then the formula

(6.23) f(v1, . . . , vn) =
∞∑
r=0

1

r!
f(1r)(α, . . . , α, v1, . . . , vn)

f ∈ TwO(n) , vi ∈ V , 1r = s−2r 1 ∈ s−2r K

defines a TwO-algebra structure on V α .

Proof. Let f ∈ TwO(n), g ∈ TwO(k),

fr := f(1r) ∈
(
O(r + n)

)Sr , and gr = g(1r) ∈
(
O(r + k)

)Sr .

Our first goal is to verify that

(6.24) (−1)|g|(|vi|+···+|vi−1|)f(v1, . . . , vi−1, g(vi, . . . , vi+k−1), vi+k, . . . , vn+k−1)

= f ◦i g(v1, . . . , vn+k−1) .

The left hand side of (6.24) can be rewritten as

(−1)|g|(|vi|+···+|vi−1|)f(v1, . . . , vi−1, g(vi, . . . , vi+k−1), vi+k, . . . , vn+k−1) =

∑
p,q≥0

(−1)|g|(|vi|+···+|vi−1|)

p!q!
fp(α, . . . , α, v1, . . . , vi−1, gq(α, . . . , α, vi, . . . , vi+k−1),

vi+k, . . . , vn+k−1) .

Using the obvious combinatorial identity

(6.25) |Shp,q | =
(p+ q)!

p!q!

we rewrite the left hand side of (6.24) further

L.H.S. of (6.24)

=
∑
p,q≥0

(−1)|g|(|vi|+···+|vi−1|)

(p+ q)!
|Shp,q|fp(α, . . . , α, v1, . . . , vi−1,

gq(α, . . . , α, vi, . . . , vi+k−1), vi+k, . . . , vn+k−1)

=

∞∑
r=0

1

r!

r∑
p=0

∑
σ∈Shp,r−p

σ ◦ �r,p,i(fp ◦p+i gr−p)( α, . . . , α︸ ︷︷ ︸
r arguments

, v1, . . . , vn+k−1),
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where �r,p,i is the following permutation in Sr

(6.26) �r,p,i =

(
p+ 1 . . . p+ i− 1 p+ i . . . r + i− 1
r + 1 . . . r + i− 1 p+ 1 . . . r

)
.

Thus

L.H.S. of (6.24) = f ◦i g(v1, . . . , vn+k−1)

and equation (6.24) holds.
Next, we need to show that

(6.27) ∂Tw(f)(v1, . . . , vn) = ∂αf(v1, . . . , vn)

−(−1)|f |
n∑

i=1

(−1)|vi|+···+|vi−1|f(v1, . . . , vi−1, ∂
α(vi), vi+1, . . . , vn)

The right hand side of (6.27) can be rewritten as

R.H.S. of (6.27) =∑
p≥0

1

p!
∂fp(α, . . . , α, v1, . . . , vn) +

∑
p≥0,q≥1

1

p!q!
ϕq(α, . . . , α, fp(α, . . . , α, v1, . . . , vn))

−(−1)|f |
n∑

i=1

∑
p≥0

(−1)|vi|+···+|vi−1|

p!
fp(α, . . . , α, v1, . . . , vi−1, ∂(vi), vi+1, . . . , vn)

− (−1)|f |
n∑

i=1

∑
p≥0,q≥1

(−1)|vi|+···+|vi−1|

p!q!
fp(α, . . . , α, v1, . . . , vi−1, ϕq(α, . . . , α, vi),

vi+1, . . . , vn)

where fp = f(1p) and ϕq = ϕ(1cq) .
Let us now add to and subtract from the right hand side of (6.27) the sum

−(−1)|f |
∑
p≥0

1

p!
fp+1(∂α, α, . . . , α, v1, . . . , vn) .

We get

R.H.S. of (6.27) =∑
p≥0

1

p!
∂fp(α, . . . , α, v1, . . . , vn)− (−1)|f |

∑
p≥0

1

p!
fp+1(∂α, α, . . . , α, v1, . . . , vn)

−(−1)|f |
n∑

i=1

∑
p≥0

(−1)|vi|+···+|vi−1|

p!
fp(α, . . . , α, v1, . . . , vi−1, ∂(vi), vi+1, . . . , vn)

+(−1)|f |
∑
p≥0

1

p!
fp+1(∂α, α, . . . , α, v1, . . . , vn)

+
∑

p≥0,q≥1

1

p!q!
ϕq(α, . . . , α, fp(α, . . . , α, v1, . . . , vn))

− (−1)|f |
n∑

i=1

∑
p≥0,q≥1

(−1)|vi|+···+|vi−1|

p!q!
fp(α, . . . , α, v1, . . . , vi−1, ϕq(α, . . . , α, vi),

vi+1, . . . , vn) = (∂Of)(v1, . . . , vn)
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+(−1)|f |
∑
p≥0

1

p!
fp+1(∂α, α, . . . , α, v1, . . . , vn)

+
∑

p≥0,q≥1

1

p!q!
ϕq(α, . . . , α, fp(α, . . . , α, v1, . . . , vn))

− (−1)|f |
n∑

i=1

∑
p≥0,q≥1

(−1)|vi|+···+|vi−1|

p!q!
fp(α, . . . , α, v1, . . . , vi−1, ϕq(α, . . . , α, vi),

vi+1, . . . , vn) .

Due to the Maurer-Cartan equation for α

∂(α) +
1

q!
ϕq(α, α, . . . , α) = 0

we have

+(−1)|f |
∑
p≥0

1

p!
fp+1(∂α, α, . . . , α, v1, . . . , vn) =

−(−1)|f |
∑

p≥0,q≥2

1

p!q!
fp+1(ϕq(α, . . . , α), α, . . . , α, v1, . . . , vn) .

Hence, using (6.25) we get

R.H.S. of (6.27) =

(∂Of)(v1, . . . , vn) + (ϕ · f)(v1, . . . , vn)
+κ(ϕ) ◦1 f(v1, . . . , vn)− (−1)|f |f ◦1 κ(ϕ)(v1, . . . , vn) .

Theorem 6.10 is proved. �

Let us now observe that the dg operad TwO is equipped with complete de-
scending filtration. Namely,

(6.28) FkTwO(n) = {f ∈ TwO(n) | f(1r) = 0 ∀ r < k}
It is clear that the operad structure on TwO is compatible with this filtration.

The endomorphism operad EndV also carries a complete descending filtration
since so does V .

For this reason it makes sense to give this definition:

Definition 6.11. A filtered TwO-algebra is a cochain complex V equipped
with a complete descending filtration for which the operad map

TwO → EndV

is compatible with the filtrations.

It is easy to see that the TwO-algebra V α from Theorem 6.10 is a filtered
TwO-algebra in the sense of this definition.

Thus Theorem 6.10 gives us a functor to the category of filtered TwO-algebras
from the category of pairs

(V, α) ,

where V is a filtered cochain complex equipped with an action of the operad O and
α is a Maurer-Cartan element in F1V .

According to [7] this functor establishes an equivalence of categories.
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6.5. A useful modification Tw⊕O. In practice the morphism (6.1) often
comes from the map (of dg operads)

j : ΛLie → O .

In this case, the above construction of twisting is well defined for the suboperad
Tw⊕(O) ⊂ TwO with

(6.29) Tw⊕(O)(n) =
⊕
r≥0

s2r
(
O(r + n)

)Sr .

It is not hard to see that the Maurer-Cartan element

ϕ ∈ Conv(Λ2coCom,O)

corresponding to the composition

j ◦ UΛLie : Cobar(Λ
2coCom) → O

is given by the formula:

(6.30) ϕ = j({a1, a2})⊗ b1b2 .

Hence

(6.31) L⊕
O =

⊕
r≥0

s2r−2
(
O(r)

)Sr

is a sub- dg Lie algebra of LO (6.7) .
Specifying general formula (6.21) to this particular case, we see that the differ-

ential ∂Tw on (6.29) is given by the equation:

(6.32) ∂Tw(v) = −(−1)|v|
∑

σ∈Sh2,r−1

σ
(
v ◦1 j({a1, a2})

)
+

∑
τ∈Sh1,r

τ
(
j({a1, a2}) ◦2 v

)

−(−1)|v|
∑

τ ′∈Shr,1

n∑
i=1

τ ′ ◦ ςr+1,r+i

(
v ◦r+i j({a1, a2})

)
,

where

v ∈ s2r
(
O(r + n)

)Sr ,

and ςr+1,r+i is the cycle (r + 1, r + 2, . . . , r + i) .

Remark 6.12. We should remark that, when we apply elementary insertions
in the right hand side of (6.32), we view v and j({a1, a2}) as vectors in O(r + n)
and O(2) respectively. The resulting sum in the right hand side of (6.32) is viewed
as a vector in TwO(n) .

6.6. Example: The operad TwGer. Let Ger be the operad which gov-
erns Gerstenhaber algebras (see Subsection 3.3.2). Since ΛLie receives a quasi-
isomorphism (5.22) from ΛLie∞ and embeds into Ger, we have a canonical map

(6.33) ΛLie∞ → Ger .

This section is devoted to the dg operad TwGer which is associated to the operad
Ger and the map (6.33).

According to the general procedure of twisting

(6.34) LGer = Conv(Λ2coCom,Ger) =
∞∏
r=1

s2r−2
(
Ger(r)

)Sr
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and the Maurer-Cartan element α ∈ LGer corresponding to the map (6.33) equals

(6.35) α = {a1, a2} .
The graded vector space TwGer(n) is the product

(6.36) TwGer(n) =
∏
r≥0

s2r
(
Ger(r + n)

)Sr
.

Furthermore, adapting (6.32) to this case we get

(6.37) ∂Tw(v) = −(−1)|v|
∑

σ∈Sh2,r−1

σ
(
v ◦1 {a1, a2}

)
+

∑
τ∈Sh1,r

τ
(
{a1, a2} ◦2 v

)
−(−1)|v|

∑
τ ′∈Shr,1

n∑
i=1

τ ′ ◦ ςr+1,r+i

(
v ◦r+i {a1, a2}

)
,

where
v ∈ s2r

(
Ger(r + n)

)Sr ,

and ςr+1,r+i is the cycle (r + 1, r + 2, . . . , r + i) .

Exercise 6.13. Prove that for every v ∈ s2rGer(r + n)

(6.38) r ≤ |v|+ n− 1 .

Similarly, prove that, for every vector v ∈ s2r−2Ger(r)

(6.39) r ≤ |v|+ 1 .

Inequalities (6.38) and (6.39) imply that

(6.40) TwGer(n) =
∞⊕
r=0

s2r
(
Ger(r + n)

)Sr

and

(6.41) LGer =
∞⊕
r=1

s2r−2
(
Ger(r)

)Sr .

In other words, Tw⊕Ger = TwGer and L⊕
Ger = LGer .

To give a simpler description of the cochain complexes TwGer(n) (6.40) we
consider the free Gerstenhaber algebra

Ger(a, a1, . . . , an)

in n variables a1, . . . , an of degree zero and one additional variable a of degree 2 .
We introduce the following (degree 1) derivation

(6.42) δ(a) =
1

2
{a, a} , δ(ai) = 0 ∀ 1 ≤ i ≤ n

of Ger(a, a1, . . . , an) and observe that

δ2 = 0

in virtue of the Jacobi identity.
Then we denote by Gn the subspace

(6.43) Gn ⊂ Ger(a, a1, . . . , an)

spanned by monomials in which each variable a1, a2, . . . , an appears exactly once.
It is obvious that Gn is a subcomplex of Ger(a, a1, . . . , an) .

We claim that
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Proposition 6.14. The cochain complex Gn is isomorphic to TwGer(n) .

Proof. Indeed, given a monomial v ∈ Gn of degree r in a we shift the indices
of ai up by r and replace the r factors a in v by a1, a2, . . . , ar in an arbitrary order.
This way we get a monomial v′ ∈ Ger(r + n) . It is easy to see that the formula

(6.44) f(v) =
∑
σ∈Sr

s2rσ(v′)

defines a linear map of vector spaces

f : Gn → TwGer(n) =
∞⊕
r=0

s2r
(
Ger(r + n)

)Sr .

For example,

f({a, a}a1) = {a1, a2}a3+{a2, a1}a3 , f({a, a1}aa2) = {a1, a3}a2a4+{a2, a3}a1a4 .
It is not hard to see that f is an isomorphism of graded vector spaces. Fur-

thermore, f is compatible with the differentials due to the following exercise.

Exercise 6.15. Show that the map

f : Gn → TwGer(n) =
∞⊕
r=0

s2r
(
Ger(r + n)

)Sr

defined by (6.44) is compatible with the differentials ∂Tw and δ . In other words,

(6.45) f(δv) = ∂Twf(v) ∀ v ∈ Gn .

Thus the proposition is proved. �
Proposition 6.14 implies that every vector v ∈ Ger(n) ⊂ TwGer(n) is ∂-closed.

Therefore, the obvious embedding

(6.46) i : Ger → TwGer

is a map of dg operads.
We claim that11

Theorem 6.16. The map (6.46) is a quasi-isomorphism of dg operads. In
particular, the dg Lie algebra Conv(Λ2coCom,Ger) is acyclic.

Proof. Let us observe that ΛLie(a, a1, . . . , an) is a subcomplex of Ger(a, a1, . . . , an) .
Moreover,

(6.47) Ger(a, a1, . . . , an) = S(ΛLie(a, a1, . . . , an)) ,

where S is the notation for the truncated symmetric algebra.
Let us denote by

(6.48) ΛLie′(a, a1, . . . , an)

the subspace of ΛLie(a, a1, . . . , an) which is spanned by monomials involving each
variable in the set {a1, a2, . . . , an} at most once. It is clear that ΛLie′(a, a1, . . . , an)
is a subcomplex in ΛLie(a, a1, . . . , an). Hence, the subspace

(6.49) Ger′(a, a1, . . . , an) := S(ΛLie′(a, a1, . . . , an))

is a subcomplex of Ger(a, a1, . . . , an) .

11This statement is also proved in [7].
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We will prove every cocycle in Ger′(a, a1, . . . , an) is cohomologous to a (unique)
cocycle in the intersection

Ger′(a, a1, . . . , an) ∩ Ger(a1, . . . , an)

and then we will deduce statements of the theorem.
Let us, first, show that every cocycle in ΛLie′(a, a1, . . . , an) is cohomologous to

a cocycle in the intersection

ΛLie′(a, a1, . . . , an) ∩ ΛLie(a1, . . . , an) .

For this purpose we consider a non-empty ordered subset {i1 < i2 < · · · < ik}
of {1, 2, . . . , n} and denote by

(6.50) ΛLie′′(a, ai1 , . . . , aik)

the subcomplex of ΛLie′(a, a1, . . . , an) which is spanned by ΛLie-monomials in
ΛLie(a, ai1 , . . . , aik) involving each variable in the set {ai1 , . . . , aik} exactly once.

It is clear that ΛLie′(a, a1, . . . , an) splits into the direct sum of subcomplexes:

(6.51) ΛLie′(a, a1, . . . , an) = K〈a, {a, a}〉 ⊕
⊕

{i1<i2<···<ik}
ΛLie′′(a, ai1 , . . . , aik) ,

where the summation runs over all non-empty ordered subsets {i1 < i2 < · · · < ik}
of {1, 2, . . . , n} .

It is not hard to see that the subcomplex K〈a, {a, a}〉 is acyclic. Thus our goal
is to show that every cocycle in ΛLie′′(a, ai1 , . . . , aik) is cohomologous to cocycle in
the intersection

ΛLie′′(a, ai1 , . . . , aik) ∩ ΛLie(ai1 , . . . , aik) .

To prove this fact we consider the tensor algebra

(6.52) T
(
K〈s−1 a, s−1 ai1 , s

−1 ai2 , . . . , s
−1 aik−1

〉
)

in the variables s−1 a, s−1 ai1 , s
−1 ai2 , . . . , s

−1 aik−1
and denote by

(6.53) T ′(s−1 a, s−1 ai1 , s
−1 ai2 , . . . , s

−1 aik−1
)

the subspace of (6.52) which is spanned by monomials involving each variable from
the set {s−1 ai1 , s

−1 ai2 , . . . , s
−1 aik−1

} exactly once.
It is not hard to see that the formula

(6.54) ν(xj1 ⊗ xj2 ⊗ · · · ⊗ xjN ) = {sxj1 , {sxj2 , {. . . {sxjN , aik}..}
defines an isomorphism of the graded vector spaces

ν : T ′(s−1 a, s−1 ai1 , s
−1 ai2 , . . . , s

−1 aik−1
)

∼=−→ ΛLie′′(a, ai1 , . . . , aik) .

Let us denote by δT a degree 1 derivation of the tensor algebra (6.52) defined
by the equations

(6.55) δT (s
−1 ait) = 0 , δT (s

−1 a) = s−1 a⊗ s−1 a .

It is not hard to see that (δT )
2 = 0 . Thus, δT is a differential on the tensor algebra

(6.52) .
The subspace (6.53) is obviously a subcomplex of (6.52). Furthermore, using

the following consequence of Jacobi identity

{a, {a,X}} = −1

2
{{a, a}, X} , ∀ X ∈ ΛLie(a, a1, . . . , an),
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it is easy to show that

δ ◦ ν = ν ◦ δT .
Thus ν is an isomorphism from the cochain complex(

T ′(s−1 a, s−1 ai1 , s
−1 ai2 , . . . , s

−1 aik−1
), δT

)
to the cochain complex (

ΛLie′′(a, ai1 , . . . , aik), δ
)
.

To compute cohomology of the cochain complex

(6.56)
(
T
(
K〈s−1 a, s−1 ai1 , s

−1 ai2 , . . . , s
−1 aik−1

〉
)
, δT

)
we observe that the truncated tensor algebra

(6.57) T s−1 a := T
(
K〈s−1 a〉

)
form an acyclic subcomplex of (6.56).

We also observe that the cochain complex (6.56) splits into the direct sum of
subcomplexes
(6.58)
T
(
K〈s−1 a, s−1 ai1 , s

−1 ai2 , . . . , s
−1 aik−1

〉
)
= T

(
K〈s−1 ai1 , s

−1 ai2 , . . . , s
−1 aik−1

〉
)
⊕⊕

m≥2, p1,...,pm

V ⊗ p1
a• ⊗ T s−1 a ⊗ V ⊗ p2

a• ⊗ T s−1 a ⊗ · · · ⊗ V ⊗ pm−1
a• ⊗ T s−1 a ⊗ V ⊗ pm

a• ,

where Va• is the cochain complex

Va• := K〈s−1 ai1 , s
−1 ai2 , . . . , s

−1 aik−1
〉

with the zero differential and the summation runs over all combinations (p1, . . . , pm)
of integers satisfying the conditions

p1, pm ≥ 0, p2, . . . , pm−1 ≥ 1 .

By Künneth’s theorem all the subcomplexes

V ⊗ p1
a• ⊗ T s−1 a ⊗ V ⊗ p2

a• ⊗ T s−1 a ⊗ · · · ⊗ V ⊗ pm−1
a• ⊗ T s−1 a ⊗ V ⊗ pm

a•

are acyclic. Hence for every cocycle c in (6.56) there exists a vector c1 in (6.56)
such that

c− δT (c1) ∈ T
(
K〈s−1 ai1 , s

−1 ai2 , . . . , s
−1 aik−1

〉
)
.

Combining this observation with the fact that the subcomplex (6.53) is a direct
summand in (6.56), we conclude that, for every cocycle c in (6.53) there exists a
vector c1 in (6.53) such that

c−δT (c1) ∈ T ′(s−1 a, s−1 ai1 , s
−1 ai2 , . . . , s

−1 aik−1
) ∩ T

(
K〈s−1 ai1 , s

−1 ai2 , . . . , s
−1 aik−1

〉
)
.

Since the map ν (6.54) is an isomorphism from the cochain complex (6.53) with
the differential δT to the cochain complex (6.50) with the differential δ, we deduce
that every cocycle in (6.50) is cohomologous to a unique cocycle in the intersection

ΛLie′′(a, ai1 , . . . , aik) ∩ ΛLie(ai1 , . . . , aik) .

Therefore every cocycle in ΛLie′(a, a1, . . . , an) is cohomologous to a unique
cocycle in the intersection

ΛLie′(a, a1, . . . , an) ∩ ΛLie(a1, . . . , an) .
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Combining the latter observation with decomposition (6.49) we conclude that
every cocycle in Ger′(a, a1, . . . , an) is cohomologous to a (unique) cocycle in the
intersection

Ger′(a, a1, . . . , an) ∩ Ger(a1, . . . , an) .

Thus, using the isomorphism

Gn
∼= TwGer(n)

together with the fact that the cochain complex Gn is a direct summand in Ger′(a, a1, . . . , an) ,
we deduce the first statement of Theorem 6.16 .

On the other hand, since Ger(0) = 0, Remark 6.9 implies that

Conv(Λ2coCom,Ger) ∼= s−2 TwGer(0) .

Hence the second statement of Theorem 6.16 follows as well.
The theorem is proved. �

6.7. The dg Lie algebra Conv⊕(Ger∨,O). The filtration by Lie words
of length 1. Let O be a dg operad and ι be a map (of dg operads)

(6.59) ι : Ger → O .

(Here, we assume that O(0) = 0.)
In this subsection we will describe an auxiliary construction related to the pair

(O, ι) . In these notes, we will use this construction twice. First, we will use it in
the case when O = Ger. Second, we will use it in the case when12 O = Gra.

Restricting ι to the suboperad ΛLie we get a morphism of dg operads

(6.60) j = ι
∣∣∣
ΛLie

: ΛLie → O .

Thus, following Section 6.5, we may construct the dg operad TwO as well as
its suboperad Tw⊕(O) ⊂ TwO (6.29).

On the other hand composing ι with UGer (5.20) we get a morphism

(6.61) ι ◦ UGer : Cobar(Ger
∨) → O .

It is not hard to see that the Maurer-Cartan element α ∈ Conv(Ger∨,O) cor-
responding to the morphism (6.61) is given by the formula

(6.62) α = ι({a1, a2})⊗ b1b2 + ι(a1a2)⊗ {b1, b2} .
Since α ∈ Conv⊕(Ger∨,O), it makes sense to consider the cochain complex

(6.63) Conv⊕(Ger∨,O) =
⊕
n≥1

(
O(n)⊗ Λ−2Ger(n)

)Sn

with the differential

(6.64) ∂ = [α, ] .

Let us denote by L1(w) the number of Lie words of length 1 in a monomial
w ∈ Λ−2Ger(n). For example, L1(b1b2) = 2 and L1({b1, b2}) = 0 .

Next we consider a vector v ∈ O(n) and observe that for every vector vi ⊗ wi

in the linear combination

∂

(∑
σ∈Sn

σ(v)⊗ σ(w)

)

12The operad Gra is introduced in Section 7 below.
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we have L1(wi) = L1(w) or L1(wi) = L1(w) + 1 .
This observation allows us to introduce the following ascending filtration

(6.65) · · · ⊂ Fm−1 Conv⊕(Ger∨,O) ⊂ Fm Conv⊕(Ger∨,O) ⊂ . . . ,

where Fm Conv⊕(Ger∨,O) consists of sums∑
i

vi ⊗ wi ∈
⊕
n

(
O(n)⊗ Λ−2Ger(n)

)Sn

which satisfy

L1(wi)− | vi ⊗ wi | ≤ m, ∀ i .

It is clear that the associated graded complex

(6.66) GrConv⊕(Ger∨,O) ∼=
∞⊕

n=1

(
O(n)⊗ Λ−2Ger(n)

)Sn

as a graded vector space, and the differential ∂Gr on GrConv⊕(Ger∨,O) is obtained
from the differential ∂ (6.64) on Conv⊕(Ger∨,O) by keeping only terms which raise
the number of Lie brackets of length 1 in the second tensor factors. For example,
the adjoint action

[ ι(a1a2)⊗ {b1, b2}, ]

of ι(a1a2)⊗ {b1, b2} does not contribute to the differential ∂Gr at all.
To give a convenient description of the cochain complex (6.66) we introduce

the collection

(6.67) {Λ−2Ger♥(n)}n≥0

where

Λ−2Ger♥(0) = s−2K

and

Λ−2Ger♥(n), n ≥ 1

is the Sn-submodule of Λ−2Ger(n) spanned by monomials w ∈ Λ−2Ger(n) for which
L1(w) = 0 .

Next, we introduce the cochain complex
(6.68)⊕
n≥1

(
Tw⊕O(n)⊗ Λ−2Ger♥(n)

)Sn

=
⊕
r≥0

⊕
n≥1

((
s2rO(r + n)

)Sr ⊗ Λ−2Ger♥(n)
)Sn

with the differential ∂Tw coming from TwO .
We observe that the formula

(6.69) ΥO

(∑
i

vi ⊗ wi

)
:=

∑
σ∈Shr,n

∑
i

σ(vi)⊗ σ(b1 . . . br wi(br+1, . . . , br+n))

∑
i

vi ⊗ wi ∈
(
s2rO(r + n)Sr ⊗ Λ−2Ger♥(n)

)Sn

defines a morphism of graded vector spaces

(6.70) ΥO :
⊕
n≥0

(
Tw⊕O(n)⊗ Λ−2Ger♥(n)

)Sn

→ GrConv⊕(Ger∨,O) .

We claim that
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Proposition 6.17. The map ΥO (6.70) is an isomorphism of cochain com-
plexes.

Proof. It is clear that (6.66) is spanned by vectors of the form

(6.71)
∑

τ∈Sr+n

τ (v)⊗ τ (b1 . . . br w(br+1, . . . , br+n)) ,

where v is a vector in O(r + n), w is a monomial Λ−2Ger♥(n), and numbers r, n
vary within the range r, n ≥ 0, r + n ≥ 1 .

Using the obvious identity∑
τ∈Sr+n

τ (v)⊗ τ (b1 . . . br w(br+1, . . . , br+n)) =

∑
σ∈Shr,n

σ

⎛⎝ ∑
(τ ′,τ ′′)∈Sr×Sn⊂Sr+n

(τ ′, τ ′′)(v)⊗ b1 . . . br (τ
′′w)(br+1, . . . , br+n)

⎞⎠
we see that the formula

(6.72) Υ̃O

⎛⎝ ∑
σ∈Sr+n

σ(v)⊗ σ(b1 . . . br w(br+1, . . . , br+n))

⎞⎠ =

∑
τ ′′∈Sn

τ ′′

( ∑
τ ′∈Sr

τ ′(v)

)
⊗ τ ′′(w)

gives us a well-defined map

(6.73) Υ̃O : GrConv⊕(Ger∨,O) →
⊕
n≥0

(
TwO(n)⊗ Λ−2Ger♥(n)

)Sn

.

Furthermore, it is obvious that Υ̃O is the inverse of ΥO .
Thus ΥO is an isomorphism of graded vector spaces.
Before proving that Υ is compatible with the differentials, let us recall that,

for i < j, ςi,j denotes the cycle (i, i + 1, . . . , j) ∈ Sn for any n ≥ j . Furthermore,
Si,i+1,...,n denotes the permutation group of the set {i, i+ 1 . . . , n} .

Let, as above, v be a vector in O(r+ n) and w be a monomial in Λ−2Ger♥(n).
Due to the above consideration,
(6.74)∑

τ∈Sr+n

τ (v)⊗ τ (b1 . . . br w(br+1, . . . , br+n)) = ΥO

( ∑
λ∈Sn

λ
(
Avr(v)

)
⊗ λ(w)

)
,

where

Avr(v) =
∑

λ1∈Sr

λ1(v)

is viewed as a vector in TwO(n) .
Thus our goal is to show that

(6.75) ∂Gr

⎛⎝ ∑
τ∈Sr+n

τ (v)⊗ τ (b1 . . . br w(br+1, . . . , br+n))

⎞⎠ =
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76 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

ΥO

( ∑
λ∈Sn

∂Tw ◦ λ
(
Avr(v)

)
⊗ λ(w)

)
.

Collecting terms with r + 1 Lie words of length 1 in the second tensor factors
in [

ι({a1, a2})⊗ b1b2 ,
∑

τ∈Sr+n

τ (v)⊗ τ (b1 . . . br w(br+1, . . . , br+n))
]

and using the obvious identity∑
τ∈Sr+n

τ (v)⊗ τ (b1 . . . br w(br+1, . . . , br+n)) =

∑
τ ′∈S2,3,...,r+n

r+n∑
i=1

τ ′
(
ς1,i(v)⊗ ς1,i(b1 . . . br w(br+1, . . . , br+n))

)
we get

(6.76) ∂Gr

⎛⎝ ∑
τ∈Sr+n

τ (v)⊗ τ (b1 . . . br w(br+1, . . . , br+n))

⎞⎠ =

=
∑

σ∈Shr+n,1

∑
τ∈Sr+n

σ
(
ι({a1, a2}) ◦1 τ (v)

)
⊗ σ

(
τ (b1 . . . br w(br+1, . . . , br+n))br+n+1

)

−(−1)|v|
τ ′∈S3,4,...,r+n+1∑
λ∈Sh2,r+n−1

r∑
i=1

λ
(
τ ′ ◦ θi

(
v ◦i ι({a1, a2})

)
⊗ b1b2bτ ′(3) . . . bτ ′(r+1) w(bτ ′(r+2), . . . , bτ ′(r+1+n))

)
−(−1)|v|

τ ′∈S3,4,...,r+n+1∑
λ∈Sh2,r+n−1

r+n∑
i=r+1

λ
(
τ ′ ◦ θi

(
v ◦i ι({a1, a2})

)
⊗ bτ ′(3) . . . bτ ′(r+2)b1 w(bτ ′(r+3), . . . , bτ ′(i+1), b2, bτ ′(i+2), . . . , bτ ′(r+1+n))

)
−(−1)|v|

τ ′∈S3,4,...,r+n+1∑
λ∈Sh2,r+n−1

r+n∑
i=r+1

λ
(
τ ′ ◦ θi

(
v ◦i ι({a1, a2})

)
⊗ bτ ′(3) . . . bτ ′(r+2)b2 w(bτ ′(r+3), . . . , bτ ′(i+1), b1, bτ ′(i+2), . . . , bτ ′(r+1+n))

)
,

where θi is the following permutation in Sr+1+n

(6.77) θi =

(
1 2 . . . i− 1 i i+ 1
3 4 . . . i+ 1 1 2

)
.

The first sum in the right hand side of (6.76) can be simplified as follows.∑
σ∈Shr+n,1

∑
τ∈Sr+n

σ
(
ι({a1, a2}) ◦1 τ (v)

)
⊗ σ

(
τ (b1 . . . br w(br+1, . . . , br+n))br+n+1

)
=

(6.78)
∑

λ∈Sr+1+n

λ
(
ι({a1, a2}) ◦1 v

)
⊗ λ(b1 . . . br w(br+1, . . . , br+n)br+n+1) =

∑
λ∈Sr+1+n

λ◦ς1,r+1+n

(
ι({a1, a2})◦1v

)
⊗λ◦ς1,r+1+n(b1 . . . br w(br+1, . . . , br+n)br+n+1) =
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NOTES ON ALGEBRAIC OPERADS 77∑
λ∈Sr+1+n

λ
(
ι({a1, a2}) ◦2 v

)
⊗ λ(b1 . . . br+1 w(br+2, . . . , br+1+n)) =

(λ1,λ2)∈Sr+1×Sn∑
σ∈Shr+1,n

σ
(
(λ1, λ2)

(
ι({a1, a2}) ◦2 v

)
⊗ λ2(b1 . . . br+1 w(br+2, . . . , br+1+n))

)
=

τ∈Sh1,r∑
σ∈Shr+1,n

λ′′∈Sr+2,...,r+1+n∑
λ′∈S2,...,r+1

σ
(
τ ◦ λ′ ◦ λ′′

(
ι({a1, a2}) ◦2 v

)
⊗ b1 . . . br+1 w(bλ′′(r+2), . . . , bλ′′(r+1+n))

)
.

Thus

(6.79) The first sum in the R.H.S. of (6.76) =

ΥO

⎛⎝ ∑
τ∈Sh1,r

∑
λ∈Sn

τ
(
{a1, a2} ◦2 λ(Avr(v))

)
⊗ λ(w)

⎞⎠ .

Using the symmetry of the bracket { , }, we rewrite the second sum in the right
hand side of (6.76) as follows

−(−1)|v|
τ ′∈S3,4,...,r+n+1∑
λ∈Sh2,r+n−1

r∑
i=1

λ
(
τ ′ ◦ θi

(
v ◦i ι({a1, a2})

)
(6.80) ⊗ b1b2bτ ′(3) . . . bτ ′(r+1) w(bτ ′(r+2), . . . , bτ ′(r+1+n))

)
=

− (−1)|v|

2

∑
λ∈Sr+1+n

r∑
i=1

λ
(
θi
(
v◦iι({a1, a2})

)
⊗ b1b2b3 . . . br+1 w(br+2, . . . , br+1+n)

)
=

− (−1)|v|

2

∑
σ∈Shr+1,n

λ′′∈Sr+2,...,r+1+n∑
λ′∈Sr+1

r∑
i=1

σ ◦ λ′′ ◦ λ′
(
θi
(
v ◦i ι({a1, a2})

)
⊗ b1b2 . . . br+1 w(br+2, . . . , br+1+n)

)
=

−(−1)|v|
τ∈Sh2,r−1∑
σ∈Shr+1,n

λ2∈Sr+2,...,r+1+n∑
λ1∈S3,...,r+1

r∑
i=1

σ ◦ τ
(
λ2 ◦ λ1 ◦ θi

(
v ◦i ι({a1, a2})

)
⊗ b1b2 . . . br+1 w(bλ2(r+2), . . . , bλ2(r+1+n))

)
=

−(−1)|v|
τ∈Sh2,r−1∑
σ∈Shr+1,n

λ2∈Sr+2,...,r+1+n∑
λ′
1∈Sr

σ
(
λ2 ◦ τ

(
λ′1(v) ◦1 {a1, a2}

)
⊗ b1b2 . . . br+1 w(bλ2(r+2), . . . , bλ2(r+1+n))

)
,

where θi is defined in (6.77).
Thus

(6.81) The second sum in the R.H.S. of (6.76) =

−(−1)|v|ΥO

⎛⎝ ∑
τ∈Sh2,r−1

∑
λ∈Sn

λ
(
τ
(
Avr(v) ◦1 {a1, a2}

))
⊗ λ(w)

⎞⎠ ,
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where Avr(v) is viewed as a vector in O(r+n) and τ
(
Avr(v) ◦1 {a1, a2}

)
is viewed

as a vector in TwO(n) .
Due to Exercise 6.18 below,

(6.82) The combination of the last two sums in the R.H.S. of (6.76) =

−(−1)|v|ΥO

⎛⎝ ∑
τ∈Shr,1

∑
λ∈Sn

n∑
i=1

λ
(
τ ◦ ςr+1,r+i

(
Avr(v) ◦r+i ι({a1, a2})

))
⊗ λ(w)

⎞⎠ ,

where Avr(v) is viewed as a vector in O(r + n) and

τ ◦ ςr+1,r+i

(
Avr(v) ◦r+i ι({a1, a2})

)
is viewed as a vector in TwO(n) .

Comparing (6.79), (6.81), and (6.82) with the second, the first and the third
sums, respectively, in the right hand side of equation (6.32) from Section 6.5, we
see that the equation (6.75) indeed holds.

Proposition 6.17 is proved. �
Exercise 6.18. Let v be a vector in O(r + n) and w be a monomial in

Λ−2Ger♥(n) . Prove that

(6.83) The combination of the last two sums in the R.H.S. of (6.76) =

−(−1)|v|ΥO

⎛⎝ ∑
τ∈Shr,1

∑
λ∈Sn

n∑
i=1

λ
(
τ ◦ ςr+1,r+i

(
Avr(v) ◦r+i ι({a1, a2})

))
⊗ λ(w)

⎞⎠ ,

where
Avr(v) =

∑
λ1∈Sr

λ1(v) .

Hint for Exercise 6.18: Using the symmetry of the bracket { , } we can rewrite
the combination of the last two sums in the right hand side of (6.76) as follows:

(6.84) The combination of the last two sums in the R.H.S. of (6.76) =

−(−1)|v|
r+n∑

i=r+1

∑
λ∈Sr+1+n

λ
(
θi
(
v ◦i ι({a1, a2})

)
⊗ b2b3 . . . br+2w(br+3, . . . , bi+1, b1, bi+2, . . . , br+1+n)

)
=

−(−1)|v|
r+n∑

i=r+1

∑
λ∈Sr+1+n

λ ◦ ς−1
1,i+1

(
θi
(
v ◦i ι({a1, a2})

)
⊗ b2b3 . . . br+2w(br+3, . . . , bi+1, b1, bi+2, . . . , br+1+n)

)
=

−(−1)|v|
r+n∑

i=r+1

∑
λ∈Sr+1+n

λ
(
ς1,i

(
v◦iι({a1, a2})

)
⊗ b1b2 . . . br+1 w(br+2, . . . , br+1+n)

)
=

−(−1)|v|
r+n∑

i=r+1

∑
λ∈Sr+1+n

λ◦ς−1
1,r+1

(
ς1,i

(
v◦iι({a1, a2})

)
⊗ b1b2 . . . br+1 w(br+2, . . . , br+1+n)

)
=

−(−1)|v|
r+n∑

i=r+1

∑
λ∈Sr+1+n

λ
(
ςr+1,i

(
v◦iι({a1, a2})

)
⊗ b1b2 . . . br+1 w(br+2, . . . , br+1+n)

)
.
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NOTES ON ALGEBRAIC OPERADS 79

7. The operad Gra and its link to the operad Ger

Let us recall from [42] the operad (in grVectK) of labeled graphs Gra .
To define the space Gra(n) (for n ≥ 1) we introduce an auxiliary set gran. An

element of gran is a labelled graph Γ with n vertices and with the additional piece
of data: the set of edges of Γ is equipped with a total order. An example of an
element in gra4 is shown on figure 26. We will often use Roman numerals to specify

1

2

3

4

ii

iii

i

Fig. 26. The Roman numerals indicate that we chose the total
order on the set of edges (1, 1) < (1, 2) < (1, 3)

total orders on sets of edges. Thus the Roman numerals on figure 26 indicate that
we chose the total order (1, 1) < (1, 2) < (1, 3) .

The space Gra(n) (for n ≥ 1) is spanned by elements of gran, modulo the
relation Γσ = (−1)|σ|Γ where the elements Γσ and Γ correspond to the same labelled
graph but differ only by permutation σ of edges. We also declare that the degree
of a graph Γ in Gra(n) equals −e(Γ), where e(Γ) is the number of edges in Γ . For
example, the graph Γ on figure 26 has 3 edges. Thus its degree is −3 .

Finally, we set

(7.1) Gra(0) = 0 .

Remark 7.1. It clear that, if a graph Γ ∈ gran has multiple edges, then

Γ = −Γ

in Gra(n) . Thus for every graph Γ ∈ gran with multiple edges Γ = 0 in Gra(n) .

We will now define elementary insertions for the collection {Gra(n)}n≥0 .

Let Γ and Γ̃ be graphs representing vectors in Gra(n) and Gra(m), respectively.
Let 1 ≤ i ≤ m .

The vector Γ̃ ◦i Γ ∈ Gra(n + m − 1) is represented by the sum of graphs
Γα ∈ gran+m−1

(7.2) Γ̃ ◦i Γ =
∑
α

Γα ,

where Γα is obtained by “plugging in” the graph Γ into the i-th vertex of the graph

Γ̃ and reconnecting the edges incident to the i-th vertex of Γ̃ to vertices of Γ in
all possible ways. (The index α refers to a particular way of connecting the edges

incident to the i-th vertex of Γ̃ to vertices of Γ. ) After reconnecting edges we label
vertices of Γα as follows:

• we leave the same labels on the first i− 1 vertices of Γ̃;
• we shift all labels on vertices of Γ up by i− 1;

• finally, we shift the labels on the last m− i vertices of Γ̃ up by n− 1 .
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80 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

To define the total order on edges of the graph Γα we declare that all edges of Γ̃
are smaller than all edges of the graph Γ .

Example 7.2. Let Γ̃ (resp. Γ) be the graph depicted on figure 27 (resp. figure

28) . The vector Γ̃ ◦2 Γ is shown on figure 29.

1

23

iii

iii

Fig. 27. A graph

Γ̃ ∈ gra3

1

2

Fig. 28. A graph
Γ ∈ gra2

Γ̃ ◦2 Γ =

1

2

3
4

iii

iii iv

+

1

3

2
4

iii

iii iv

+

1

2

3

4
i

iviii

ii
+

1

3

2

4
i

iviii

ii

Fig. 29. The vector Γ̃ ◦2 Γ ∈ Gra(4)

The symmetric group Sn acts on Gra(n) in the obvious way by rearranging
the labels on vertices. It is not hard to see that insertions (7.2) together with this
action of Sn give on Gra an operad structure with the identity element being the
unique graph in gra1 with no edges.

It is clear that if two graphs Γ̃ and Γ representing vectors in Gra do not have

loops (i.e. cycles of length 1) then each graph in the linear combination Γ̃ ◦i Γ
does not have loops either. Thus, by discarding graphs with loops, we arrive at a
suboperad Gra�� of Gra .

The graphs depicted below represent vectors in Gra ��(2) and in Gra(2) .

(7.3) Γ•−• =
1 2

Γ• • =
1 2

Later they will play a special role.

7.1. “Graphical” interpretation of the operad Ger. Since Ger is gener-
ated by the monomials a1a2, {a1, a2} ∈ Ger(2), any map of operads

f : Ger → O
is uniquely determined by its values on a1a2 and {a1, a2} .

Exercise 7.3. Let Γ•−• and Γ• • be the vectors in Gra(2) introduced in (7.3).
Prove that the assignment

(7.4) ι(a1a2) = Γ• •, ι({a1, a2}) = Γ•−•
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NOTES ON ALGEBRAIC OPERADS 81

defines a map of operads (in grVectK)

(7.5) ι : Ger → Gra .

Notice that, one only has to check that

ι
(
(a1a2)a3 − a1(a2a3)

)
= 0 ,

ι
(
{a1, a2a3} − {a1, a2}a3 + a2{a1, a3}

)
= 0 ,

ι
(
{{a1, a2}, a3}+ {{a2, a3}, a1}+ {{a3, a1}, a2}

)
= 0 .

We claim that

Proposition 7.4. The map of operads ι : Ger → Gra is injective.

Proof. Recall that due to Exercise 3.12, the monomials

(7.6) {ai11 , . . . , {ai1(p1−1)
, ai1p1}..} . . . {ait1 , . . . , {ait(pt−1)

, aitpt}..}

corresponding to the ordered partitions (3.30) form a basis of Ger(n) .
Let us observe that for every ordered partition (3.30) the graph depicted on

figure 30 enters the linear combination

ι
(
{ai11 , . . . , {ai1(p1−1)

, ai1p1}..} . . . {ait1 , . . . , {ait(pt−1)
, aitpt }..}

)
with the coefficient 1.

i11 i12 i13 i1(p1−1) i1p1
. . .

i21 i22 i23 i2(p2−1) i2p2
. . .

...
...
...

it1 it2 it3 it(pt−1) itpt
. . .

Fig. 30. The edges are ordered “left to right”, “top to bottom”

Since such graphs are linearly independent in Gra(n), we conclude that ι is
indeed injective.

The proposition is proved. �
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8. The full graph complex fGC: the first steps

Let Γ•−• and Γ• • be the vectors in Gra(2) introduced in (7.3). Following Exer-
cise 7.3 and Proposition 7.3 the formulas

ι({a1, a2}) = Γ•−• , ι(a1a2) = Γ• •

define an embedding ι of the operad Ger into the operad Gra.
Thus, restricting ι to the suboperad ΛLie ⊂ Ger we get an embedding

ΛLie ↪→ Gra .

Hence we have a canonical map of (dg) operads

(8.1) ϕGra : ΛLie∞ → Gra .

Applying the general procedure of twisting (see Section 6) to the pair (Gra, ϕGra)
we get a dg operad TwGra and a dg Lie algebra

(8.2) LGra = Conv(Λ2coCom,Gra)

which acts on the operad TwGra .
Following [42] we denote the dg Lie algebra LGra by fGC. In other words,

(8.3) fGC = Conv(Λ2coCom,Gra)

The vector

(8.4) Γ•−• ∈ fGC

is a Maurer-Cartan element in fGC and the differential on fGC is given by the
formula:

(8.5) ∂ = adΓ•−• .

Definition 8.1. The cochain complex fGC (8.3) with the differential (8.5) is
called the full graph complex.

In this subsection we take a first few steps towards analyzing the cochain com-
plex fGC.

Unfolding the definition of the convolution Lie algebra we get

(8.6) fGC =
∞∏

n=1

HomSn

(
Λ2coCom(n),Gra(n)

)
=

∞∏
n=1

HomSn

(
s2−2nK,Gra(n)

)
=

=
∞∏

n=1

s2n−2
(
Gra(n)

)Sn .

In other words, vectors in fGC are infinite sums

(8.7) γ =

∞∑
n=1

γn

of Sn-invariant vectors γn ∈ s2n−2Gra(n) .
The vector space

(8.8) s2n−2
(
Gra(n)

)Sn

is spanned by vectors of the form

(8.9) Av(Γ) =
∑
σ∈Sn

σ(Γ)
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where Γ is an element in gran . In other words, formula (8.9) defines a surjective
K-linear map

(8.10) Av : K〈gran〉 � s2n−2
(
Gra(n)

)Sn .

To describe the kernel of the map Av, we observe that Av(Γ) = 0 if and
only if the underlying unlabeled graph has an automorphism which induces an odd
permutation on the set of edges. In this case we say that the element Γ ∈ gran is
odd. Otherwise, we say that the element Γ ∈ gran is even . For example, the square
depicted on figure 31 is odd and the pentagon depicted on figure 32 is even. It is
obvious that the property of being even or odd depends only on the isomorphism
class of the underlying unlabeled graph.

1 2

34

Fig. 31. We choose
this order on the set
of edges: (1, 2) <
(2, 3) < (3, 4) < (4,
1)

1

2

3

4

5

Fig. 32. We choose
this order on the set
of edges: (1, 2) <
(2, 3) < (3, 4) <
(4, 5) < (5, 1)

Let us consider a pair of even elements Γ,Γ′ ∈ gran whose underlying unlabeled
graphs are isomorphic. Any isomorphism of the underlying unlabeled graphs gives
us a bijection from the set E(Γ) of edges of Γ to the set E(Γ′) of edges of Γ′ .
Since both sets E(Γ) and E(Γ′) are totally ordered, this bijection determines a
permutation σ ∈ Sm where m = |E(Γ)| . Furthermore, since Γ and Γ′ are even,
such permutations σ are either all even or all odd. In the later case, we say that
even elements Γ and Γ′ are opposite and the former case we say that even elements
Γ and Γ′ are concordant.

It is clear that

Proposition 8.2. The kernel of the map Av (8.10) is spanned by vectors of
the form

(8.11) Γ, Γ1 − Γ2, Γ′
1 + Γ′

2 ,

where Γ is odd, (Γ1,Γ2) is a pair of concordant (even) graphs, and (Γ′
1,Γ

′
2) is a

pair of opposite (even) graphs. �

In view of Proposition 8.2, we may identify the vector space (8.8) with the
quotient of K〈gran〉 by the subspace spanned by vectors (8.11).

The following proposition gives us a convenient description of the differential
(8.5) on fGC:
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Proposition 8.3. For every (even) element Γ ∈ gran we have

(8.12) ∂
(
Av(Γ)

)
= Av(Γ•−• ◦1 Γ)− (−1)e(Γ)

1

2

n∑
i=1

Av(Γ ◦i Γ•−•)

where e(Γ) is the number of edges of Γ . Moreover, if Γ is a connected (even) graph
in gran with at least one edge, then

(8.13) ∂
(
Av(Γ)

)
= − (−1)e(Γ)

2

n∑
i=1

Av(Γ′
i)

where Γ′
i is obtained from Γ ◦i Γ•−• by discarding all graphs in which either vertex

i or vertex i+ 1 has valency 1 .

Proof. It is straightforward to verify the first claim by unfolding the definition
of the Lie bracket on Conv(Λ2coCom,Gra) . The second claim follows from the
observation that

Av(Γ•−• ◦1 Γ) =
(−1)e(Γ)

2

n∑
i=1

Av(Γ̃i)

where Γ̃i is obtained from the linear combination Γ ◦i Γ•−• by keeping only the
graphs in which either vertex i or vertex i+ 1 has valency 1 . �

Exercise 8.4. Let Γ• be the graph in gra1 which consists of a single vertex.
Show that

(8.14) ∂Γ• = Γ•−• .

Let Γ� be the graph in gra1 with consists of a single loop. Show that

∂Γ� = 0 .

Thus Γ� represents a degree −1 (non-trivial) cocycle in fGC .

8.1. The subcomplex of cables. Let us denote by K−− the subspace of fGC
which is spanned by vectors

Av(Γ)

where Γ is either the single vertex graph Γ• or a graph Γ−
l depicted on figure 33

for l ≥ 2 . For example, Γ−
2 = Γ•−• .

1 2 3 4 l

i ii iii
. . .

Fig. 33. The graph Γ−
l

It is easy to see that the vectors Av(Γ−
l ) have degrees

|Av(Γ−
l )| = l − 1 ,

Av(Γ−
l ) = 0 , if l = 0, 3 mod 4,

and
Av(Γ−

l ) �= 0 , if l = 1, 2 mod 4 .

Furthermore, due to Exercise 8.6 below,

∂Av(Γ−
4k+1) = Av(Γ−

4k+2)

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NOTES ON ALGEBRAIC OPERADS 85

for all k ≥ 1 .
Combining these observations with equation (8.14) we conclude that

Proposition 8.5. The subspace K−− is subcomplex of fGC. Moreover K−− is
acyclic. �

We call K−− the subcomplex of cables.

Exercise 8.6. Let Γ−
l be the family of graphs for l ≥ 2 defined on figure 33.

Prove that for every k ≥ 1

∂Av(Γ−
4k+1) = Av(Γ−

4k+2) .

8.2. The subcomplex of polygons. Let us denote by K� the subspace of
fGC which is spanned by vectors of the form

Av(Γ�
m),

where Γ�
m is the element of gram depicted on figure 34. For example, Γ�

1 is the

1

2

3

m

·
· ·

Fig. 34. The edges are ordered as follows (1, 2) < (2, 3) < · · · <
(m− 1,m) < (m, 1)

graph Γ� in gra1 which consists of a single loop.
Due to Exercise 8.7 below, K� is a subcomplex of fGC with

(8.15) H•(K�) ∼=
⊕
q≥1

s4q−1 K .

We call K� the subcomplex of polygons.

Exercise 8.7. Show that the graph Γ�
m is odd if m �= 1 mod 4 and even if

m = 1 mod 4 . Using equation (8.13), prove that for every q ≥ 0

Av(Γ�
4q+1)

is a non-trivial cocycle of fGC of degree 4q − 1 .

8.3. The connected part fGCconn of fGC. Let us denote by fGCconn the
subspace of fGC which consists of infinite sums

γ =
∞∑

n=1

γn , γn ∈ s2n−2
(
Gra(n)

)Sn

where γn is a linear combination of connected graphs in Gra(n) .
It is clear that fGCconn is a Lie subalgebra of fGC and hence a subcomplex. It

is also clear that

(8.16) fGC = s−2Ŝ
(
s2 fGCconn

)
,
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where Ŝ denotes the completed symmetric algebra. Thus the question of comput-
ing cohomology of fGC reduces to the question of computing cohomology of its
connected part fGCconn .

9. Analyzing the dg operad TwGra

According to the general procedure of twisting

(9.1) TwGra(n) =
∞∏
r=0

s2r
(
Gra(r + n)

)Sr

.

In other words, vectors in TwGra(n) are infinite linear combinations

(9.2) γ =
∞∑
r=0

γr ,

where γr is an Sr invariant vector in s2rGra(r + n) .
It is clear that the first r vertices and the last n vertices in graphs of γr play

different roles. We call the first r vertices neutral and the remaining n vertices
operational. It is convenient to represent neutral (reps. operational) vertices on
figures by small black circles (reps. small white circles). In this way, the same
element of gram may be treated as a vector in different spaces of the operad TwGra.
For example, the graph on figure 35 represents a vector in TwGra(0), the graph on
figure 36 represents a vector in TwGra(1), and the graph on figure 37 represents a
vector in TwGra(2).

1 2

Fig.

35. A
vector
in
TwGra(0)

1 2

Fig.

36. A
vector
in
TwGra(1)

1 2

Fig.

37. A
vector
in
TwGra(2)

It is obvious that the vector space

s2r
(
Gra(r + n)

)Sr ⊂ TwGra(n)

is spanned by vectors of the form

(9.3) Avr(Γ) =
∑
σ∈Sr

σ(Γ) ,

where Γ is an element in grar+n .
In other words, equation (9.3) defines a surjective map

(9.4) Avr : K〈grar+n〉 � s2r
(
Gra(r + n)

)Sr .

For an element Γ ∈ grar+n we denote by Γoub the partially labeled graph which
is obtained from Γ by forgetting labels on neutral vertices and shifting labels on
operational vertices down by r . Note that, since Γoub has unlabeled vertices, it
may have non-trivial automorphisms.
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It is obvious that Avr(Γ) = 0 if and only if Γoub has an automorphism which
induces an odd permutation on the set of edges. In this case, we say that an element
Γ ∈ grar+n is r-odd. Otherwise, we say that Γ is r-even.

Let us consider two r-even elements Γ,Γ′ ∈ grar+n whose underlying partially

labeled graphs Γoub and (Γ′)oub are isomorphic. Any isomorphism from Γoub to
(Γ′)oub gives us a bijection from the set E(Γ) of edges of Γ to the set E(Γ′) of edges
of Γ′ . Since both sets E(Γ) and E(Γ′) are totally ordered, this bijection determines
a permutation σ ∈ Se where e = |E(Γ)| . Furthermore, since Γ and Γ′ are r-even,
such permutations σ are either all even or all odd. In the latter case, we say that
r-even elements Γ and Γ′ are r-opposite and in the former case we say that even
elements Γ and Γ′ are r-concordant.

It is clear that

Proposition 9.1. The kernel of the map Avr (9.4) is spanned by vectors of
the form

(9.5) Γ, Γ1 − Γ2, Γ′
1 + Γ′

2 ,

where Γ is r-odd, (Γ1,Γ2) is a pair of r-concordant (r-even) graphs, and (Γ′
1,Γ

′
2) is

a pair of r-opposite (r-even) graphs in grar+n . �

In the following proposition we give a convenient formula for the differential on
TwGra .

Proposition 9.2. Let Γ be an r-even element in grar+n . Then

(9.6) ∂TwAvr(Γ) = Avr+1

(
Γ•−• ◦2 Γ

)
− (−1)e(Γ)Avr+1

( n∑
i=1

ςr+1,r+i

(
Γ ◦r+i Γ•−•

))

− (−1)e(Γ)

2

r∑
i=1

Avr+1

(
Γ ◦i Γ•−•

)
,

where e(Γ) is the number of edges of Γ, Γ•−• is defined in (7.3), and ςr+1,r+i is the
cycle (r + 1, r + 2, . . . , r + i) ∈ Sr+1+n .

Remark 9.3. We should remark that the vector ∂TwAvr(Γ) is a linear combi-
nation of graphs in grar+1+n in which the first r+1 vertices are treated as neutral.

Thus vertices with labels r+1 and r+ i+1 in graphs in ςr+1,r+i

(
Γ ◦r+i Γ•−•

)
come

from Γ•−•. The vertex with label r + 1 is treated as neutral and the vertex with
label r + i+ 1 is treated as operational.

Proof. Adapting general formula (6.32) to the case when O = Gra we get

∂TwAvr(Γ) =
∑

τ∈Sh1,r

τ
(
Γ•−• ◦2 Avr(Γ)

)

(9.7) −(−1)e(Γ)
∑

τ ′∈Shr,1

n∑
i=1

τ ′ ◦ ςr+1,r+i

(
Avr(Γ) ◦r+i Γ•−•

)
−(−1)e(Γ)

∑
λ∈Sh2,r−1

(
Avr(Γ) ◦1 Γ•−•

)
.
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Using the obvious identity

Avr(Γ) =

r∑
i=1

∑
σ′∈S2,...,r

σ′ ◦ ς1,i(Γ),

axioms of operad, and S2-invariance of Γ•−• we rewrite the last sum in (9.7) as
follows ∑

λ∈Sh2,r−1

λ
(
Avr(Γ) ◦1 Γ•−•

)
=

r∑
i=1

σ(i)<σ(i+1)∑
σ∈Sr+1

σ
(
Γ ◦i Γ•−•

)
=

1

2

∑
σ∈Sr+1

r∑
i=1

σ
(
Γ ◦i Γ•−•

)
=

1

2
Avr+1

( r∑
i=1

Γ ◦i Γ•−•
)
.

The first sum in the right hand side of (9.7) can be rewritten as∑
τ∈Sh1,r

τ
(
Γ•−• ◦2 Avr(Γ)

)
=

∑
τ∈Sh1,r

∑
σ′∈S2,...,r+1

τ ◦ σ′(Γ•−• ◦2 Γ
)
=

∑
σ∈Sr+1

(
Γ•−• ◦2 Γ

)
= Avr+1

(
Γ•−• ◦2 Γ

)
,

where S2,...,r+1 denotes the permutation group of the set {2, . . . , r + 1} .
As for the second sum in the right hand side of (9.7), we have∑

τ ′∈Shr,1

n∑
i=1

τ ′ ◦ ςr+1,r+i

(
Avr(Γ) ◦r+i Γ•−•

)
=

∑
τ ′∈Shr,1

n∑
i=1

∑
σ′∈Sr

τ ′ ◦ ςr+1,r+i ◦ σ′(Γ ◦r+i Γ•−•
)
=

n∑
i=1

∑
σ∈Sr+1

σ ◦ ςr+1,r+i

(
Γ ◦r+i Γ•−•

)
= Avr+1

( n∑
i=1

ςr+1,r+i

(
Γ ◦r+i Γ•−•

))
.

Thus, equation (9.6) indeed holds. �

9.1. The Euler characteristic trick. Let us consider sums (9.2) satisfying

Property 9.4. For every r ≥ 0, each graph in the linear combination γr has
Euler characteristic χ .

Using equation (9.6), it is not hard to see that the subspace of such sums is a
subcomplex in TwGra(n) . We denote this subcomplex by

(9.8) TwGraχ(n) .

We claim that

Proposition 9.5. For every triple of integers n ≥ 0,m and χ the subspace
TwGraχ(n)

m of degree m vectors in TwGraχ(n) is spanned by graphs with

(9.9) e = 2(n− χ) +m

edges and

(9.10) r = n+m− χ

neutral vertices. In particular, the subspace TwGraχ(n)
m is finite dimensional.
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Proof. Recall that for every graph Γ ∈ grar+n the vector Avr(Γ) ∈ TwGra(n)
has degree ∣∣Avr(Γ)

∣∣ = 2r − e ,

where e is the number of edges of Γ .
Hence, if Avr(Γ) ∈ TwGraχ(n)

m then

(9.11) m = 2r − e ,

and

(9.12) χ = n+ r − e .

Subtracting (9.11) from (9.12), we get

χ−m = n− r .

Therefore,

r = n+m− χ

and

e = 2n− 2χ+m.

Thus the proposition follows from the fact that the number of graphs with a
fixed number of vertices and a fixed number of edges is finite. �

Proposition 9.5 has the following useful corollary.

Corollary 9.6. The cochain complex TwGra(n) decomposes into the product
of sub-complexes

(9.13) TwGra(n) =
∏
χ∈Z

TwGraχ(n) .

Proof. Let

γ =

∞∑
r=1

γr , γr ∈ s2r
(
Gra(r + n)

)Sr

be a vector of degree m .
Equations (9.11) and (9.12) imply that for every r

γr ∈ TwGraχ(n)

where

χ = n+m− r .

Thus

TwGra(n) ⊂
∏
χ∈Z

TwGraχ(n) .

The inclusion ∏
χ∈Z

TwGraχ(n) ⊂ TwGra(n)

is proved in a similar way. �

Remark 9.7. We will often need to prove that any cocycle in TwGra(n) or a
similar cochain complex is cohomologous to a cocycle satisfying a certain property.
Proposition 9.5 and Corollary 9.6 (or its corresponding versions) will allow us to
reduce such questions to the corresponding questions for finite sums of graphs. We
will refer to this maneuver as the Euler characteristic trick.
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9.2. The suboperads Graphs� ⊂ Graphs� ⊂ TwGra. Let us denote by fGraphs�(n)
the subspace of TwGra(n) which consists of linear combinations (9.2) satisfying

Property 9.8. If a connected component of a graph in γr for some r > 0 has
no operational vertices then this connected component has at least one vertex of
valency ≥ 3.

Remark 9.9. It is not hard to see that, if all vertices of a connected graph Γ
have valencies ≤ 2 then Γ is isomorphic to one of the graphs in the list: Γ•, Γ

−
l

(see figure 33), or Γ�
m (see figure 34). In other words, fGraphs�(n) is obtained from

TwGra(n) by “throwing away” graphs which have connected components Γ•, Γ
−
l

(see figure 33), or Γ�
m (see figure 34) with all neutral vertices.

Let us also denote by Graphs�(n) the subspace of TwGra(n) which consists of
linear combinations (9.2) whose neutral vertices all have valencies ≥ 3 .

We claim that

Proposition 9.10. Both Graphs�(n) and fGraphs�(n) are subcomplexes of TwGra(n)

(9.14) Graphs�(n) ⊂ fGraphs�(n) ⊂ TwGra(n) .

Moreover, the collections

{Graphs�(n)}n≥0 , {fGraphs�(n)}n≥0

are suboperads of TwGra .

Proof. The only non-obvious statement in this proposition is that the sub-
space Graphs�(n) is closed with respect to the differential ∂Tw .

So let us denote by Γ an r-even graph in grar+n whose neutral vertices all have
valencies ≥ 3 and analyze the right hand side of (9.6).

All graphs in the first linear combination in the right hand side of (9.6) have a
univalent neutral vertex. However, it is not hard to see that they cancel with the
corresponding terms in the second and the third linear combinations in the right
hand side of (9.6).

Graphs with bivalent neutral vertices come from both the second and third
linear combinations of the right hand side of (9.6). Again, it is not hard to see that
these contributions cancel each other.

The proposition is proved. �

The goal of this subsection is to prove that

Proposition 9.11. The embedding

(9.15) emb�1 : Graphs�(n) ↪→ fGraphs�(n)

is a quasi-isomorphism.

Proof. Let us denote by graphs�(n) (resp. fgraphs�(n)) the subcomplex of

Graphs�(n) (resp. fGraphs�(n)) which consists of finite linear combinations (9.2) in

Graphs�(n) (resp. fGraphs�(n)). In other words,
(9.16)

graphs�(n) := Graphs�(n) ∩ Tw⊕Gra , fgraphs�(n) := fGraphs�(n) ∩ Tw⊕Gra .
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Next we observe that the cochain complexes Graphs�(n) and fGraphs�(n) admit
decompositions with respect to the Euler characteristic

Graphs�(n) =
∏
χ∈Z

Graphs�(n) ∩ TwGraχ(n) ,

fGraphs�(n) =
∏
χ∈Z

fGraphs�(n) ∩ TwGraχ(n)

and Proposition 9.5 implies that the subspace of elements of fixed degree in
Graphs�(n) ∩ TwGraχ(n) and in fGraphs�(n) ∩ TwGraχ(n) is spanned by a finite
number of graphs.

Thus, in virtue of Remark 9.7, it suffices to prove that the embedding

(9.17) graphs�(n) ↪→ fgraphs�(n)

is a quasi-isomorphism.
Let Γ be an element in grar+n such that Avr(Γ) represents a vector in fgraphs�(n).

Let us denote by ν2(Γ) the number of neutral vertices having valency 2 .
It is clear that the linear combination

∂TwAv(Γ)

may involve only graphs Γ′ with ν2(Γ
′) = ν2(Γ) or ν2(Γ

′) = ν2(Γ) + 1 .

Thus we may introduce on the complex fgraphs�(n) an ascending filtration

(9.18) · · · ⊂ Fm−1fgraphs�(n) ⊂ Fmfgraphs�(n) ⊂ Fm+1fgraphs�(n) ⊂ . . .

where Fmfgraphs�(n) consists of vectors γ ∈ fgraphs�(n) which only involve graphs
Γ satisfying the inequality

ν2(Γ)− |γ| ≤ m.

It is clear that

Fmfgraphs�(n)

does not have non-zero vectors in degree < −m . Therefore, the filtration (9.18)

is locally bounded from the left. Furthermore, since fgraphs�(n) consists of finite
sums of graphs,

fgraphs�(n) =
⋃
m

Fmfgraphs�(n) .

In other words, the filtration (9.18) is cocomplete.
It is also clear that the differential ∂Gr on the associated graded complex

(9.19) Gr(fgraphs�(n)) =
⊕
m

Fmfgraphs�(n)
/

Fm−1fgraphs�(n) .

is obtained from ∂Tw by keeping only the terms which raise the number of the
bivalent neutral vertices.

Thus, since graphs�(n) is a subcomplex of fgraphs�(n), we conclude that

graphs�(n)k ⊂ F−kfgraphs�(n)k ∩ ker ∂Gr ,

where graphs�(n)k (resp. F−kfgraphs�(n)k) denotes the subspace of degree k vectors

in graphs�(n) (resp. in F−kfgraphs�(n)) .
To complete the proof of the proposition, we need the following technical lemma

which is proved in Subsection 9.2.2 below.
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Lemma 9.12. For the filtration (9.18) on fgraphs�(n) we have

(9.20) Hk
(
Fmfgraphs�(n)

/
Fm−1fgraphs�(n)

)
= 0

for all m > −k . Moreover,

(9.21) graphs�(n)k = F−kfgraphs�(n)k ∩ ker ∂Gr .

It is easy to see that the restriction of (9.18) to the subcomplex graphs�(n)
gives us the “silly” filtration:

(9.22) Fmgraphs�(n)k =

{
graphs�(n)k if m ≥ −k ,
0 otherwise .

The associated graded complex Gr(graphs�(n)) for this filtration has the zero dif-
ferential.

Since

Fmfgraphs�(n)k = 0 ∀ m < −k ,
we have

F−kfgraphs�(n)k ∩ ker ∂Gr = Hk
(
F−kfgraphs�(n)

/
F−k−1fgraphs�(n)

)
.

Thus, Lemma 9.12 implies that, the embedding (9.17) induces a quasi-isomorphism
of cochain complexes

Gr(graphs�(n))
∼−→ Gr(fgraphs�(n)) .

On the other hand, both filtrations (9.18) and (9.22) are locally bounded from
the left and cocomplete.

Therefore the embedding (9.17) satisfies all the conditions of Lemma A.3 from
Appendix A and Proposition 9.11 follows. �

9.2.1. An alternative description of Gr(fgraphs�(n)). In order to prove Lemma
9.12 we need a convenient description of the associated graded complex (9.19).

For this purpose we introduce three cochain complexes:

• The first cochain complex is the tensor algebra

(9.23) Ta = T (K〈a〉)
in a single variable a carrying degree 1 with the differential δ defined by
the formula

(9.24) δ(a) = a2 .

• The second cochain complex is the truncation of the above tensor algebra

(9.25) T a = T (K〈a〉) = K〈a〉 ⊕K〈a⊗ a〉 ⊕K〈a⊗ a⊗ a〉 ⊕ . . .

with the same differential (9.24).
• Finally, the third cochain complex

(9.26) L = K〈{ln}n>0, n=0,1 mod 4〉
has the basis vector {ln}n>0, n=0,1 mod 4 carrying degrees

|ln| = n− 2 .

The differential on (9.26) is given by the formulas:

(9.27) δ(l4k) = −l4k+1 , δ(l4k+1) = 0 .
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It is easy to see that the cochain complex (T a, δ) is acyclic,

(9.28) H•(Ta) =

{
K if • = 0 ,

0 otherwise ,

and

(9.29) H•(L) =

{
K if • = −1 ,

0 otherwise .

Moreover H0(Ta, δ) is spanned by the class of 1 and H−1(L) is spanned by the
cohomology class of l1 .

Next, to every pair of non-negative integers r, n satisfying r + n > 0 we assign
an auxiliary groupoid Framer,n . An object of this groupoid is a labeled directed
graph ג with r + n vertices and with an additional piece of data: the set E(ג) of
edges of ג is equipped with a total order. For our purposes, we call the first r
vertices neutral and the last n vertices operational. (On figures we use small black
circles (resp. small white circles) for neural (resp. operational) vertices.) Each
object ג ∈ Framer,n obeys the following properties:

• ג does not have bivalent neutral vertices;
• ג does not have a connected component which consists of a single neutral
vertex;

• ג does not have a connected component which consists of a single edge
which connects two neutral vertices;

• each edge adjacent to a univalent neutral vertex (if any) of ג originates at
this univalent neutral vertex;

• the set E(ג) is ordered in such a way that edges adjacent to univalent
neutral vertices (if any) are smaller than all the remaining edges;

• finally, loops of ג (if any) are bigger than all the remaining edges.

Objects of the groupoid Framer,n are called frames.
A morphism from a frame ג to a frame ′ג is an isomorphism of the underlying

graphs which respects labels only on the operational vertices and respects neither
labels on neutral vertices, nor the total order on the set of edges, nor the directions
of edges.

Example 9.13. Let ג be the frame in Frame3,4 depicted on figure 38. Let g1 be
the automorphism of ג which swaps the first edge with the second edge and g2 be
the automorphism of ג which swaps the fifth edge with the sixth edge. It is obvious
that Aut(ג) is generated by g1 and g2. Moreover, Aut(ג) ∼= S2 × S2 .

1

2

3

4

5

6

7

i

ii

iii

vi

iv

v

vii

Fig. 38. As above, we use Roman numerals to specify the total
order on the set of edges
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94 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

The total number of edges e of any frame ג splits into the sum

e = e• + e◦ + e− ,

where e• is the number of edges of ג adjacent to univalent neutral vertices (if any),
e◦ is the number of loops of ג and e− is the number of the remaining edges. Thus,
for the frame ג on figure 38 we have e• = 2, e◦ = 1, and e− = 4.

For every frame ג ∈ Framer,n we construct a linear map

(9.30) Fג : s
2r−2e•

(
T a

)⊗ e• ⊗
(
s−1 Ta

)⊗ e− ⊗ L⊗ e◦ → Gr(fgraphs�(n)) .

Namely, given a collection of monomials ak1 , ak2 , . . . , ake•+e− with ki > 0 for
all i ≤ ke• and vectors lke•+e−+1

, . . . , lke
in L we form a graph Γ ∈ gra(r+r′)+n with

r′ =
e•∑
i=1

(ki − 1) +

e•+e−∑
i=e•+1

ki +

e∑
i=e•+e−+1

(ki − 1)

following these steps:

• first, for each 1 ≤ i ≤ e•, we divide the i-th edge into ki sub-edges;
• second, for each e• < i ≤ e• + e−, we divide the i-th edge into ki + 1
sub-edges;

• third, for each e•+e− < i ≤ e, we divide the i-th edge13 into ki sub-edges;
• we declare that the additional r′ vertices obtained in the above steps are
neutral, label them by numbers r + 1, r + 2, . . . , r + r′ in an arbitrary
possible way and shift labels on all operational vertices up by r′ ;

• we order the set E(Γ) of edges of Γ in the following way14: if s1, s2 ∈ E(Γ)
are parts of different edges of ג then s1 < s2 provided s1 is a part of a
smaller edge; if s1, s2 ∈ E(Γ) are parts of the same edge of ג which is not
a loop then s1 < s2 provided s1 is closer to the origin of its edge; finally,
we order sub-edges of each loop of ג by choosing one of the two possible
directions of walking around the loop.

We will refer to this graph Γ as the graph reconstructed from the monomial

(ak1 , ak2 , . . . , ake•+e− , lke•+e−+1
, . . . , lke

) ∈ s2r−2e•
(
T a

)⊗ e• ⊗
(
s−1 Ta

)⊗ e− ⊗ L⊗ e◦

using the frame ג .
It is not hard to see that the equation

(9.31) Fג(a
k1 , ak2 , . . . , ake•+e− , lke•+e−+1

, . . . , lke
) =

∑
σ∈Sr+r′

σ(Γ)

defines a (degree zero) map of graded vector spaces (9.30).

Example 9.14. Let ג be the frame in Frame3,4 depicted on figure 38. Then

Fג(a, a
3, a, 1, 1, a, l4) =

∑
σ∈S10

σ(Γ) ,

where Γ is the element in gra10+4 depicted on figure 39.

13Note that, for each e• + e− < i ≤ e the i-th edge is necessarily a loop.
14The order on the set E(Γ) is defined up to an even permutation.
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Fig. 39. The graph Γ ∈ gra10+4 corresponding to the vector (a, a3, a, 1, 1, a, l4)

Let us denote by ∂Gr the differential on the associated graded complex Gr(fgraphs�(n)) .

It is clear from the definition of the filtration (9.18) on fgraphs�(n) that ∂Gr is ob-
tained from ∂Tw by keeping only the terms which raise the number of the bivalent
neutral vertices. Hence the image of the map Fג is closed with respect to the action
the differential ∂Gr . Furthermore, going through the steps of the definition of Fג,
it is not hard to verify that

(9.32) ∂Gr ◦ Fג = Fג ◦ δ .
Our next goal is to describe the kernel of the map Fג . For this purpose, we

introduce the semi-direct product

(9.33) Se �
(
S2

)e
of the groups Se and

(
S2

)e
with the multiplication rule:

(9.34) (τ ;σ1, . . . , σe) · (λ;σ′
1, . . . , σ

′
e) = (τλ;σλ(1)σ

′
1, . . . , σλ(e)σ

′
e) .

Next we observe that the group Aut(ג) admits an obvious homomorphism to
the subgroup

(9.35)
(
Se• × Se− × Se◦

)
�
(
{id}e• ×

(
S2

)e− × {id}e◦
)

of (9.33), where {id} denotes the trivial group. Namely, this homomorphism assigns
to an element g ∈ Aut(ג) the string

(τ ;σ1, . . . , σe), τ ∈ Se, σ1, . . . , σe ∈ S2

in (9.33) according to this rule: τ (i) = j if the automorphism g sends the i-th edge
to the j-th edge; σi is non-trivial (for e• +1 ≤ i ≤ e• + e−) if g sends the i-th edge
to the j-th edge and the directions of these edges are opposite. It is clear that this
homomorphism lands in the subgroup (9.35).

The group (9.35) acts on the graded vector space

(9.36) s2r−2e•
(
T a

)⊗ e• ⊗
(
s−1 Ta

)⊗ e− ⊗ L⊗ e◦ .

Namely, if σ is the non-trivial element of S2 and e• < i ≤ e• + e− then

(1, . . . , 1, σ︸︷︷︸
i-th spot

, 1, . . . 1)(ak1 , ak2 , . . . , ake•+e− , lke•+e−+1
, . . . , lke

) =
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96 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

(−1)
ki(ki+1)

2 (ak1 , ak2 , . . . , ake•+e− , lke•+e−+1
, . . . , lke

) .

Furthermore, for every τ ∈ Se• × Se− × Se◦ we set

τ (ak1 , ak2 , . . . , ake•+e− , lke•+e−+1
, . . . , lke

) =

(−1)ε(τ,k1,...,ke)(akτ−1(1) , akτ−1(2) , . . . , a
kτ−1(e•+e−) , lkτ−1(e•+e−+1)

, . . . , lkτ−1(e)
) ,

where the sign factor (−1)ε(τ,k1,...,ke) is determined by the usual Koszul rule.
Thus the graded vector space (9.36) is equipped with a left action of the group

Aut(ג) .

Example 9.15. Let us consider the frame ג depicted on figure 38. Let g1 be
the generator of Aut(ג) which swaps the first edge with the second edge and let g2
be the generator of Aut(ג) which swaps the fifth edge with the sixth edge. Then
for the vector (a, a3, a, 1, 1, a, l4) we have

(9.37) g1(a, a
3, a, 1, 1, a, l4) = −(a3, a, a, 1, 1, a, l4) ,

and

(9.38) g2(a, a
3, a, 1, 1, a, l4) = −(a, a3, a, 1, a, 1, l4) .

The sign in (9.37) comes from the fact that a “jumps” over a3 and the sign in
(9.38) appears due to the fact that the fifth edge and the sixth edge carry opposite
directions.

We can now describe the kernel of the map Fג (9.30).

Claim 9.16. Let ג ∈ Framer,n be a frame with e edges

e = e• + e− + e◦ ,

where e• is the number of edges of ג adjacent to univalent neutral vertices, e◦ is the
number of loops and e− = e− e• − e◦ . Then the kernel of Fג is spanned by vectors
of the form

(9.39) X − g(X) ,

where X is a vector in (9.36) and g is an automorphism of ג in Framer,n .

Proof. Let Y be a monomial in (9.36) such that

(9.40) Fג(Y ) = 0 .

The latter means that the graph Γ ∈ gra(r+r′)+n which is constructed from the

monomial Y using the frame ג is (r + r′)-odd.
In other words, there exists an automorphism g̃ of Γ which respects labels only

on operational vertices and induces an odd permutation on the set of edges of Γ .
It is clear that g̃ induces an automorphism g of the frame .ג Furthermore, since

g̃ induces an odd permutation on the set of edges of Γ we have

Y = −g(Y ) .

Hence,

(9.41) Y =
1

2
(Y − g(Y )) .

Thus every monomial Y in (9.36) satisfying equation (9.40) belongs to the span of
vectors of the form (9.39).
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Let us now consider a linear combination

(9.42) c1Y1 + c2Y2 + · · ·+ cmYm , ci ∈ K

of monomials Y1, . . . , Ym in (9.36) such that

(9.43)
∑
i

ciFג(Yi) = 0 .

Due to the above observation about monomials satisfying (9.40) we may as-
sume, without loss of generality, that

Fג(Yi) �= 0 ∀ 1 ≤ i ≤ m.

We may also assume, without loss of generality, that the graphs {Γi}1≤i≤m re-
constructed from the monomial {Yi}1≤i≤m have the same number of neutral vertices
r + r′.

Thus, for every 1 ≤ i ≤ m, the graph Γi ∈ gra(r+r′)+n is (r + r′)-even.
Combining this observation with Proposition 9.1 we conclude that the number

m is even and the set of graphs {Γi}1≤i≤m splits into pairs

(Γit ,Γi′t
) , t ∈ {1, . . . ,m/2}

such that for every t the graphs Γit and Γi′t
are either (r+ r′)-opposite or (r+ r′)-

concordant. For every pair (Γit ,Γi′t
) of (r + r′)-opposite graphs we have

(9.44) cit = ci′t .

For every pair (Γit ,Γi′t
) of (r + r′)-concordant graphs we have

(9.45) cit = −ci′t .
Let et denote the number of edges of Γit (or Γi′t

) and let g̃t be the isomorphism
from Γit to Γi′t

which induces an odd or even permutation in Set depending on
whether Γit and Γi′t

are (r + r′)-opposite or (r + r′)-concordant. Let gt be the
automorphism of the frame ג which is induced by the isomorphism g̃t .

Equations (9.44) and (9.45) imply that

m∑
i=1

ciYi =

m/2∑
t=1

cit(Yit − gt(Yit)) .

In other words, the linear combination (9.42) belongs to the span of vectors of
the form (9.39) and the claim follows. �

Now we are ready to give a convenient description of the associated graded
complex Gr(fgraphs�(n)) .

Claim 9.17. Let us choose a representative zג for every isomorphism class
z ∈ π0(Framer,n) . Let ez• be the number of edges of zג adjacent to univalent neutral
vertices, ez◦ be the number of loops of zג and

ez− = |E(גz)| − ez• − ez◦ .

Then the cochain complex Gr(fgraphs�(n)) splits into the direct sum

Gr(fgraphs�(n)) ∼=

(9.46)
⊕
r≥0

⊕
z∈π0(Framer,n)

s2r−2ez•
((
T a

)⊗ ez• ⊗
(
s−1 Ta

)⊗ ez− ⊗ L⊗ ez◦
)
Aut(גz)

.

.
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Proof. Let us recall that the map Fגz (9.30) is a morphism from the cochain
complex

s2r−2ez•
(
T a

)⊗ ez• ⊗
(
s−1 Ta

)⊗ ez− ⊗ L⊗ ez◦

with the differential δ to Gr(fgraphs�(n)) .
Thus, Claim 9.16 implies that Fגz induces an isomorphism from the cochain

complex of coinvariants

s2r−2ez•
((
T a

)⊗ ez• ⊗
(
s−1 Ta

)⊗ ez− ⊗ L⊗ ez◦
)
Aut(גz)

to the subcomplex

Im(Fגz) ⊂ Gr(fgraphs�(n)) .

On the other hand, the cochain complex Gr(fgraphs�(n)) is obviously the direct
sum

(9.47) Gr(fgraphs�(n)) =
⊕
r≥0

⊕
z∈π0(Framer,n)

Im(Fגz) .

Thus, the desired statement follows. �

9.2.2. Proof of Lemma 9.12. We will now use the above description of the
cochain complex Gr(fgraphs�(n)) to prove Lemma 9.12.

First, we observe that, since the cochain complex T a is acyclic, the direct
summand

(9.48) Im(Fג)

of Gr(fgraphs�(n)) is acyclic for every frame ג with at least one univalent neutral
vertex.

So let us consider a frame ג with e• = 0 .
It is easy to see that the cochain complex

(9.49) s2r
((

s−1 Ta
)⊗ e− ⊗ L⊗ e◦

)
Aut(ג)

is concentrated is degrees

≥ 2r − e− − e◦ .

Furthermore, using (9.28), (9.29), Künneth’s theorem, and the fact that the
cohomology functor commutes with taking coinvariants, we conclude that every
cocycle X in (9.49) of degree > 2r − e− − e◦ is trivial and the space

(9.50) H2r−e−−e◦
(
s2r

((
s−1 Ta

)⊗ e− ⊗ L⊗ e◦
)
Aut(ג)

)
= K

is spanned by the class of the vector

(9.51) s2r (s−1 1)⊗ e− ⊗ (l1)
⊗ e◦ .

Since images of cocycles X in (9.49) of degrees > 2r − e− − e◦ lie in(
Fmfgraphs�(n)

/
Fm−1fgraphs�(n)

)k

for m > −k and images of the vectors (9.51) belong to graphs�(n)2r−e−−e◦ , Lemma
9.12 follows from Claim 9.17.
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9.3. We are getting rid of loops. Let us denote by Graphs���(n) the subspace

of Graphs�(n) which consists of vectors in Graphs�(n) involving exclusively graphs
without loops.

Since the differential ∂Tw “does not create” loops, the subspace Graphs���(n) is

a subcomplex of Graphs�(n) for every n . Moreover the collection

(9.52) Graphs��� = {Graphs���(n)}n≥0

is obviously a suboperad Graphs� .
The goal of this section is to prove that

Proposition 9.18. The embedding

(9.53) emb�2 : Graphs��� ↪→ Graphs�

is a quasi-isomorphism (of dg operads).

Proof. Let us introduce the subcomplex graphs���(n) of Graphs
�
�� which consists

of finite sums of graphs, i.e.

(9.54) graphs���(n) := Graphs���(n) ∩ Tw⊕Gra(n) .

We will prove that the embedding

(9.55) graphs���(n) ↪→ graphs�(n)

is a quasi-isomorphism of cochain complexes. Then the desired statement can be
easily deduced from this fact using the Euler characteristic trick (see Remark 9.7).

Let Γ be a r-even graph in grar+n whose first r vertices have valency ≥ 3 . Let
us denote by tpr(Γ) the number of loops (if any) of Γ which are based on a trivalent
vertex whose label ≤ r . For example, the graph Γ ∈ gra3+3 depicted on figure 40
has tp3(Γ) = 1 . Indeed, the vertex with label 1 supports a loop but it has valency
4; the vertex with label 2 does not support a loop; finally, the vertex with label 3
supports a loop and has valency 3.

1

2 4

5

36

ix vii

ii

iii

iv

v
i

viviii

Fig. 40. It is the vertex with label 3 which contributes to tp3(Γ)

It is obvious that the expression

∂Tw(Avr(Γ))

involves graphs Γ′ ∈ gra(r+1)+n with tpr+1(Γ
′) = tpr(Γ) or tpr+1(Γ

′) = tpr(Γ)+1 .

Thus the cochain complex graphs�(n) carries the following ascending filtration

(9.56) · · · ⊂ Fm−1graphs�(n) ⊂ Fmgraphs�(n) ⊂ Fm+1graphs�(n) ⊂ . . .
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where Fmgraphs�(n) is spanned by vectors in graphs�(n) of the form

Avr(Γ) Γ ∈ grar+n

with

tpr(Γ)− |Avr(Γ)| ≤ m.

It is clear that the differential ∂tp on the associated graded complex

(9.57) Gr(graphs�(n)) =
⊕
m

Fmgraphs�(n)
/
Fm−1graphs�(n)

is obtained from ∂Tw by keeping only terms which raise the number of loops based
on trivalent neutral vertices.

It is also clear that the restriction of (9.56) to the subcomplex graphs���(n) gives
us the “silly” filtration

(9.58) Fmgraphs���(n)
k =

{
graphs���(n)

k if m ≥ −k ,
0 otherwise

with the associated graded complex Gr(graphs���(n)) carrying the zero differential.

It is not hard to see that the cochain complex Gr(graphs�(n)) splits into the
direct sum of subcomplexes

(9.59) Gr(graphs�(n)) ∼= Gr(graphs���(n)) ⊕ graphs��(n) ,

where graphs��(n) is spanned by vectors in graphs�(n) of the form

Avr(Γ) , Γ ∈ grar+n

with Γ having at least one loop.
Let Γ be graph in grar+n for which Avr(Γ) ∈ graphs��(n) and let V r

�(Γ) denote
the following subset of vertices of Γ

V r
�(Γ) =

(9.60){
v ∈ V (Γ)

∣∣ v carries label ≤ r, has valency > 3, and supports a loop
}
∪{

v ∈ V (Γ)
∣∣ v carries label > r and supports a loop

}
.

For example, if Γ is the graph depicted on figure 40 then V 3
�(Γ) consists of vertices

labeled by 1 and 6 .
Collecting terms in (9.6) which raise the number of loops based on trivalent

neutral vertices we see that

(9.61) ∂tp(Avr(Γ)) =

⎧⎪⎨⎪⎩
−

∑
v∈V�(Γ)

Avr+1

(
Tpv(Γ)

)
, if V�(Γ) is non-empty

0 if V�(Γ) = ∅ ,

where Tpv(Γ) is a graph in gra(r+1)+n obtained from Γ by

• shifting labels on all vertices of Γ up by 1;
• removing the loop based at the vertex v;
• attaching to v the piece

1
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• declaring that the loop based at first neutral vertex takes the spot of the
removed loop in E(Γ) and the edge connecting the first neutral vertex to
v is the smallest in E(Tpv(Γ)) .

Let Γ be graph in grar+n for which Avr(Γ) ∈ graphs��(n) and let V r
tp(Γ) denote

the set of trivalent vertices (if any) which support loops and carry labels ≤ r . We
denote by h the linear map of degree −1

h : graphs��(n) → graphs��(n)

defined by formula

(9.62) h(Avr(Γ)) :=

⎧⎪⎨⎪⎩
−

∑
v∈V r

�(Γ)

Avr−1

(
Tp∗v(Γ)

)
, if V r

tp(Γ) is non-empty

0 if V r
tp(Γ) = ∅ ,

where Tp∗v(Γ) is a vector in Gra(r − 1 + n) obtained from Γ by

• switching the label on v with the label 1 on the first vertex of Γ (provided
v is not the first vertex);

• changing the order of the edges of Γ such that the single edge ev connecting
v to another vertex becomes the smallest one (this step may produce the
sign factor (−1) in front of Γ);

• removing the edge ev together with the vertex v and attaching the vacated
loop to the other end of ev ;

• shifting labels on all the remaining vertices down by 1 .

For example, if Γ is the graph depicted on figure 40 then

(9.63) h(Av3(Γ)) = −Av2(Γ
′),

where Γ′ is the vector in Gra(5) depicted on figure 41.

−

2

1
3

4

5

viii vi

ii

iii

iv

v
i

vii

Fig. 41. The vector Γ′ defining h(Av3(Γ))

Figure 42 illustrates intermediate steps in the construction of Γ′ .
Let Γ be a graph in grar+n such that Avr(Γ) ∈ graphs��(n) . Using the fact

that Γ has no bivalent neutral vertices, it is not hard to show that the operations
∂tp and h satisfy the identity

(9.64) ∂tp ◦ h(Avr(Γ)) + h ◦ ∂tp(Avr(Γ)) = λΓAvr(Γ) ,

where λΓ is the number of loops of Γ .
Therefore, the cochain complex

(graphs��(n), ∂
tp)
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Fig. 42. Intermediate steps in the construction of Γ′

is acyclic and hence the embedding (9.55) induces a quasi-isomorphism of cochain
complexes:

Gr(graphs���(n))
∼−→ Gr(graphs�(n)) .

On the other hand, both filtrations (9.56) and (9.58) are cocomplete and lo-
cally bounded from the left. Thus Lemma A.3 from Appendix A implies that the
embedding (9.55) is a quasi-isomorphism. Hence so is the embedding

Graphs���(n) ↪→ Graphs�(n) .

Proposition 9.18 is proved. �
9.4. The suboperads Graphs�� ⊂ Graphs ⊂ fGraphs ⊂ TwGra. In this sub-

section we introduce yet another series of suboperads of TwGra

Graphs�� ⊂ Graphs ⊂ fGraphs ⊂ TwGra .

We will show that the embeddings

Graphs�� ↪→ Graphs ,

Graphs ↪→ fGraphs

are quasi-isomorphisms of dg operads.
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We denote by fGraphs(n) the subspace of TwGra(n) which consists of linear
combinations (9.2) satisfying

Property 9.19. For every r, each graph in the linear combination γr has no
connected components which involve exclusively neutral vertices.

For example, it means that

fGraphs(0) = 0 .

We denote by Graphs(n) the subspace of fGraphs(n) which consists of sums of
graphs with neutral vertices having valencies ≥ 3 .

Finally, Graphs��(n) is the subspace of Graphs(n) which consists of sums of
graphs without loops.

It is easy to see that for every n, Graphs��(n), Graphs(n), and fGraphs(n) are
subcomplexes of TwGra(n) . Moreover, collections

(9.65) fGraphs = {fGraphs(n)}n≥0 ,

(9.66) Graphs = {Graphs(n)}n≥0 ,

and

(9.67) Graphs�� = {Graphs��(n)}n≥0

are suboperads of TwGra .
We claim that

Proposition 9.20. The embeddings

(9.68) emb1 : Graphs ↪→ fGraphs

and

(9.69) emb2 : Graphs�� ↪→ Graphs

are quasi-isomorphisms of dg operads.

Proof. It clear that the cone

Cone(emb1) = Graphs ⊕ s fGraphs

of the embedding (9.68) is a direct summand in the cone Cone(emb�1) of

emb�1 : Graphs� ↪→ fGraphs� .

Thus the desired statement about the embedding emb1 follows from Proposition
9.11 above and Claim A.1 given in Appendix A.

Similarly the cone

Cone(emb2) = Graphs�� ⊕ Graphs

of the embedding (9.69) is a direct summand in the cone Cone(emb�2) of

emb�2 : Graphs��� ↪→ Graphs� .

Thus, using Proposition 9.18 above and Claim A.1 given in Appendix A, it is
easy to prove that emb2 is a quasi-isomorphism. �
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104 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

9.5. The master diagram for the dg operad TwGra. Let O be a (dg)
operad which receives a morphism from ΛLie∞ . Let us observe that we have the
obvious embedding

(9.70) embO : O ↪→ TwO

embO(v)(s
−2r 1) =

{
v if r = 0 ,

0 otherwise ,

which is compatible with the operad structure but may not be compatible with the
differentials.

We denote by Γ◦−◦ ∈ TwGra(2) (resp. Γ◦ ◦ ∈ TwGra(2)) the images of Γ•−• and
Γ• • with respect to the embedding

embGra : Gra → TwGra .

Namely,

(9.71) Γ◦−◦ =
1 2

,

and

(9.72) Γ◦ ◦ =
1 2

.

Although embGra is not compatible with the differential ∂Tw, the vectors
Γ◦−◦,Γ◦ ◦ ∈ TwGra(2) are ∂Tw-closed (see Exercise 9.26 below).

Therefore, the composition of embeddings ι (7.5) and embGra

(9.73) ι′ = embGra ◦ ι : Ger ↪→ TwGra

is a morphism of dg operads. Furthermore, it is obvious that ι′ lands in the sub-
operad Graphs�� .

It turns out that the map ι′ satisfies the following remarkable property15:

Theorem 9.21 (M. Kontsevich, [24], Section 3.3.4). The embedding

(9.74) ι′ : Ger ↪→ Graphs��

induces an isomorphism

Ger ∼= H•(Graphs��) .

Remark 9.22. It is obvious that the map (9.74) lands in the suboperad graphs�� ⊂
Graphs�� with

graphs��(n) = Graphs��(n) ∩ Tw⊕Gra(n) .

The arguments given in [24, Section 3.3.4] or [26] allow us to prove that the em-
bedding

ι′ : Ger ↪→ graphs��
is a quasi-isomorphism of dg operads. The desired statement about (9.74) can be
easily deduced from this fact using the Euler characteristic trick.

We now assemble all the above results about suboperads of TwGra into the
following theorem:

15For a more detailed proof of this fact we refer the reader to paper [26] by P. Lambrechts
and I. Volic.

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NOTES ON ALGEBRAIC OPERADS 105

Theorem 9.23. The suboperads fGraphs�, Graphs�, Graphs���, fGraphs, Graphs
and Graphs�� of TwGra introduced in Sections 9.2 and 9.4 fit into the following
commutative diagram:

(9.75) Graphs���
� � ∼ �� Graphs� � � ∼ �� fGraphs� � � �� TwGra

Ger �
� ∼ �� Graphs��

��

��

� � ∼ �� Graphs
��

��

� � ∼ �� fGraphs
��

��

Here the arrow ↪→ denotes an embedding and the arrow
∼
↪→ denotes an embedding

which induces an isomorphism on the level of cohomology. �

We refer to (9.75) as the master diagram for the dg operad TwGra .
Theorem 9.23 has the following obvious corollary

Corollary 9.24. The embedding

(9.76) ι′ : Ger ↪→ fGraphs

induces an isomorphism on the level of cohomology. �

Let us observe that the map ι′ lands in the suboperad fgraphs ⊂ fGraphs for
which

(9.77) fgraphs(n) := fGraphs(n) ∩ Tw⊕Gra(n) .

Furthermore, using the Euler characteristic trick, it is not hard to deduce from
Corollary 9.24 that

Corollary 9.25. The embedding

(9.78) ι′ : Ger ↪→ fgraphs

induces an isomorphism on the level of cohomology. �

Exercise 9.26. Prove that the vectors Γ◦−◦,Γ◦ ◦ ∈ TwGra(2) defined in (9.71)
and (9.72), respectively, satisfy the conditions

∂TwΓ◦−◦ = ∂TwΓ◦ ◦ = 0 .

10. The full graph complex fGC revisited

Let us recall that Gra(0) = 0 . Hence, due to Remark 6.9, we have a tautological
isomorphism

(10.1) fGC ∼= s−2TwGra(0)

between the full graph complex fGC (8.3) and the cochain complex s−2TwGra(0) .
Here we will use the isomorphism (10.1) together with the results of Sections

9.2 and 9.3 to deduce various useful facts about the full graph complex fGC .
Recall that vectors of fGC are infinite sums

(10.2) γ =

∞∑
n=1

γn

of Sn-invariant vectors γn ∈ s2n−2Gra(n) .

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



106 VASILY A. DOLGUSHEV AND CHRISTOPHER L. ROGERS

We denote by

(10.3) fGC≥3 ⊂ fGC

the subspace of sums (10.2) satisfying

Property 10.1. For every n, each connected component of a graph in γn has
at least one vertex of valency ≥ 3.

We also denote by GC the subspace of sums (9.2) which involve exclusively
graphs whose vertices all have valencies ≥ 3 . It is obvious that GC ⊂ fGC≥3 .

Comparing fGC≥3 and GC with the suboperads fGraphs� and Graphs� from Sec-
tion 9.2 we see that

(10.4) fGC≥3
∼= s−2fGraphs�(0) , GC ∼= s−2Graphs�(0) .

In particular, GC and fGC≥3 are subcomplexes of fGC .
Let us denote by GC�� the subspace of vectors in GC involving exclusively graphs

without loops. It is clear that GC�� is a subcomplex of GC. Moreover,

(10.5) GC�� ∼= s−2Graphs���(0) ,

where Graphs��� is the suboperad of TwGra introduced in Section 9.3.
Thus, Propositions 9.11, 9.18 imply that

Corollary 10.2. The embeddings

(10.6) embGC : GC ↪→ fGC≥3

and

(10.7) emb�� : GC�� ↪→ GC

are quasi-isomorphisms of cochain complexes. �

Let us denote by fGC≥3, conn, GCconn, and GC��, conn the “connected” versions
of the subcomplexes fGC≥3, GC and GC�� , respectively. Namely,

(10.8)

fGC≥3, conn := fGC≥3 ∩ fGCconn ,

GCconn := GC ∩ fGCconn ,

GC�� conn := GC�� ∩ fGCconn ,

where fGCconn is the subcomplex of fGC introduced in Section 8.3.
For the subcomplexes (10.8) we have

Proposition 10.3. The embeddings

(10.9) embGC, conn : GCconn ↪→ fGC≥3,conn

and

(10.10) emb��, conn : GC��, conn ↪→ GCconn

are quasi-isomorphisms of cochain complexes.

Proof. It is easy to see that the cone of the embedding embGC, conn (resp.
emb��, conn) is a direct summand in the cone of the embedding embGC (resp. emb��).

Thus the desired statements follow from Corollary 10.2 above and Claim A.1
from Appendix A. �
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Let us observe that, if all vertices of a connected graph Γ have valencies ≤ 2,
then Γ is isomorphic to one of the graphs in the list: Γ•, Γ

−
l (see figure 33), or Γ�

m

(see figure 34). Hence, fGCconn decomposes as

(10.11) fGCconn = fGC≥3, conn ⊕ K� ⊕ K−− ,

where K−− (resp. K�) is the subcomplex of cables (resp. polygons) introduced in
Subsection 8.1 (resp. Subsection 8.2).

Therefore, using Proposition 8.5 and isomorphism (8.15) we deduce that

(10.12) H•(fGCconn) ∼= H•(fGC≥3, conn) ⊕
⊕
q≥1

s4q−1 K .

Thus we arrive at the main result of this section.

Theorem 10.4 (T. Willwacher, [42]). Let fGCconn be the “connected part” of
the full graph complex fGC (8.3). Moreover, let GC��, conn be the subcomplex of
vectors in fGCconn involving exclusively graphs Γ satisfying these two properties:

• Γ does not have loops;
• each vertex of Γ has valency ≥ 3 .

Then

(10.13) H•(fGC) ∼= s−2Ŝ
(
s2H•(fGCconn)

)
,

and

(10.14) H•(fGCconn) ∼= H•(GC��, conn) ⊕
⊕
q≥1

s4q−1 K ,

where Ŝ is the notation for the completed symmetric algebra.

Proof. The first decomposition (10.13) is obtained by applying the Künneth
theorem to (8.16). The second decomposition (10.14) is obtained by applying
Proposition 10.3 to the isomorphism (10.12). �

Exercise 10.5. Using equation (8.13), prove that for every even trivalent graph
Γ ∈ gran the vector

(10.15) Av(Γ) =
∑
σ∈Sn

σ(Γ)

is a cocycle in fGC . Show that the tetrahedron depicted on figure 43 represents a
non-trivial (degree zero) cocycle in fGC .

1

23

4

Fig. 43. We may choose this order on the set of edges: (1, 2) <
(1, 3) < (1, 4) < (2, 3) < (2, 4) < (3, 4)
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11. Deformation complex of Ger

Let us consider the following graded Lie algebra

(11.1) Conv(Ger∨◦ ,Ger) .

Due to (5.17) we have

(11.2) Conv(Ger∨◦ ,Ger) =
∏
n≥2

(
Ger(n)⊗ Λ−2Ger(n)

)Sn .

The operad Λ−2Ger is generated by the vectors b1b2 and {b1, b2} in Λ−2Ger(2) .
Moreover, the vectors b1b2 and {b1, b2} carry the degrees 2 and 1, respectively:

(11.3) |b1b2| = 2 , |{b1, b2}| = 1 .

Following Section 5.2, the canonical map Cobar(Ger∨) → Ger (5.20) corre-
sponds to the Maurer-Cartan element16

(11.4) α = a1a2 ⊗ {b1, b2}+ {a1, a2} ⊗ b1b2 ∈ Conv(Ger∨◦ ,Ger) .

Thus, using this Maurer-Cartan element, we can equip the graded Lie algebra (11.2)
with the differential

(11.5) ∂ = [α, ] .

According to [34], the cochain complex (11.2) with the differential (11.5) “gov-
erns” deformations of the operad structure on Ger . So we refer to (11.2) as the
deformation complex of the operad Ger .

Exercise 11.1. Verify the identity

[α, α] = 0

by a direct computation.

For our purposes it is convenient to extend the deformation complex of Ger to

(11.6) Conv(Ger∨,Ger) =
∏
n≥1

(
Ger(n)⊗ Λ−2Ger(n)

)Sn .

Vectors in the cochain complex (11.6) are formal infinite sum

(11.7)

∞∑
n=1

γn ,

where each γn is an Sn-invariant vector in Ger(n)⊗ Λ−2Ger(n) . For example,

a1a2 ⊗ {b1, b2}
is a degree 1 vector in (11.6).

It is obvious that

Conv(Ger∨,Ger) = K〈a1 ⊗ b1〉 ⊕ Conv(Ger∨◦ ,Ger)

and
∂(a1 ⊗ b1) = α .

Thus

(11.8) H•
(
Conv(Ger∨◦ ,Ger)

)
= H•

(
Conv(Ger∨,Ger)

)
⊕ sK ,

16From now on we omit the subscript Ger in the notation for the Maurer-Cartan element
αGer .
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where the additional degree 1 class is represented by the Maurer-Cartan element
(11.4).

Using the map ι (7.5), we embed Conv(Ger∨,Ger) into the vector space

(11.9)
∏
n≥1

Gra(n)⊗ Λ−2Gra(n)

and represent vectors in (11.9) by formal linear combinations of labeled graphs with
two types of edges: solid edges for left tensor factors and dashed edges for right
tensor factors.

For example, the Maurer-Cartan element (11.4) corresponds to the linear com-
bination of graphs depicted on figure 44 and the vector

{a1, a2} ⊗ {b1, b2}
corresponds to the graph depicted on figure 45

1 2
+

1 2

Fig. 44. The Maurer-Cartan element in the deformation complex
of Ger

1 2

Fig. 45. The graph corresponding to the vector {a1, a2} ⊗ {b1, b2}

Definition 11.2. We say that a monomial X ∈ Ger(n) ⊗ Λ−2Ger(n) is con-
nected if its image in (11.9) is a linear combination of connected graphs. We
denote by Conv(Ger∨,Ger)conn the subspace of Conv(Ger∨,Ger) which consists of
sums (11.7) involving exclusively connected monomials.

Example 11.3. According to the above definition the monomials

{a1, a2}⊗{b1, b2}, a1a2⊗{b1, b2}, {a1, a2}⊗b1b2, a2{a1, a3}⊗b1{b2, b3}
are connected while the monomials

a1a2 ⊗ b1b2, a2{a1, a3} ⊗ b2{b1, b3}
are disconnected.

It is not hard to see that Conv(Ger∨,Ger)conn is a subcomplex of Conv(Ger∨,Ger) .
Furthermore, we have

(11.10) Conv(Ger∨,Ger) = s−2Ŝ
(
s2Conv(Ger∨,Ger)conn

)
,

where Ŝ stands for the completed symmetric algebra.

Remark 11.4. A simple degree bookkeeping shows that for every monomial
X ∈ Ger(n)⊗ Λ−2Ger(n)

|X| ≥ 0 .

Thus,

(11.11) H<0(Conv(Ger∨,Ger)conn) = H<0(Conv(Ger∨,Ger)) = 0.
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11.1. Decomposition of Conv(Ger∨,Ger) with respect to the Euler
characteristic. Let us denote by b(v) the total number of Lie brackets in the
Gerstenhaber monomial v ∈ Ger(n) or v ∈ Λ−2Ger(n) . Using the embedding of
Ger(n)⊗Λ−2Ger(n) into Gra(n)⊗Λ−2Gra(n) we introduce the notion of Euler char-
acteristic for monomials in Ger(n)⊗ Λ−2Ger(n):

Definition 11.5. Let v and w be monomials in Ger(n) and Λ−2Ger(n), respec-
tively. We call the number

χ(v ⊗ w) := n− b(v)− b(w)

the Euler characteristic of the monomial v ⊗ w ∈ Ger(n)⊗ Λ−2Ger(n) .

We observe that for every sum∑
i

vi ⊗ wi ∈
(
Ger(n)⊗ Λ−2Ger(n)

)Sn

of monomials with the same Euler characteristic χ, each monomial in the linear
combination

∂

(∑
i

vi ⊗ wi

)
also has Euler characteristic χ . Thus sums (11.7) in which each γn is a lin-
ear combination of monomials of Euler characteristic χ form a subcomplex of
Conv(Ger∨,Ger) . We denote this subcomplex by

(11.12) Conv(Ger∨,Ger)χ .

We claim that

Proposition 11.6. For every pair of integers m, χ the subspace Conv(Ger∨,Ger)mχ
of degree m vectors in Conv(Ger∨,Ger)χ is a subspace in

Ger(n)⊗ Λ−2Ger(n)

where

(11.13) n = m− χ+ 2 .

In particular, Conv(Ger∨,Ger)mχ is finite dimensional.

Proof. Let v⊗w be a monomial in Ger(n)⊗Λ−2Ger(n) of degree m and Euler
characteristic χ .

Let tv (resp. tw) be the number of Lie words in the monomial v (resp. in the
monomial w). For example, if v = {a2, a4}a1a7{{a3, a5}, a6} then tv = 4 .

It is not hard to see that

(11.14) |v| = tv − n, |w| = n+ tw − 2 ,

and

(11.15) b(v) = n− tv , b(w) = n− tw .

Hence

(11.16) m = tv + tw − 2 .

and

(11.17) χ = tv + tw − n .
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Using equations (11.16) and (11.17) we deduce that

n = m− χ+ 2 .

Thus a combination “degree and Euler characteristic” determines the arity n
uniquely via equation (11.13). Furthermore, since Ger(n) ⊗ Λ−2Ger(n) is finite
dimensional, so is Conv(Ger∨,Ger)mχ .

The proposition is proved. �
Proposition 11.6 has the following useful corollary.

Corollary 11.7. The cochain complex Conv(Ger∨,Ger) splits into the follow-
ing product of its subcomplexes:

(11.18) Conv(Ger∨,Ger) =
∏
χ∈Z

Conv(Ger∨,Ger)χ .

Proof. Let

γ =

∞∑
n=1

γn, γn ∈
(
Ger(n)⊗ Λ−2Ger(n)

)Sn

be a homogeneous vector of degree m in Conv(Ger∨,Ger) .
Equation (11.13) implies that for every n

γn ∈ Conv(Ger∨,Ger)χ

with χ = m+ 2− n . Thus,

Conv(Ger∨,Ger) ⊂
∏
χ∈Z

Conv(Ger∨,Ger)χ .

The other inclusion∏
χ∈Z

Conv(Ger∨,Ger)χ ⊂ Conv(Ger∨,Ger)

is proved similarly. �
The combination of Proposition 11.6 and Corollary 11.7 will allow us to reduce

questions about cocycles in Conv(Ger∨,Ger) to the corresponding questions about
cocycles in its subcomplex17 Conv⊕(Ger∨,Ger) .

11.2. We are getting rid of Lie words of length 1. Let us recall that, for
a monomial w ∈ Λ−2Ger(n), the notation L1(w) is reserved for the number of Lie
words in w of length = 1 . For example, L1(b1b2) = 2 and L1({b1, b2}) = 0 .

Let us also recall that for the collection {Λ−2Ger♥(n)}n≥0 (6.67)

Λ−2Ger♥(0) = s−2K

and
Λ−2Ger♥(n), n ≥ 1

is the Sn-submodule of Λ−2Ger(n) spanned by monomials w ∈ Λ−2Ger(n) for which
L1(w) = 0 .

Using this collection, we introduce the subspace of Conv(Ger∨,Ger)

(11.19) Ξ :=
∏
n≥2

(
Ger(n)⊗ Λ−2Ger♥(n)

)Sn

,

17The functor Conv⊕ was introduced in Section 4.1.
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which will play an important role in establishing a link between the deformation
complex (11.1) of Ger and the full graph complex fGC (8.3).

We reserve the notation Ξconn for the “connected part” of Ξ:

(11.20) Ξconn := Ξ ∩ Conv(Ger∨,Ger)conn .

Furthermore,

(11.21) Ξ⊕ := Ξ ∩ Conv⊕(Ger∨,Ger)

and

(11.22) Ξ⊕
conn := Ξconn ∩ Conv⊕(Ger∨,Ger) ∩ Conv(Ger∨,Ger)conn

We claim that

Proposition 11.8. The subspaces Ξ, Ξconn, Ξ
⊕, and Ξ⊕

conn are subcomplexes
of

Conv(Ger∨,Ger) .

Proof. Let

(11.23) X =

∞∑
n=2

vn ⊗ wn

be a vector in Ξ .
The bracket [

a1a2 ⊗ {b1, b2} , X
]

is obviously a vector in Ξ . So we need to prove that the vector

(11.24)
[
{a1, a2} ⊗ b1b2 , X

]
belongs Ξ .

We have [
{a1, a2} ⊗ b1b2 , vn ⊗ wn

]
=

(11.25)

n+1∑
i=1

ςi,n+1

(
{vn, an+1}

)
⊗ ςi,n+1

(
wn bn+1

)
−

(−1)|vn|
∑

σ∈Sh2,n−1

σ
(
vn ◦1 {a1, a2}

)
⊗ σ

(
wn ◦1 b1b2

)
,

where ςi,n+1 is the cycle (i, i+ 1, . . . , n+ 1) in Sn+1 .
Using the defining identities of the Gerstenhaber algebra, it is not hard to prove

that unwanted terms in (11.25) cancel each other. �

We will need the following Theorem.

Theorem 11.9. The embeddings

(11.26) Ξ ↪→ Conv(Ger∨,Ger) ,

(11.27) Ξconn ↪→ Conv(Ger∨,Ger)conn ,

and

(11.28) Ξ⊕ ↪→ Conv⊕(Ger∨,Ger)

are quasi-isomorphisms of cochain complexes.
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Proof. We will prove that the embedding (11.28) is a quasi-isomorphism of
cochain complexes. Then we will deduce that the embeddings (11.26) and (11.27)
are also quasi-isomorphisms.

Let us recall from Section 6.7 that Conv⊕(Ger∨,Ger) has the following ascending
filtration

(11.29) · · · ⊂ Fm−1 Conv⊕(Ger∨,Ger) ⊂ Fm Conv⊕(Ger∨,Ger) ⊂ . . . ,

where Fm Conv⊕(Ger∨,Ger) consists of sums∑
i

vi ⊗ wi ∈
⊕
n

(
Ger(n)⊗ Λ−2Ger(n)

)Sn

which satisfy
L1(wi)− | vi ⊗ wi | ≤ m, ∀ i .

The restriction of (11.29) to the subcomplex Ξ⊕ gives us the “silly” filtration

(11.30) Fm
(
Ξ⊕)k =

{(
Ξ⊕)k if m ≥ −k ,
0 if m < −k

with the zero differential on the associated graded complex

(11.31) GrΞ⊕ ∼=
⊕
n≥2

(
Ger(n)⊗ Λ−2Ger♥(n)

)Sn

.

Due to Proposition 6.17 in Section 6.7, the formula18

(11.32)

ΥGer

(∑
i

vi ⊗ wi

)
:=

∑
σ∈Shr,n

∑
i

σ(vi(a1, . . . , ar+n))⊗σ(b1 . . . br wi(br+1, . . . , br+n))

∑
i

vi ⊗ wi ∈
(
s2rGer(r + n)Sr ⊗ Λ−2Ger♥(n)

)Sn

defines an isomorphism of cochain complexes

(11.33) ΥGer :
⊕
n≥1

(
TwGer(n)⊗ Λ−2Ger♥(n)

)Sn

→ GrConv⊕(Ger∨,Ger) ,

where the differential on the source comes from the differential ∂Tw on TwGer .
It is easy to see that the natural map

(11.34) GrΞ⊕ ↪→
⊕
n≥1

(
TwGer(n)⊗ Λ−2Ger♥(n)

)Sn

induced by the embedding (6.46) fits into the commutative diagram

GrΞ⊕
� �

��

� �

�����
����

����
����

����
���

⊕
n≥1

(
TwGer(n)⊗ Λ−2Ger♥(n)

)Sn ΥGer �� GrConv⊕(Ger∨,Ger) ,

18Recall that, due to Exercise 6.13, TwGer = Tw⊕Ger .
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where the slanted arrow is the canonical embedding of GrΞ⊕ into GrConv⊕(Ger∨,Ger) .
On the other hand, using Künneth’s theorem and Theorem 6.16 together with

the fact that, in characteristic zero, the cohomology commutes with taking in-
variants we deduce that the embedding (11.34) is a quasi-isomorphism of cochain
complexes.

Therefore the embedding (11.28) induces a quasi-isomorphism of the associated
graded complexes.

Thus, since the filtrations (11.29) and (11.30) are locally bounded and cocom-
plete, we deduce from Lemma A.3 that the embedding (11.28) is also a quasi-
isomorphism of cochain complexes.

Combining this fact with Proposition 11.6 and Corollary 11.7 we conclude that
the embedding (11.26) is a quasi-isomorphism of cochain complexes.

Since the cone of the map (11.27) is the direct summand in the cone of the map
(11.26), the embedding (11.27) is also a quasi-isomorphism by Claim A.1.

Theorem 11.9 is proved. �

12. Tamarkin’s rigidity in the stable setting

Let us consider the Lie algebra

(12.1) Conv(Ger∨,Gra) =
∏
n≥1

(
Gra(n)⊗ Λ−2Ger(n)

)Sn .

The map of operads (7.5) induces a homomorphism of Lie algebras

(12.2) ι∗ : Conv(Ger∨,Ger) → Conv(Ger∨,Gra) .

In particular, the vector19

(12.3) ι∗(α) = Γ•−• ⊗ b1b2 + Γ• • ⊗ {b1, b2}
is a Maurer-Cartan element in (12.1) and the formula

(12.4) ∂ = [ι∗(α), ]

defines a differential on the Lie algebra (12.1).
Using map (7.5) once again we can embed (12.1) into (11.9). Thus, by analogy

with (11.10), we have

(12.5) Conv(Ger∨,Gra) = s−2Ŝ(s2Conv(Ger∨,Gra)conn)

where Conv(Ger∨,Gra)conn is the subcomplex of Conv(Ger∨,Gra) which consists of
formal linear combinations of connected monomials in Conv(Ger∨,Gra).

The goal of this section is to prove the following theorem20

Theorem 12.1. For the cooperad Ger∨ and the operad Gra we have

(12.6) Hm
(
Conv(Ger∨,Gra)

)
=

{
K if m = 1

0 otherwise .

Furthermore, H1
(
Conv(Ger∨,Gra)

)
is spanned by the cohomology class of the vector

Γ•−• ⊗ b1b2 .

19The vectors Γ•−•,Γ• • ∈ Gra(2) are defined in (7.3).
20Another version of this theorem is proved in [5].

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NOTES ON ALGEBRAIC OPERADS 115

The proof of this theorem is given below in Subsection 12.6. It is based on
auxiliary constructions which are described in Subsections 12.2, 12.3, 12.4, and
12.5.

Before proceeding to these constructions, we will give a couple of useful corol-
laries of Theorem 12.1 and discuss its relation to Tamarkin’s rigidity from [20,
Subsection 5.4.5.].

First, we claim that

Corollary 12.2. For the cochain complex Conv(Ger∨,Gra)conn we have

(12.7) Hm
(
Conv(Ger∨,Gra)conn

)
=

{
K if m = 1

0 otherwise .

Furthermore, H1
(
Conv(Ger∨,Gra)conn

)
is spanned by the cohomology class of the

vector Γ•−• ⊗ b1b2 .

Proof. Due to Theorem 12.1, every cocycle c ∈ Conv(Ger∨,Gra) is cohomol-
ogous to a cocycle of the form

(12.8) λΓ•−• ⊗ b1b2 , λ ∈ K

On the other hand, the subcomplex Conv(Ger∨,Gra)conn is a direct summand in
Conv(Ger∨,Gra). Therefore every cocycle c ∈ Conv(Ger∨,Gra)conn is cohomologous
to a cocycle of the form (12.8).

Thus, since the cocycle

Γ•−• ⊗ b1b2 ∈ Conv(Ger∨,Gra)conn

is non-trivial the desired statement about cohomology of Conv(Ger∨,Gra)conn fol-
lows. �

Following the terminology of Section 4.4 the Lie algebra Conv(Ger∨,Gra) is
equipped with the descending filtration “by arity”:
(12.9)
FmConv(Ger∨,Gra) := {f ∈ Conv(Ger∨,Gra) | f(w) = 0 ∀ w ∈ Ger(n), n ≤ m} .
In other words,

(12.10) FmConv(Ger∨,Gra) =
∏

n≥m+1

(
Gra(n)⊗ Λ−2Ger(n)

)Sn

.

Furthermore, since the Maurer-Cartan element (12.3) belongs toF1Conv(Ger
∨,Gra),

the differential (12.4) is compatible with the filtration (12.9).
Theorem 12.1 implies that

Corollary 12.3. The cochain complex

F2Conv(Ger
∨,Gra) =

∏
n≥3

(
Gra(n)⊗ Λ−2Ger(n)

)Sn

with the differential (12.4) is acyclic.

Proof. Let c be a cocycle in F2Conv(Ger
∨,Gra) .

Due to Theorem 12.1 there exists a vector c1 ∈ Conv(Ger∨,Gra) and a scalar
λ ∈ K such that

(12.11) c = λΓ•−• ⊗ b1b2 + ∂(c1) .
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On the other hand, it is easy to see that Γ•−• ⊗ b1b2 represents a non-trivial
cocycle in the quotient

Conv(Ger∨,Gra)
/
F2Conv(Ger

∨,Gra) .

Hence λ = 0 and c is exact. �

12.1. Why rigidity? Let PVd be the graded vector space of polyvector fields
on the affine space Kd . This graded vector space carries the canonical structure
of a Gerstenhaber algebra. The multiplication is the exterior multiplication of
polyvector fields and the Lie bracket is the well-known Schouten bracket.

Let recall from [42] or [4, Section 3.5] that the operad Gra acts on PVd . More-
over, the vector Γ•−• (resp. Γ• •) gives us the Schouten bracket (resp. the exterior
multiplication) on PVd .

Let us suppose that we are interested in Ger∞-structures Q on PVd which
satisfy these two properties:

• Q factors through the canonical map Gra → EndPVd
;

• the binary operations of Q on PVd coincide with the Schouten bracket
and the exterior multiplication.

Using Corollary 12.3, it is not hard to prove that any Ger∞-structure Q on
PVd satisfying the above properties is homotopy equivalent to the canonical Ger-
stenhaber algebra structure on PVd .

This property is an analog of the rigidity21 of the Gerstenhaber algebra PVd

of polyvector fields in the homotopy category. We refer the reader to [5] for more
details.

12.2. Decomposition of Conv(Ger∨,Gra) with respect to the Euler
characteristic. Let χ be an integer and let c be a vector

c ∈ Conv(Ger∨,Gra)

for which the image

1⊗ ι(c) ∈
∏
n≥1

Gra(n)⊗ Λ−2Gra(n)

is a (possibly infinite) sum of graphs whose Euler characteristic22 equals χ. We
denote by

Conv(Ger∨,Gra)χ

the subspace of such vectors. For example, both summands in ι⊗ ι(α) have Euler
characteristic 1 . Hence

ι∗(α) ∈ Conv(Ger∨,Gra)1 .

It is not hard to see that, for every integer χ, the subspace Conv(Ger∨,Gra)χ
is a subcomplex of Conv(Ger∨,Gra) .

Let us recall that we represent vectors in the space

(12.12) Gra(n)⊗ Λ−2Gra(n)

by linear combinations of labeled graphs with two types of edges: solid edges for
left tensor factors and dashed edges for right tensor factors.

21This rigidity property is one of the corner stones of Tamarkin’s proof [20], [37] of Kontse-
vich’s formality theorem [22].

22As above, both solid and dashed edges enter with the same weight.
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Let us denote by

(12.13)
(
Gra(n)⊗ Λ−2Gra(n)

)
e

the subspace of (12.12) which is spanned by graphs whose total number of edges
(solid and dashed) equals e . It is obvious that the subspace (12.13) is finite dimen-
sional.

We have the following proposition.

Proposition 12.4. For every pair of integers m, χ the subspace Conv(Ger∨,Gra)mχ
of degree m vectors in Conv(Ger∨,Gra)χ is isomorphic to the subspace of (12.13)
with

(12.14) n = m− χ+ 2

and

(12.15) e = m− 2χ+ 2 .

In particular, Conv(Ger∨,Gra)mχ is finite dimensional.

Proof. Let Γ be an graph in gran representing a vector in Gra(n) and w be a
monomial in Λ−2Ger(n) . As above, tw denotes the total number of Lie monomials
and b(w) denotes the the total number of brackets in w .

Let us suppose that Γ⊗w carries degreem and Γ⊗ι(w) has Euler characteristic
χ. In other words,

m = −eΓ + |w|
and

(12.16) χ = n− eΓ − b(w) ,

where eΓ is the number of edges of Γ .
Due to equations (11.14) and (11.15)

(12.17) |w| = n+ tw − 2 , tw = n− b(w) .

Therefore,

m = n+ tw − 2− eΓ = 2n− b(w)− eΓ − 2 = n+ χ− 2 .

Thus

(12.18) n = m− χ+ 2 .

Using (12.16) and (12.18) we deduce that

eΓ + b(w) = m− 2χ+ 2 .

Hence Γ⊗ ι(w) is a vector in (12.13) with numbers n and e given by equations
(12.14) and (12.15).

Thus, the proposition follows from the fact that the map

ι : Λ−2Ger(n) → Λ−2Gra(n)

is injective. �

Proposition 12.4 has the following useful corollary.
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Corollary 12.5. The cochain complex Conv(Ger∨,Gra) splits into the follow-
ing product of its subcomplexes:

(12.19) Conv(Ger∨,Gra) =
∏
χ∈Z

Conv(Ger∨,Gra)χ .

Proof. The proof of this statement is very similar to that of Corollary 11.7.
So we leave it as an exercise for the reader. �

Exercise 12.6. Prove Corollary 12.5.

Just as for TwGra and Conv(Ger∨,Ger), the combination of Proposition 12.4
and Corollary 12.5 will allow us to reduce questions about cocycles in Conv(Ger∨,Gra)
to the corresponding questions about cocycles in its subcomplex

(12.20) Conv⊕(Ger∨,Gra) :=
⊕
n≥1

(
Gra(n)⊗ Λ−2Ger(n)

)Sn .

12.3. An alternative description of Gra(n). Let e be a positive integer and

(12.21) {ρ1, ρ′1, ρ2, ρ′2, . . . , ρe, ρ′e}
be a set of auxiliary variables with degrees |ρi| = −1 and |ρ′i| = 0 .

We will need the symmetric algebra

(12.22) S(Ve) = K⊕ Ve ⊕ S2(Ve)⊕ S3(Ve)⊕ . . .

of the vector space

(12.23) Ve = K〈ρ1, ρ′1, ρ2, ρ′2, . . . , ρe, ρ′e〉 ,
spanned by elements on the set (12.21).

We view S(Ve) as the cocommutative coalgebra with the standard comultipli-
cation.

Let us denote by Tn
(
S(Ve)

)
the subspace

(12.24) Tn
(
S(Ve)

)
⊂
(
S(Ve)

)⊗n

of
(
S(Ve)

)⊗n
which is spanned by monomials

(12.25) X1 ⊗X2 ⊗ · · · ⊗Xn

in which each variable from the set (12.21) appears exactly once.
For example, if e = 3 then

ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ
′
3 ∈ T4

(
S(Ve)

)
, ρ′1ρ2ρ

′
3 ⊗ ρ′2ρ1ρ3 ∈ T2

(
S(Ve)

)
,

and

ρ1ρ2ρ3 ⊗ 1⊗ ρ′2ρ1 ⊗ ρ3ρ
′
3 /∈ T4

(
S(Ve)

)
, ρ1ρ2ρ

′
3 ⊗ ρ′1ρ3 /∈ T2

(
S(Ve)

)
.

It makes sense to include the degenerate case e = 0 in our consideration. If
e = 0 then the set (12.21) is empty,

S(Ve) = K ,

and

Tn
(
S(Ve)

)
= K⊗n ∼= K .

Given a monomial (12.25) we form a labeled graph Γ′ with n vertices and e
directed edges following these two steps:
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• we declare that edge i originates at the j-th vertex if the factorXj involves
the variable ρi;

• we declare that edge i terminates at the k-th vertex if the factor Xk

involves the variable ρ′i.

Since each variable in the set (12.21) appears in the monomial (12.25) exactly
once, these two steps give us a labeled graph with n vertices and with e directed
edges.

Notice that we use indices of the variables (12.21) to keep track of edges of Γ′.
This bijection between the set of edges of Γ′ and natural numbers 1, 2, . . . , e plays
a purely auxiliary role and we do not keep it for Γ′ as a piece of additional data.

It is more important to observe that the set E(Γ′) of edges of Γ′ is equipped
with an order up to an even permutation. This order is defined by the following
rule:

• if the initial vertex of edge i1 carries a smaller label than the initial vertex
of edge i2 then we set i1 < i2;

• if edges i1 and i2 originate from the same vertex (say, vertex j) and ρi1
stands to the left from ρi2 in the factor Xj then we also set i1 < i2 .

For example, the monomial ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ
′
3 corresponds to the labeled

directed graph Γ′ depicted on figure 46.

1 2

3 4

i

ii

iii

Fig. 46. The directed labeled graph corresponding to the mono-
mial ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ

′
3

Let us denote by Γ the undirected graph (with an order on the set of edges up
to an even permutation) which is obtained from Γ′ by forgetting the directions. It
is clear that the formula

(12.26) Θ(X1 ⊗X2 ⊗ · · · ⊗Xn) = Γ

defines a surjective map of graded vector spaces

(12.27) Θ :
⊕
e≥0

Tn
(
S(Ve)

)
� Gra(n) .

For example, Θ(ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ
′
3) = 0 because the graph Γ corresponding to

the monomial ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ
′
3 has double edges.

To describe the kernel of (12.27) we recall, from Subsection 9.2.1, the group
(9.33)

(12.28) Se � (S2)
e

with the multiplication law defined by equation (9.34).
Let us equip the graded vector space (12.24) with a left action of the group

(12.28).
For this purpose, we declare that elements τ ∈ Se and

σj = (id, . . . , id, (12)︸︷︷︸
j-th spot

, id, . . . id) ∈ (S2)
e
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act on generators (12.21) as

τ (ρi) = ρτ(i) , τ (ρ′i) = ρ′τ(i) ,

and

σj(ρi) =

{
ρi if i �= j

ρ′i if i = j ,
σj(ρ

′
i) =

{
ρ′i if i �= j

ρi if i = j ,

respectively.
Next, we extend the action of elements {σj}1≤j≤e to the space (12.24) by

incorporating appropriate sign factor which appear if odd variables ρ1, . . . , ρe “move
around”. Finally, we declare that elements of Se act by automorphisms (of the
commutative algebra) S(Ve) and then extend the action of Se to the space (12.24)
by the formula:

τ
(
X1 ⊗X2 ⊗ · · · ⊗Xn

)
= τ (X1)⊗ τ (X2)⊗ · · · ⊗ τ (Xn) .

For example, the transposition (23) ∈ S3 sends the vector ρ′1ρ2⊗ρ′2ρ1⊗1⊗ρ3ρ
′
3

to the vector
ρ′1ρ3 ⊗ ρ′3ρ1 ⊗ 1⊗ ρ2ρ

′
2

and the element σ1 sends the vector ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ
′
3 to the vector

−ρ1ρ2 ⊗ ρ′2ρ
′
1 ⊗ 1⊗ ρ3ρ

′
3 .

The sign factor in the action of σ1 appeared because the variables ρ1 and ρ2 changed
their order.

Due to Exercise 12.8 below the kernel of Θ (12.27) is spanned by vectors of the
form

(12.29) (X1 ⊗X2 ⊗ · · · ⊗Xn)− g(X1 ⊗X2 ⊗ · · · ⊗Xn) , g ∈ Se � (S2)
e .

Hence, we conclude that

Proposition 12.7. The map Θ (12.27) induces an isomorphism of graded vec-
tor spaces

Gra(n) ∼=
⊕
e≥0

(
Tn
(
S(Ve)

))
Se�(S2)e

,

where
(
Tn
(
S(Ve)

))
Se�(S2)e

denotes the space of coinvariants in (12.24) . �

Exercise 12.8. Prove that the kernel of the map Θ (12.27) is spanned by vec-
tors of the form (12.29). Hint: First, prove that, if a monomial (12.25) corresponds
to a graph with multiple edges, then this monomial belongs to the span of vectors of
the form (12.29). Second, consider linear combinations of monomials (12.25) each
of which does not belong to the kernel of Θ .

Example 12.9. We mentioned above that

Θ(ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ
′
3) = 0 .

For the monomial ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ
′
3 we have

σ1(ρ
′
1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ

′
3) = −ρ1ρ2 ⊗ ρ′2ρ

′
1 ⊗ 1⊗ ρ3ρ

′
3

σ2(ρ1ρ2 ⊗ ρ′2ρ
′
1 ⊗ 1⊗ ρ3ρ

′
3) = ρ1ρ

′
2 ⊗ ρ2ρ

′
1 ⊗ 1⊗ ρ3ρ

′
3

and
ς12(ρ1ρ

′
2 ⊗ ρ2ρ

′
1 ⊗ 1⊗ ρ3ρ

′
3) = ρ2ρ

′
1 ⊗ ρ1ρ

′
2 ⊗ 1⊗ ρ3ρ

′
3 ,

where ς12 is the transposition (12) in S3 .
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Hence,

ς12σ2σ1(ρ
′
1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ

′
3) = −(ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ

′
3) .

Thus

ρ′1ρ2⊗ρ′2ρ1⊗1⊗ρ3ρ′3 =
1

2

(
ρ′1ρ2⊗ρ′2ρ1⊗1⊗ρ3ρ′3−ς12σ2σ1(ρ′1ρ2⊗ρ′2ρ1⊗1⊗ρ3ρ′3)

)
.

In other words, the monomial ρ′1ρ2 ⊗ ρ′2ρ1 ⊗ 1⊗ ρ3ρ
′
3 belongs to the subspace

spanned by vectors of the form (12.29).

12.4. An auxiliary cochain complex Λ−2Ger
(
S(Ve)

)
. Let us consider the

free Λ−2Ger-algebra generated by S(Ve)

(12.30) Λ−2Ger(S(Ve)) .

Using the reduced comultiplication:

(12.31) Δ̃(X) = Δ(X)− 1⊗X −X ⊗ 1

on S(Ve) we introduce on (12.30) the degree 1 derivation δ defined by the formula

(12.32) δ(X) = −
∑
i

{X ′
i, X

′′
i }

where X ∈ S(Ve) and X ′
i, X

′′
i are tensor factors in

Δ̃(X) =
∑
i

X ′
i ⊗X ′′

i .

For example, since

Δ̃(v) = 0 ∀ v ∈ Ve ⊂ S(Ve)

we have
δ(v) = 0 ∀ v ∈ Ve ⊂ S(Ve) .

The Jacobi identity implies that

δ2 = 0 .

Thus δ is a differential on (12.30).
It is clear that the free Λ−1Lie-algebra Λ−1Lie(S(Ve)) is a subcomplex of (12.30).

Furthermore,

(12.33) Λ−2Ger(S(Ve)) ∼= s−2S
(
s2Λ−1Lie(S(Ve))

)
as cochain complexes.

On the other hand, Theorem B.1 from Appendix23 B implies that for every
cocycle c ∈ Λ−1Lie(S(Ve)) there exists a vector c1 ∈ Λ−1Lie(S(Ve)) and a vector
v ∈ Ve such that

c = v + δ(c1) .

Furthermore, each non-zero vector v ∈ Ve is a non-trivial cocycle in Λ−1Lie(S(Ve)) .
Therefore, due to Künneth’s theorem,

(12.34) H•(Λ−2Ger(S(Ve)), δ
) ∼= s−2S

(
s2Ve

)
and the space

H•(Λ−2Ger(S(Ve)), δ
)

23Since formulas (12.32) and (B.5) for the differentials differ only by the overall sign factor,
Theorem B.1 can be applied in this case.
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is spanned by the cohomology classes of the vectors

(12.35) b1 . . . bn ⊗ (v1 ⊗ · · · ⊗ vn) ,

where vi ∈ Ve and b1 . . . bn is the generator of Λ−2Com(n) ⊂ Λ−2Ger(n) .
Thus we arrive at the following statement.

Proposition 12.10. For any cocycle

c ∈ Λ−2Ger(S(Ve))

there exists a vector c1 ∈ Λ−2Ger(S(Ve)) such that the difference

c− δ(c1)

belongs to the linear span of (12.35). Furthermore, a vector

Y ∈ s−2S
(
s2Ve

)
is δ-exact if and only if Y = 0 . �

12.4.1. A equivalent description of (12.30) in terms of invariants. Let G′(Ve)
denote the following graded vector space

(12.36) G′(Ve) :=
⊕
n

(
Λ−2Ger(n)⊗

(
S(Ve)

)⊗n
)Sn

.

Since our base field has characteristic zero, this graded vector space is isomor-
phic to

(12.37) Λ−2Ger(S(Ve)) =
⊕
n

(
Λ−2Ger(n)⊗

(
S(Ve)

)⊗n
)
Sn

.

For example, one may define an isomorphism I from (12.37) to (12.36) by the
formula:

(12.38) I(w;X1 ⊗ · · · ⊗Xn) =
∑
σ∈Sn

(−1)ε(σ)(σ(w);Xσ−1(1) ⊗ · · · ⊗Xσ−1(n)) ,

where w ∈ Λ−2Ger(n), Xi ∈ S(Ve), the sign factor (−1)ε(σ) comes from the usual
Koszul rule, and (w;X1 ⊗ · · · ⊗Xn) represents a vector in(

Λ−2Ger(n)⊗
(
S(Ve)

)⊗n
)
Sn

.

Let ∑
t

(wt;X
t
1 ⊗ · · · ⊗Xt

n)

be a vector in (
Λ−2Ger(n)⊗

(
S(Ve)

)⊗n
)Sn

and let δ′ be a degree 1 operation on G′(Ve) given by the equation:

(12.39) δ′

(∑
t

(wt;X
t
1 ⊗ · · · ⊗Xt

n)

)
=

∑
t

∑
σ∈Shn,1

σ({wt, bn+1};Xt
1 ⊗ · · · ⊗Xt

n ⊗ 1)

−
∑
t

∑
τ∈Sh2,n−1

(−1)|wt|τ (wt ◦1 {b1, b2}; ΔXt
1 ⊗Xt

2 ⊗ · · · ⊗Xt
n) .
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A direct but tedious computation shows that

(12.40) I ◦ δ = 2δ′ ◦ I .
In other words, δ′ (12.39) is a differential on (12.36) and the cohomology of the

cochain complex

(12.41)
(
G′(Ve), δ

′)
is isomorphic to the cohomology of (12.30) with the differential (12.32) .

For our purpose, we need to switch to yet another cochain complex G(Ve)
isomorphic to (12.41). This new cochain complex is obtained from G′(Ve) by ex-
changing the order of the tensor factors. Namely,

(12.42) G(Ve) :=
⊕
n

((
S(Ve)

)⊗n ⊗ Λ−2Ger(n)
)Sn

.

The differential δ̃ induced on (12.42) by the natural isomorphism between
(12.36) and (12.42) is given by the formula:

(12.43) δ̃

(∑
t

(Xt
1 ⊗ · · · ⊗Xt

n;wt)

)
=

∑
t

∑
σ∈Shn,1

(−1)|X
t
1|+···+|Xt

n|σ(Xt
1 ⊗ · · · ⊗Xt

n ⊗ 1; {wt, bn+1})

−
∑
t

∑
τ∈Sh2,n−1

(−1)|wt|+|Xt
1|+···+|Xt

n|τ (ΔXt
1 ⊗Xt

2 ⊗ · · · ⊗Xt
n;wt ◦1 {b1, b2}) .

Thus Proposition 12.10 implies the following statement.

Corollary 12.11. For any cocycle

c ∈ G(Ve)
there exists a vector c1 ∈ G(Ve) such that the difference

c− δ̃(c1)

belongs to the linear span of vectors of the form

(12.44)
∑
σ∈Sn

(v1 ⊗ · · · ⊗ vn; b1 . . . bn),

where v1, v2, . . . , vn ∈ Ve and b1 . . . bn is the generator of Λ−2Com(n) ⊂ Λ−2Ger(n) .

Furthermore, a linear combination Y of vectors of the form (12.44) is δ̃-exact if and
only if Y = 0 . �

12.5. The associated graded complex GrConv⊕(Ger∨,Gra). Let us recall
that b(w) denotes the total number of Lie brackets in a monomial w ∈ Λ−2Ger(n) .

Let ∑
i

vi ⊗ wi

be a vector in (
Gra(n)⊗ Λ−2Ger(n)

)Sn

such that the number kb = b(wi) is the same for every monomial wi .
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It is obvious that for every monomial w′
j in

∂(v ⊗ w) =
∑
j

v′j ⊗ w′
j

we have b(w′
j) = kb or b(w′

j) = kb + 1 .
This observation allows us to introduce an ascending filtration

(12.45) · · · ⊂ Fm−1
b

Conv⊕(Ger∨,Gra) ⊂ Fm
b Conv⊕(Ger∨,Gra) ⊂ . . .

where Fm
b Conv⊕(Ger∨,Gra) is spanned by homogeneous vectors

γ =
∑
i

vi ⊗ wi ∈ Conv(Ger∨,Gra)

in which each monomial wi satisfies the inequality

b(wi)− |γ| ≤ m.

It is clear that the differential ∂Grb on the associated graded complex

(12.46) Grb Conv
⊕(Ger∨,Gra)

is obtained from the differential ∂ (12.4) by keeping only the terms which raise the
number of Lie brackets in the second tensor factors. Namely,

(12.47) ∂Grb =
[
Γ• • ⊗ {b1, b2},

]
.

Our goal is to give a convenient description of the associated graded complex
(12.46) using the map Θ (12.27) introduced in Subsection 12.3 and the cochain
complex (12.42) introduced in Subsection 12.4.1.

First, we observe that, as a graded vector space,

(12.48) Grb Conv
⊕(Ger∨,Gra) ∼=

⊕
n≥1

(
Gra(n)⊗ Λ−2Ger(n)

)Sn

.

Thus, due to Proposition 12.7, the map Θ (12.27) induces an isomorphism of
graded vector spaces
(12.49)⊕

n≥1

⊕
e≥0

((
Tn
(
S(Ve)

)
⊗ Λ−2Ger(n)

)
Se�(S2)e

)Sn

∼= Grb Conv
⊕(Ger∨,Gra)

Since the action of the group Se � (S2)
e commutes with the action of Sn we

conclude that Θ induces an isomorphism of graded vector spaces:
(12.50)

Θ′ :
⊕
e≥0

⎛⎝⊕
n≥1

(
Tn
(
S(Ve)

)
⊗ Λ−2Ger(n)

)Sn

⎞⎠
Se�(S2)e

→ Grb Conv
⊕(Ger∨,Gra) .

On the other hand,

(12.51)
⊕
n≥1

(
Tn
(
S(Ve)

)
⊗ Λ−2Ger(n)

)Sn

is a subspace in the cochain complex G(Ve) (12.42).
We claim that
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Proposition 12.12. The subspace (12.51) is a direct summand in the cochain

complex G(Ve) (12.42) with the differential δ̃ (12.43). Furthermore, the isomorphism
(12.50) is compatible with the differentials.

Proof. Let us recall, from Subsection 12.3, that Ve is the graded vector space
of finite linear combinations of variables from the set (12.21).

The subspace (12.51) is spanned by vectors of the form

(12.52)
∑
σ∈Sn

σ(X1 ⊗X2 ⊗ · · · ⊗Xn ; w)

where w ∈ Λ−2Ger(n) and

(12.53) X1 ⊗X2 ⊗ · · · ⊗Xn

is a monomial in
(
S(Ve)

)⊗n
satisfying

Property 12.13. Each variable from the set (12.21) appears in (12.53) exactly
once.

It is clear that this subspace is closed with respect to δ̃ (12.43). Moreover, the
cochain complex G(Ve) splits into the direct sum of (12.51) and the subcomplex
spanned by vectors of the form (12.52) for which (12.53) does not satisfy Property
12.13.

To prove equation

(12.54) ∂Grb ◦Θ′ = Θ′ ◦ δ̃
we consider a monomial (12.53) satisfying Property 12.13 and a vector w ∈ Λ−2Ger(n) .
We denote by Γ the graph in gran which corresponds to the monomial (12.53).

Going through the construction of the map Θ it is easy to verify that

(12.55) (Θ⊗ 1) ◦ δ̃
(∑

σ∈Sn

(−1)ε(σ)Xσ−1(1) ⊗Xσ−1(2) ⊗ · · · ⊗Xσ−1(n) ⊗ σ(w)

)
=

∑
λ∈Shn,1

(−1)|Γ|
∑
σ∈Sn

λ(Γ• • ◦1 σ(Γ))⊗ λ
(
{σ(w), bn+1}

)
−

−
∑

τ∈Sh2,n−1

(−1)|Γ|+|w|
∑
σ∈Sn

τ
(
σ(Γ) ◦1 Γ• •

)
⊗ τ

(
σ(w) ◦1 {b1, b2}

)
.

Since the right hand side of (12.55) equals[
Γ• • ⊗ {b1, b2} ,

∑
σ∈Sn

σ(Γ)⊗ σ(w)

]
equation (12.54) follows. �

Combining Corollary 12.11 with Proposition 12.12 we deduce

Corollary 12.14. For the associated graded complex (12.46) we have

(12.56) H•(Grb Conv
⊕(Ger∨,Gra)

)
=

{
K if • = 1

0 otherwise .

Furthermore,
H1

(
Grb Conv

⊕(Ger∨,Gra)
)

is spanned by the cohomology class of the vector represented by Γ•−• ⊗ b1b2 .
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Proof. Since the cochain complex (12.51) is a direct summand in G(Ve) and
the cohomology commutes with taking coinvariants, Corollary 12.11 implies that
the cohomology of the cochain complex

(12.57)

⎛⎝⊕
n≥1

(
Tn
(
S(Ve)

)
⊗ Λ−2Ger(n)

)Sn

⎞⎠
Se�(S2)e

is spanned by the classes of vectors of the form

(12.58)
∑

σ∈S2e

σ(ρ1 ⊗ ρ′1 ⊗ ρ2 ⊗ ρ′2 ⊗ · · · ⊗ ρe ⊗ ρ′e ; b1 . . . b2e),

b1 . . . b2e is the generator of Λ−2Com(2e) ⊂ Λ−2Ger(2e) .
Since variables ρ1, . . . , ρe are odd, it is not hard to see that (12.58) represents

the zero vector in the coinvariants (12.57) whenever e > 1 .
On the other hand, the map Θ′ (12.50) sends the vector

(12.59) (ρ1 ⊗ ρ′1; b1b2) + (ρ′1 ⊗ ρ1; b1b2)

to the non-trivial cocycle

2Γ•−• ⊗ b1b2 .

Hence, the corollary follows from Proposition 12.12. �

12.6. Proof of Theorem 12.1. Let us denote by H the subcomplex of
Conv⊕(Ger∨,Gra)

(12.60) H = K〈Γ•−• ⊗ b1b2 〉

spanned by the single cocycle Γ•−• ⊗ b1b2 .
By construction, the cochain complex H carries the zero differential. Moreover,

restricting (12.45) on H we get the “silly” filtration

(12.61) FmHk =

{
Hk if m ≥ −k ,
0 otherwise

with

(12.62) GrH ∼= H .

Corollary 12.14 implies that the embedding

(12.63) H ↪→ Conv⊕(Ger∨,Gra)

induces a quasi-isomorphism on the level of associated graded complexes.
Since the filtrations on Conv⊕(Ger∨,Gra) and H are bounded from the left and

cocomplete, Lemma A.3 from Appendix A implies that the embedding (12.63) is
quasi-isomorphism of cochains complexes.

Combining this fact with Proposition 12.4 and Corollary 12.5 we conclude that
the embedding

(12.64) H ↪→ Conv(Ger∨,Gra)

is also a quasi-isomorphism of cochain complexes.
Since H is spanned by the cocycle Γ•−• ⊗ b1b2, Theorem 12.1 is proved. �
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13. Deformation complex of Ger versus Kontsevich’s graph complex

This section is the culmination of our text. Using the results proved above, we
establish here a link between the (extended) deformation complex Conv(Ger∨,Ger)
(11.6) of the operad Ger and full graph complex fGC (See Definition 8.1.)

First, recall that, due to decompositions (8.16) and (11.10), the cohomology of
the cochain complex fGC (resp. Conv(Ger∨,Ger)) can be expressed in terms of the
cohomology of its “connected part” fGCconn (resp. Conv(Ger∨,Ger)conn). Namely,

(13.1) H•(fGC) ∼= s−2Ŝ
(
s2H•(fGCconn)

)
,

and

(13.2) H•(Conv(Ger∨,Ger)) ∼= s−2Ŝ
(
s2H•(Conv(Ger∨,Ger)conn)) .

Let us denote by R the natural map of graded vector spaces

(13.3) R : Conv(Ger∨,Gra)conn → fGCconn = Conv(Λ2coCom,Gra)conn

given by the formula

R(f) = f
∣∣∣
Λ2coCom

.

It is not hard to see that R is a map of cochain complexes. We observe that the
map of dg Lie algebras ι∗ (12.2)

ι∗ : Conv(Ger∨,Ger) → Conv(Ger∨,Gra) .

satisfies the following property

R(ι∗(X)) = 0 , ∀ X ∈ Ξconn ,

where Ξconn is defined in (11.20).
Therefore, restricting ι∗ to the subcomplex Ξconn we get a map of cochain

complexes

(13.4) ψ := ι∗

∣∣∣
Ξconn

: Ξconn → kerR .

We claim that

Proposition 13.1. The map ψ (13.4) is a quasi-isomorphism of cochain com-
plexes.

Let us postpone the proof of this proposition to Subsection 13.1 and deduce
a link between the cohomology of Conv(Ger∨,Ger)conn and the cohomology of
fGCconn .

Recall that, due to Corollary 12.2, H•(Conv(Ger∨,Gra)conn) is spanned by the
cohomology class of the vector Γ•−• ⊗ b1b2 .

Therefore, if we set

(13.5) Conv(Ger∨,Gra)+conn = K⊕ Conv(Ger∨,Gra)conn

and extend the differential ∂ to Conv+(Ger∨,Gra)conn by declaring that for 1 ∈ K

(13.6) ∂(1) = Γ•−• ⊗ b1b2 ,

then we get an acyclic cochain complex(
Conv(Ger∨,Gra)+conn, ∂

)
.
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Similarly, we “add” to the graph complex fGCconn a one-dimensional vector
space

(13.7) fGC+
conn = K⊕ fGCconn

and extend the differential by declaring that for 1 ∈ K

∂(1) = Γ•−• .

Due to Exercise 8.4 from Section 8 we have

∂Γ• = Γ•−• ,

where Γ• is the graph with the single vertex and no edges. Therefore,

(13.8) H•(fGC+
conn

) ∼= H•(fGCconn

)
⊕K〈φ〉 ,

where φ is the cohomology class represented by the cocycle

Γ• − 1 ∈ fGC+
conn .

The map R (13.3) extends in the obvious way to the morphism of cochain
complexes:

(13.9) R
+ : Conv(Ger∨,Gra)+conn → fGC+

conn .

Furthermore,
ker(R+) = ker(R) .

Thus we arrive at the diagram
(13.10)

Conv(Ger∨,Ger)conn

Ξconn

ψ

��

��

embΞ

��

0 �� ker(R) �� Conv(Ger∨,Gra)+conn �� fGC+
conn

�� 0

The bottom row of this diagram is an exact sequence of cochain complexes.
The top vertical arrow embΞ is a quasi-isomorphism due to Theorem 11.9. The
vertical arrow ψ is also a quasi-isomorphism due to Proposition 13.1. Finally the
cochain complex Conv(Ger∨,Gra)+conn in the middle of the exact sequence is acyclic.

Using diagram (13.10), we can now prove the main theorem of these notes.

Theorem 13.2 (T. Willwacher, [42]). If fGCconn is the “connected part” of the
full graph complex fGC (8.3) and Conv(Ger∨,Ger)conn is the “connected part” of the
extended deformation complex Conv(Ger∨,Ger) (11.6) of the operad Ger then

(13.11) H•+1
(
Conv(Ger∨,Ger)conn

) ∼= H•(fGCconn

)
⊕ K .

Proof. Since the cochain complex Conv(Ger∨,Gra)+conn in (13.10) is acyclic,
the connecting homomorphism induces an isomorphism

H•(fGC+
conn

) ∼= H•+1
(
ker(R)

)
.

On the other hand,

H•( ker(R)
) ∼= H•(Ξconn

) ∼= H•(Conv(Ger∨,Ger)conn)
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because both ψ and embΞconn
are quasi-isomorphisms.

Therefore,

(13.12) H•+1
(
Conv(Ger∨,Ger)conn

) ∼= H•(fGC+
conn

)
.

Thus, using the isomorphism (13.8), we arrive at the desired result (13.11). �

Remark 13.3. The above proof gives us a concrete isomorphism from

(13.13) H•(fGCconn

)
⊕ K

to

(13.14) H•+1
(
Conv(Ger∨,Ger)conn

)
.

Chasing through diagram (13.10), it is not hard to see that the vector 1 ∈
K in the second summand of (13.13) is sent, via this isomorphism, to the class
represented by the cocycle

a1a2 ⊗ {b1, b2}
or the cocycle

−{a1, a2} ⊗ b1b2

in Conv(Ger∨,Ger)conn .

Remark 13.4. According to [39], the Lie algebra grt of the Grothendieck-
Teichmueller group GRT embeds into H0

(
Conv(Ger∨,Ger)

)
. Since grt is infinite

dimensional [8], the spaces H0
(
Conv(Ger∨,Ger)

)
and H0(fGC) are also infinite di-

mensional.

13.1. Proof of Proposition 13.1. Let us prove that the map

(13.15) ψ
∣∣∣
Ξ⊕

conn

: Ξ⊕
conn → ker(R) ∩ Conv(Ger∨,Gra)⊕conn

is a quasi-isomorphism of cochain complexes.
For this purpose we apply the general construction of Section 6.7 to the case

when O = Gra .
Following Section 6.7, the cochain complex Conv(Ger∨,Gra)⊕ carries the as-

cending filtration

(13.16) · · · ⊂ Fm−1 Conv⊕(Ger∨,Gra) ⊂ Fm Conv⊕(Ger∨,Gra) ⊂ . . . ,

where Fm Conv⊕(Ger∨,Gra) consists of sums∑
i

vi ⊗ wi ∈
⊕
n

(
Gra(n)⊗ Λ−2Ger(n)

)Sn

which satisfy

L1(wi)− | vi ⊗ wi | ≤ m, ∀ i .

Furthermore, due to Proposition 6.17, the formula

(13.17) ΥGra

(∑
i

vi ⊗ wi

)
:=

∑
σ∈Shr,n

∑
i

σ(vi)⊗ σ(b1 . . . br wi(br+1, . . . , br+n))

∑
i

vi ⊗ wi ∈
(
s2rGra(r + n)Sr ⊗ Λ−2Ger♥(n)

)Sn
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defines an isomorphism of cochain complexes

(13.18) ΥGra :
⊕
n≥0

(
Tw⊕Gra(n)⊗ Λ−2Ger♥(n)

)Sn

→ GrConv⊕(Ger∨,Gra) ,

where the differential on⊕
n≥0

(
Tw⊕Gra(n)⊗ Λ−2Ger♥(n)

)Sn

comes from the differential ∂Tw on Tw⊕Gra(n) .
Let us restrict the filtration (13.16) to the subcomplex

ker(R) ∩ Conv(Ger∨,Gra)⊕conn

and recall that the n-th space

(13.19) fgraphs(n) := fGraphs(n) ∩ Tw⊕Gra(n)

of the dg operad fgraphs is spanned by vectors of the form∑
σ∈Sr

σ(Γ) ,

where the graph Γ ∈ grar+n has no connected components which involve exclusively
neutral vertices (i.e. vertices with labels ≤ r) .

It is not hard to see that the restriction of ΥGra to⊕
n≥2

(
fgraphs(n)⊗ Λ−2Ger♥(n)

)Sn

conn

gives us an isomorphism
(13.20)

Υ′ :
⊕
n≥2

(
fgraphs(n)⊗ Λ−2Ger♥(n)

)Sn

conn
→ Gr

(
ker(R) ∩ Conv(Ger∨,Gra)⊕conn

)
of cochain complexes.

On the other hand, Corollary 9.25 implies that the natural embedding

(13.21) Ξ⊕ ↪→
⊕
n≥2

(
fgraphs(n)⊗ Λ−2Ger♥(n)

)Sn

is a quasi-isomorphism of cochain complexes.
Therefore, since the cone of the embedding

(13.22) Ξ⊕
conn ↪→

⊕
n≥2

(
fgraphs(n)⊗ Λ−2Ger♥(n)

)Sn

conn

is a direct summand in the cone of the embedding (13.21), the map (13.22) is also
a quasi-isomorphism.

This observation allows us to conclude that the map (13.15) induces a quasi-
isomorphism on the level of associated graded complexes.

Since the filtration (13.16) is locally bounded and cocomplete, Lemma A.3
implies that (13.15) is indeed a quasi-isomorphism of cochain complexes.

Thus, using the Euler characteristic trick, we conclude that the map ψ (13.4)
is also a quasi-isomorphism of cochain complexes.

Proposition 13.1 is proved. �
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Appendix A. Lemma on a quasi-isomorphism of filtered complexes

Let us recall that a cone Cone(f) of a morphism of cochain complexes f : C →
K is the cochain complex

C ⊕ sK

with the differential

∂Cone(v1 + sv2) = ∂(v1) + sf(v1)− s∂(v2) ,

where we denote by ∂ the differentials on both complexes C and K .
Let us also recall a claim which follows easily from Lemma 3 in [12, Section

III.3.2]:

Claim A.1. A morphism f : C → K of cochain complexes is a quasi-isomorphism
if and only if the cochain complex Cone(f) is acyclic. �

Let C be a cochain complex equipped with an ascending filtration:

· · · ⊂ Fm−1C ⊂ FmC ⊂ Fm+1C ⊂ . . . .

We say that the filtration on C is cocomplete if

(A.1) C =
⋃
m

FmC .

Furthermore, we say that the filtration on C is locally bounded from the left if for
every degree d there exists an integers md such that

(A.2) FmdCd = 0 .

Let us denote by Gr(C) the associated graded cochain complex

(A.3) Gr(C) :=
⊕
m

FmC
/
Fm−1C .

We will need the following claim.

Claim A.2. Let C be a cochain complex equipped with a cocomplete ascending
filtration which is locally bounded from the left. If Gr(C) is acyclic then so is C .

Proof. Let v be cocycle in C of degree d . Our goal is to show that there
exists a vector w ∈ Cd−1 such that

v = ∂w .

Since the filtration on C is cocomplete there exists an integer m such that

v ∈ FmCd .

Therefore v represents a cocycle in the quotient

FmCd
/
Fm−1Cd .

On the other hand, Gr(C) is acyclic. Hence there exists a vector wm ∈ FmCd−1

such that

(A.4) v − ∂(wm) ∈ Fm−1Cd .

The latter implies that the vector v−∂(wm) represents a cocycle in the quotient

Fm−1Cd
/
Fm−2Cd .

Hence, there exists a vector wm−1 ∈ Fm−1Cd−1 such that

(A.5) v − ∂(wm)− ∂(wm−1) ∈ Fm−2Cd .
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Continuing this process, we conclude that there exists a sequence of vectors

wk ∈ FkCd−1, k ≤ m

such that for every k < m we have

(A.6) v − ∂(wm + wm−1 + · · ·+ wk) ∈ Fk−1Cd .

Since the filtration on C is locally bounded from the left there exists an integer
kd < m such that Fkd−1Cd = 0 and we get

v − ∂(wm + wm−1 + · · ·+ wkd
) = 0 .

The desired statement is proved. �

We are now ready to prove the following generalization of Claim A.2.

Lemma A.3. Let C and K be cochain complexes equipped with cocomplete as-
cending filtrations which are locally bounded from the left. Let f : C → K be a
morphism of cochain complexes compatible with the filtrations. If the induced map
of cochain complexes

Gr(f) : Gr(C) → Gr(K)

is a quasi-isomorphism then so is f .

Proof. Let us introduce the obvious ascending filtration on the cone of f

· · · ⊂ Fm−1Cone(f) ⊂ FmCone(f) ⊂ Fm+1Cone(f) ⊂ . . . ,

(A.7) FmCone(f) = FmC ⊕ sFmK .

The differential ∂Cone is compatible with the filtration (A.7) because f is compatible
with the filtrations on C and K .

It is obvious that the filtration (A.7) is cocomplete and locally bounded from
the left. Furthermore, it is not hard to see that

Gr(Cone(f)) = Cone(Gr(f)) .

Therefore, Claim A.1 implies that Gr(Cone(f)) is acyclic.
Combining this observation with Claim A.2 we conclude that Cone(f) is also

acyclic. Therefore, applying Claim A.1 once again, we deduce the statement of the
lemma. �

Remark A.4. Lemma A.3 is often used in the literature under the folklore
name “standard spectral sequence argument”. Unfortunately, a clean proof of this
fact based on the use of a spectral sequence is very cumbersome.

Appendix B. Harrison complex of the cocommutative coalgebra S(V )

Let V be a finite dimensional graded vector space. We consider the symmetric
algebra

(B.1) S(V )

as the cocommutative coalgebra with the standard comultiplication:

Δ(v1 . . . vn) = 1⊗ (v1 . . . vn)+

(B.2)
n−1∑
p=1

∑
σ∈Shp,n−p

(−1)ε(σ,v1,...,vn) vσ(1) . . . vσ(p)⊗vσ(p+1) . . . vσ(n)+(v1 . . . vn)⊗1 ,

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NOTES ON ALGEBRAIC OPERADS 133

where v1, . . . , vn are homogeneous vectors in V and the sign factor (−1)ε(σ,v1,...,vn)

is determined by the standard Koszul rule.

We denote by Δ̃ the reduced comultiplication which is define by the formula

(B.3) Δ̃(X) = Δ(X)−X ⊗ 1− 1⊗X

For example, Δ̃(1) = −1⊗ 1 and Δ̃(v) = 0 for all v ∈ V .
Let us consider the free Λ−1Lie-algebra

(B.4) Λ−1Lie(S(V ))

generated by S(V ) .
Let us denote by X ′

i and X ′′
i the tensor factors of

Δ̃(X) =
∑
i

X ′
i ⊗X ′′

i

for a vector X ∈ S(V ) and introduce the degree 1 derivation δ of the free Λ−1Lie-
algebra (B.4) by setting

(B.5) δ(X) =
∑
i

{X ′
i, X

′′
i } .

Due to the Jacobi identity
δ2 = 0 .

Hence δ is a differential on (B.4) and we call

(B.6)
(
Λ−1Lie(S(V )), δ

)
the Harrison complex of S(V ) .

It is easy to see that each non-zero vector v ∈ V ⊂ Λ−1Lie(S(V )) is a non-trivial
cocycle in (B.6).

The following theorem and its various versions24 are often referred to as “well-
known”.

Theorem B.1. For the Harrison complex (B.6) we have

H•(Λ−1Lie(S(V )), δ
) ∼= V .

More precisely, for every cocycle c in (B.6) there exists a vector v ∈ V ⊂ Λ−1Lie(S(V ))
and a vector c1 in (B.6) such that

c = v + δ(c1)

Furthermore, a vector v ∈ V ⊂ Λ−1Lie(S(V )) is an exact cocycle in (B.6) if and
only if v = 0 .

Proof. To prove this theorem we embed the suspension

(B.7) sΛ−1Lie(S(V )) = Lie(sS(V ))

of (B.6) into the tensor algebra

(B.8) T (sS(V ))

generated by sS(V ) .
The differential δ on (B.7) can be extended to (B.8) in the obvious way:

(B.9) δ(sX) = 2 s⊗ s
(
Δ̃(X)

)
.

24For a version of Theorem B.1 we refer the reader to [29, Section 3.5]. Another version of
this theorem can also be deduced from statements in [35, Appendix B].
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To compute the cohomology of
(
T (sS(V )), δ

)
we consider the restricted dual

complex

(B.10) (T (s−1 S(V ′)), δ′) ,

where V ′ is the linear dual of V .
Since T (sS(V )) is a free associative algebra, it is convenient to view (B.10) as

the cofree coassociative coalgebra with the comultiplication given by deconcatena-
tion. Furthermore, since δ is a derivation of (B.8), δ′ is coderivation. Therefore, δ′

is uniquely determined by its composition p ◦ δ′ with the projection

p : T (s−1 S(V ′)) → s−1 S(V ′) .

It is easy to see that

(B.11) p◦δ′(s−1X1⊗· · ·⊗s−1Xn) =

{
(−1)|X1|−1 2 s−1 μ(X1, X2) if n = 2

0 otherwise .

Here X1, . . . , Xn are homogeneous vectors in S(V ′) and the map

μ : S(V ′)⊗ S(V ′) → S(V ′)

is defined by the formula

(B.12) μ(X1, X2) = X1X2 − ε(X1)X2 −X1ε(X2) ,

where ε is the augmentation ε : S(V ′) → K of S(V ′) .
Using (B.11), it is not hard to see that (B.10) is the Hochschild chain complex

with the reversed grading and with rescaled differential

C−•(S(V
′),K) .

Hence, due to the Hochschild-Kostant-Rosenberg theorem [21], we have

(B.13) H•(T (s−1 S(V ′)), δ′) ∼= S(s−1 V ′) .

If we view S(s−1 V ′) as the subspace of T (s−1 V ′) which is, in turn, a subspace
of (B.10), then the Hochschild-Kostant-Rosenberg theorem can be restated as fol-
lows. For every cocycle c in (B.10) there exists a vector X ∈ S(s−1 V ′) and a vector
c1 in (B.10) such that

c = X + δ′(c1) .

Every vector X ∈ S(s−1 V ′) is a cocycle in (B.10) and X ∈ S(s−1 V ′) is an exact
cocycle if and only if X = 0 .

Let us now go back to the cochain complex (B.8) with the differential (B.9) .
Let us consider S(sV ) as the subspace of

T (sV ) ⊂ T (sS(V )) .

It is clear that every vector in S(sV ) is a cocycle in (B.8) .
Dualizing the above statement about cocycles in (B.10) we deduce the following.

Claim B.2. For every cocycle c ∈ T (sS(V )) there exists a vector X ∈ S(sV )
and a vector c1 ∈ T (sS(V )) such that

c = X + δ(c1) .

Furthermore, a vector X ∈ S(sV ) is a trivial cocycle in (B.8) if and only if X = 0 .
�
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Let us now observe that, due to the PBW theorem, we have the isomorphism
of graded vector spaces

(B.14) T (sS(V )) ∼= S
(
Lie(sS(V ))

)
Moreover, the differential δ is compatible with this isomorphism. In other words,
the cochain complex (B.8) is isomorphic to the symmetric algebra of the cochain
complex (B.7).

Since the cochain complex S
(
Lie(sS(V ))

)
splits into the direct sum

S
(
Lie(sS(V ))

)
= K ⊕ Lie(sS(V )) ⊕

⊕
m≥2

Sm
(
Lie(sS(V ))

)
the statement of the theorem follows easily from Claim B.2. �

Appendix C. Filtered dg Lie algebras. The Goldman-Millson theorem

In this section we prove a version of the Goldman-Millson theorem [19] which
is often used in applications.

We consider a Lie algebra L in the category ChK equipped with a descending
filtration

(C.1) L = F1L ⊃ F2L ⊃ F3L ⊃ . . .

which is compatible with the Lie bracket (and the differential).
We assume that L is complete with respect to this filtration. Namely,

(C.2) L = lim
k

L
/
FkL .

We call such Lie algebras filtered.
Condition (C.2) and equality L = F1L guarantee that the subalgebra L0 of

degree zero elements in L is a pro-nilpotent Lie algebra (in the category of K-
vector spaces). Hence, L0 can exponentiated to a pro-unipotent group which we
denote by

(C.3) exp(L0) .

We recall that a Maurer-Cartan element of L is a degree 1 vector α ∈ L
satisfying the equation

(C.4) ∂α+
1

2
[α, α] = 0 ,

where ∂ denotes the differential on L .
For a vector ξ ∈ L0 and a Maurer-Cartan element α we consider the new degree

1 vector α̃ ∈ L which is given by the formula

(C.5) α̃ = exp(adξ)α− exp(adξ)− 1

adξ
∂ξ ,

where the expressions

exp(adξ) and
exp(adξ)− 1

adξ

are defined in the obvious way using the Taylor expansions of the functions

ex and
ex − 1

x

around the point x = 0 , respectively.
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Conditions (C.2) and L = F1L guarantee that the right hand side of equation
(C.5) is defined.

It is known (see, e.g. [3, Appendix B] or [19]) that, for every Maurer-Cartan
element α and for every degree zero vector ξ ∈ L, the vector α̃ in (C.5) is also a
Maurer-Cartan element. Furthermore, formula (C.5) defines an action of the group
(C.3) on the set of Maurer-Cartan elements of L .

The transformation groupoid MC(L) corresponding to this action is called the
Deligne groupoid of the Lie algebra L . This groupoid and its higher versions were
studied extensively by E. Getzler in [14] and [15].

Remark C.1. The transformation groupoid MC(L) may be defined without
imposing the assumption L = F1L. In this more general case, the group (C.3)
should be replaced by

exp(F1L0) .

Let
ϕ : L → L̃

be a homomorphism of two filtered dg Lie algebras.
It is obvious that for every Maurer-Cartan element α ∈ L the vector ϕ(α) is a

Maurer-Cartan element of L̃ . Moreover the assignment

α → ϕ(α)

extends to the functor

(C.6) ϕ∗ : MC(L) → MC(L̃)
between the corresponding Deligne groupoids.

The following statement is a version of the famous Goldman-Millson theorem
[19].

Theorem C.2. Let ϕ : L → L̃ be a quasi-isomorphism of filtered dg Lie alge-
bras. If the restriction

ϕ
∣∣∣
FmL

: FmL → FmL̃

is a quasi-isomorphism for all m then the functor (C.6) induces a bijection

(C.7) ϕ∗ : π0
(
MC(L)

)
→ π0

(
MC(L̃)

)
from the isomorphism classes of Maurer-Cartan elements in L to the isomorphism

classes of Maurer-Cartan elements in L̃ .

Proof. Using the conditions of the theorem and Exercise C.3 given below, it
is not hard to see that ϕ induces a quasi-isomorphism

Gr(ϕ) : FmL
/
Fm+1L → FmL̃

/
Fm+1L̃

for all m .
In order to prove that the map (C.7) is surjective we need to show that for every

Maurer-Cartan element β ∈ L̃ there exists a vector ξ ∈ L̃0 and a Maurer-Cartan
element α ∈ L such that

(C.8) exp(ξ)(β) = ϕ(α) .

The Maurer-Cartan equation ∂β + [β, β]/2 = 0 implies that β represents a
cocycle in

F1L̃
/
F2L̃ .

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NOTES ON ALGEBRAIC OPERADS 137

Hence there exists α1 ∈ F1L1 and ξ1 ∈ F1L̃0 such that

(C.9) ∂α1 ∈ F2L
and

(C.10) β − ∂ξ1 − ϕ(α1) ∈ F2L̃ .
Let us denote by β1 the Maurer-Cartan element

β1 = exp(ξ1)(β) .

Inclusion (C.10) implies that

(C.11) β1 − ϕ(α1) ∈ F2L̃ .

We showed that there exists a vector ξ1 ∈ F1L̃0 and a vector α1 ∈ F1L1 such
that for

β1 = exp(ξ1)(β)

we have inclusion (C.11) and the inclusion

(C.12) ∂α1 +
1

2
[α1, α1] ∈ F2L ,

which follows from (C.9). Inclusions (C.11) and (C.12) form the base of our induc-
tion.

Now we assume that there exist vectors

ξk ∈ FkL̃0 , 1 ≤ k ≤ m

and αm ∈ F1L such that

(C.13) ∂αm +
1

2
[αm, αm] ∈ Fm+1L ,

and

(C.14) βm − ϕ(αm) ∈ Fm+1L̃ ,
where

(C.15) βm = exp(ξm) . . . exp(ξ1)(β) .

Let us consider the vector

(C.16)
(
∂ϕ(αm) +

1

2
[ϕ(αm), ϕ(αm)]

)
− ∂(ϕ(αm)− βm)

in Fm+1L̃2 .
Using the Maurer-Cartan equation for βm we can rewrite (C.16) as(

∂ϕ(αm)+
1

2
[ϕ(αm), ϕ(αm)]

)
−∂(ϕ(αm)−βm) =

1

2

(
[ϕ(αm), ϕ(αm)]− [βm, βm]

)
=

1

2

(
[ϕ(αm), ϕ(αm)]− [ϕ(αm), βm] + [ϕ(αm), βm]− [βm, βm]

)
=

1

2

(
[ϕ(αm), ϕ(αm)− βm] + [ϕ(αm)− βm, βm]

)
.

Thus (C.14) implies that vector (C.16) belongs to Fm+2L̃2 .
On the other hand, applying the differential ∂ to the vector(

∂ϕ(αm) +
1

2
[ϕ(αm), ϕ(αm)]

)
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and using (C.13) together with the Jacobi identity we conclude that

∂
(
∂ϕ(αm) +

1

2
[ϕ(αm), ϕ(αm)]

)
∈ Fm+2L̃3 .

Combining this observation with the fact that vector (C.16) belongs to Fm+2L̃2

we deduce that

ϕ
(
∂αm +

1

2
[αm, αm]

)
represents an exact cocycle in

Fm+1L̃
/
Fm+2L̃ .

Therefore, there exists a vector γm+1 ∈ Fm+1L1 such that

(C.17) ∂γm+1 + ∂αm +
1

2
[αm, αm] ∈ Fm+2L .

Let us denote by α′
m+1 the vector

α′
m+1 = αm + γm+1 .

Combining (C.17) with the fact that vector (C.16) belongs to Fm+2L̃2 we
conclude that

∂(βm − ϕ(α′
m+1)) ∈ Fm+2L̃ .

In other words, βm − ϕ(α′
m+1) represents a cocycle in

Fm+1L̃
/
Fm+2L̃ .

Therefore, there exists a vector ξm+1 ∈ Fm+1L̃0 and a vector γ′m+1 ∈ Fm+1L1

such that

(C.18) ∂γ′m+1 ∈ Fm+2L2

and

(C.19) βm − ∂ξm+1 − ϕ(αm+1)− ϕ(γ′m+1) ∈ Fm+2L̃ .
We set

αm+1 = α′
m+1 + γ′m+1

and
βm+1 = exp(ξm+1)(βm) .

Combining (C.17) together with (C.18) and (C.19) we see that αm+1, βm+1

and ξm+1 satisfy the inductive assumption for m replaced by m+ 1.
Thus, we conclude that, there exist sequences of vectors

αm ∈ F1L1 , αm+1 − αm ∈ Fm+1L1 , m ≥ 1

and
ξm ∈ FmL̃0 , m ≥ 1

such that inclusions (C.13) and (C.14) hold for all m.

Since the filtrations on L and L̃ are complete the sequence {αm}m≥1 converges
to a vector α ∈ L1 and the sequence{

CH
(
ξm, . . . ,CH

(
ξ3,CH(ξ2, ξ1)

)
. . .

)}
m≥1

converges to a vector ξ ∈ L̃0 such that

∂α+
1

2
[α, α] = 0
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and

exp(ξ)(β) = ϕ(α) .

We proved that the map (C.7) is surjective.
Due to Exercise C.4 below the map (C.7) is also injective. Thus the theorem

is proved. �

Exercise C.3. If the rows in the commutative diagram of cochain complexes

0 A B C 0

0 A′ B′ C ′ 0

are exact and any 2 vertical maps are quasi-isomorphisms, then show that the third
vertical map is also a quasi-isomorphism. Hint: Consider the 5-lemma (Sec. II.5
in [12]).

Exercise C.4. Prove that the map (C.7) is injective.

Appendix D. Solutions to selected exercises

Solution of Exercise 5.1. We need only to consider generators of OP(s C◦) i.e.
(qn, sX), where qn is the standard n-corolla, and X ∈ C◦(n).

By definition,

(D.1) F (∂Cobar(qn, sX)) = ∂OF ((qn, sX))

if and only if

(D.2) αF (∂
CX) + ∂OαF (X)− F (∂′′(qn, sX)) = 0,

where αF ∈ Conv(C,O) is the degree 1 map αF (X) = F ((qn, sX)), and

(D.3) ∂′′(qn, sX) = −
∑

z∈π0(Tree2(n))

(s⊗ s)(tz; Δtz (X)).

By definition of the differential on Conv(C,O), Eq. (D.2) holds if and only if

(D.4)
(
∂αF

)
(X)− F (∂′′(qn, sX)) = 0,

Next, expanding the right-hand side of Eq. (D.3) gives:

∂′′(qn, sX) = −
∑

z∈π0(Tree2(n))

∑
α

(−1)|X
1
α|(tz; sX

1
α ⊗ sX2

α),

where X1
α and X2

α are tensor factors in

Δtz(X) =
∑
α

X1
α ⊗X2

α .

Let pz be the number of edges terminating at the second nodal vertex of tz
and let

μ̃tz : OP(s C◦)(n− pz + 1)⊗OP(s C◦)(pz) → OP(s C◦)(n)
be the multiplication map for the tree tz. By definition of multiplication for the
free operad, we have

(tz; sX
1
α ⊗ sX2

α) = μ̃tz

(
(qn−pz+1, sX

1
α)⊗ (qpz

, sX2
α)
)
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Since F is a map of operads, we have the following equalities:

F (∂′′(qn, sX)) = −
∑

z∈π0(Tree2(n))

∑
α

(−1)|X
1
α|F

(
μ̃tz

(
(qn−pz+1, sX

1
α)⊗ (qpz

, sX2
α)
))

= −
∑

z∈π0(Tree2(n))

∑
α

(−1)|X
1
α|μtz

(
F (qn−pz+1, sX

1
α)⊗ F (qpz

, sX2
α)
)

= −
∑

z∈π0(Tree2(n))

∑
α

(−1)|X
1
α|μtz

(
αF (X

1
α)⊗ αF (X

2
α)
)

= −
∑

z∈π0(Tree2(n))

μtz

(
αF ⊗ αF ◦Δtz (X)

)
= −αF • αF (X)

= −1

2
[αF , αF ](X).

By substituting this last equality into Eq. (D.4), we see Eq. (D.1) holds if and only
if the Maurer-Cartan equation

∂αF +
1

2
[αF , αF ] = 0

holds for αF . �

Solution of Exercise 5.7. Assume the Maurer-Cartan elements αF and αF̃

corresponding to the maps F, F̃ : Cobar(C) → O are isomorphic as objects of the
Deligne groupoid. By definition (see Eq. (C.5)) this implies that there exists a
degree 0 element ξ ∈ Conv(C◦,O) such that

αF̃ = exp(adξ)αF − exp(adξ)− 1

adξ
∂ξ .

Define α(t) ∈ Conv(C◦,O)[[t]] to be:

α(t) = exp(−tadξ)αF − exp(−tadξ)− 1

adξ
∂ξ .

Since αF and ξ are elements of F1Conv(C◦,O), and the bracket and differential are
compatible with the filtration, we conclude that

α(t) ∈ Conv(C◦,O){t}.

Note α(0) = αF and α(1) = αF̃ . Differentiation of α(t) gives:

dα(t)

dt
= −adξ

(
exp(−tadξ)αF

)
+ exp(−tadξ)∂ξ

= −adξ
(
exp(−tadξ)αF

)
+ exp(−tadξ)∂ξ − ∂ξ + ∂ξ

= −adξ
(
exp(−tadξ)αF

)
− −adξ

adξ

(
exp(−tadξ)∂ξ − ∂ξ

)
+ ∂ξ

= −adξ

(
exp(−tadξ)αF − exp(−tadξ)− 1

adξ
∂ξ

)
+ ∂ξ

= ∂ξ − [ξ, α(t)].
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Thus, applying Prop. C.1 of [4], we conclude that

∂α(t) +
1

2
[α(t), α(t)] = 0

for all t.
Hence, equations (5.10), (5.11), and (5.12), which are described in the “only

if” part of the proof, imply that

αH = α(t) + ξdt ∈ Conv(C◦,OI)

is a Maurer-Cartan element that corresponds to a homotopy H : Cobar(C) → OI

between F and F̃ . �

Solution of Exercise 6.15. The space

s2r
(
Ger(r + n)

)Sr

is spanned by vectors of the form

(D.5) Av(w) =
∑
σ∈Sr

σ(w)

where w is a monomial in s2rGer(r + n) .
It is clear that

f−1
(
Av(w)

)
= w(a, a, . . . , a︸ ︷︷ ︸

r times

, a1, . . . , an) .

So our goal is to show that

(D.6) ∂Tw
(
Av(w)

)
=

∑
σ∈Sr+1

r∑
i=1

(−1)ei

2
w(aσ(1), . . . , aσ(i−1), {aσ(i), aσ(i+1)}, aσ(i+2), . . . , aσ(r+1),

ar+2, . . . , ar+1+n) ,

where the sign factor (−1)ei comes from swapping the odd operator {aσ(i), } with
the corresponding number of brackets.

Following the definition of ∂Tw (6.37) we get

∂Tw
(
Av(w)

)
=

∑
τ∈Sh1,r

∑
σ∈S2,...,r+1

τ
(
{a1, w(aσ(2), . . . , aσ(r+1), ar+2, . . . , ar+1+n)}

)

−
n∑

i=1

∑
σ∈Sr

∑
τ ′∈Shr,1

(−1)er+iτ ′
(
w(aσ(1), . . . , aσ(r), ar+2, . . . , ar+i, {ar+1, ar+i+1},

ar+i+2, . . . , ar+1+n)
)

−(−1)|w|
∑

τ∈Sh2,r−1

τ
(
w ◦1 {a1, a2}

)
=

(D.7)
∑

σ∈Sr+1

{aσ(1), w(aσ(2), . . . , aσ(r+1), ar+2, . . . , ar+1+n)}
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−
n∑

i=1

∑
σ∈Sr+1

(−1)er+iw(aσ(1), . . . , aσ(r), ar+2, . . . , ar+i, {aσ(r+1), ar+i+1},

ar+i+2, . . . , ar+1+n)

−
∑

τ∈Sh2,r−1

∑
σ∈S3,...,r+1

r∑
i=1

(−1)eiτ ◦ σ
(
w(a3, . . . , ai+1, {a1, a2}, ai+2, . . . , ar+1+n)

)
,

where we used the obvious identity
(D.8)

Av(w) =
∑

σ∈S2,...,r

r∑
i=1

w(aσ(2), . . . , aσ(i), a1, aσ(i+1), . . . , aσ(r), ar+1, . . . , ar+n) .

Using the defining identities of Gerstenhaber algebra we simplify (D.7) further

(D.9) ∂Tw
(
Av(w)

)
=

∑
σ∈Sr+1

r+1∑
i=2

(−1)eiw(aσ(2), . . . , aσ(i−1), {aσ(1), aσ(i)}, aσ(i+1), . . . , aσ(r+1),

ar+2, . . . , ar+1+n)}

−
σ(1)<σ(2)∑
σ∈Sr+1

r∑
i=1

(−1)eiw(aσ(3), . . . , aσ(i+1), {aσ(1), aσ(2)}, aσ(i+2), . . . , aσ(r+1),

ar+2, . . . , ar+1+n) =∑
σ∈Sr+1

r+1∑
i=2

(−1)eiw(aσ(2), . . . , aσ(i−1), {aσ(1), aσ(i)}, aσ(i+1), . . . , aσ(r+1),

ar+2, . . . , ar+1+n)}

−
∑

σ∈Sr+1

r∑
i=1

(−1)ei

2
w(aσ(3), . . . , aσ(i+1), {aσ(1), aσ(2)}, aσ(i+2), . . . , aσ(r+1),

ar+2, . . . , ar+1+n) =∑
σ∈Sr+1

r∑
i=1

(−1)ei

2
w(aσ(3), . . . , aσ(i+1), {aσ(1), aσ(2)}, aσ(i+2), . . . , aσ(r+1),

ar+2, . . . , ar+1+n) =∑
σ∈Sr+1

r∑
i=1

(−1)ei

2
w(aσ(1), . . . , aσ(i−1), {aσ(i), aσ(i+1)}, aσ(i+2), . . . , aσ(r+1),

ar+2, . . . , ar+1+n) .

Thus equation (D.6) indeed holds and the desired statement follows. �

Solution of Exercise 9.26. According to the formula for ∂Tw given in Eq. (9.6)
we have

(D.10) ∂TwΓ◦ ◦ = Av1
(
Γ•−• ◦2 Γ◦ ◦

)
−Av1

(
Γ◦ ◦ ◦1 Γ•−• + ς1,2(Γ◦ ◦ ◦2 Γ•−•)

)
,
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where ς1,2 is the cycle (12) ∈ S3. Recall that, in the right hand side of (D.10), both
graphs Γ•−• and Γ◦ ◦ are viewed as vectors in Gra(2), while the final result of the
computation is treated as a vector in TwGra(2) . In particular, the colors of vertices
play a role only for the final result of the computation. (See also Remark 9.3.)

Expanding the terms on the right hand side gives the following equalities:

Γ•−• ◦2 Γ◦ ◦ =
1 2 3

+
1 3 2

Γ◦ ◦ ◦1 Γ•−• =
1 2 3

ς1,2(Γ◦ ◦ ◦2 Γ•−•) =
1 3 2

Hence, all terms cancel on the right hand side of Eq. (D.10), and therefore
∂TwΓ◦ ◦ = 0.

Next, applying the differential ∂Tw to Γ◦−◦ ∈ TwGra(2), we get

(D.11) ∂TwΓ◦−◦ = Av1
(
Γ•−• ◦2 Γ◦−◦

)
+Av1

(
Γ◦−◦ ◦1 Γ•−• + ς1,2(Γ◦−◦ ◦2 Γ•−•)

)
.

We expand the terms on the right hand side, being mindful of the ordering on
edges, and Remark 9.3.

Γ•−• ◦2 Γ◦−◦ =
1 2

i ◦2
1 2

ii
=

1 2 3

i ii
+

1 3 2

i ii

Γ◦−◦ ◦1 Γ•−• =
1 2

i ◦1
1 2

ii
=

1 2 3

ii i
+

2 1 3

ii i

ς1,2(Γ◦−◦ ◦2 Γ•−•) = ς1,2(
1 2

i ◦2
1 2

ii
) =

2 3 1

i ii
+

2 1 3

i ii

By definition of the operad Gra, we have the following equalities in Gra(1 + 2):

1 2 3

i ii
= −

1 2 3

ii i

1 3 2

i ii
= −

2 3 1

i ii

2 1 3

ii i
= −

2 1 3

i ii

Thus, in TwGra(2), we have:

1 2 3

i ii
= −

1 2 3

ii i

1 3 2

i ii
= −

2 3 1

i ii

2 1 3

ii i
= −

2 1 3

i ii

Hence, all terms on the right hand side of Eq. (D.11) cancel, and therefore
∂TwΓ◦−◦ = 0. �
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Geometric quantization; a crash course
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Early in 2011 Sam Evens acting on behalf of the organizers of the summer
school on quantization at Notre Dame asked me to give a short series of lectures on
geometric quantization. These lectures were meant to prepare a group of graduate
mathematics students for talks at the conference on quantization which were to
follow the summer school. I was told to assume that the students had attended an
introductory course on manifolds. But I was not to assume any prior knowledge of
symplectic geometry. The notes that follow resulted from this request. They are a
mostly faithful record of four one-hour lectures (except lecture 4). It should be said
that there exist many books on geometric quantization starting with Souriau [14],
Sniatycki [12], Simms and Woodhouse [13] , Guillemin and Sternberg [7], Wal-
lach [15] and Woodhouse [16] and continuing with Bates and Weinstein [3] and
Ginzburg, Guillemin and Karshon [10]. There are also a number of one hundred
page surveys on geometric quantization such as the ones by Ali and Englis [1] and
by Echeverria-Enriquez et al. [5]. Clearly I could not have squeezed a semester or
more worth of mathematics into four lectures. Since I had to pick and choose, I
decided to convey the flavor of the subject by proceeding as follows. In the first
lecture I tried to explain how to formulate the Newton’s law of motion in terms
of symplectic geometry. This naturally require an introduction of the notions of
symplectic manifolds, Hamiltonian vector fields and Poisson brackets. In lecture
2 I described prequantization. Lecture 3 dealt with polarizations. I have mostly
limited myself to real polarizations. In the original version I tried to explain half-
forms. Here I stick with densities. In lecture 4 I came back to prequantization and
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148 EUGENE LERMAN

tried to explain why it is more natural to prequantize a differential cocycle rather
than just a two form. In other words prequantization is taken up from a more
functorial point of view — differential cohomology and stacks. For reasons of space
and time the treatment is not very detailed. The notes also contain two appendices:
the first one recalls bits and pieces of category theory; the second discusses densities.

Acknowledgments: I thank the organizers of the summer school at Notre Dame
for inviting me to give the talks and providing me with a note taker. I thank the
referee for a careful reading of the manuscript and a number of helpful suggestions.

1. An outline of the notes

The goal of this mini course is — starting with a classical system (which is
modeled as a symplectic manifold together with a function called the Hamiltonian)
— to produce a quantum system, that is, a collection of (skew)adjoined operators
on a Hilbert space.

Here is a more detailed plan of the lectures (the possibly unfamiliar terms are
to be defined later in the course):

• We go from Newton’s law of motion to a symplectic formulation of classical
mechanics, while cutting quite a few corners along the way.

• Next we have a crash course on symplectic geometry. The two key points
are:

– A function h on a symplectic manifold (M,ω) uniquely defines a
vector field Ξh on the manifold M .

– There is a Poisson bracket, that is, an R-bilinear map

C∞(M)× C∞(M) → C∞(M), (f, g) �→ {f, g},
which has a number of properties. In particular, the bracket {f, g}
makes C∞(M) into a Lie algebra.

• Next we’ll discuss prequantization: Given a symplectic manifold (M,ω)
and a corresponding Poisson bracket {·, ·} we want to find/construct a
complex line bundle π : L → M with a Hermitian inner product
< ·, · > and a connection ∇ on L such that:

– the connection ∇ preserves the inner product < ·, · >
– curv(∇) = (2π

√
−1)ω

Given such a bundle we get a prequantum Hilbert Space H0, which con-
sists of L2 sections of L → M . We’ll observe:

– Each function f ∈ C∞(M) defines an operator Qf : H0 → H0,

Qf (s) = (2π
√
−1)fs+∇Ξf

s

where Ξf is the Hamiltonian vector field generated by the function
f .

– The map

C∞(M)
Q−→ {skew Hermitian Operators on H0}

given by f �→ Qf is a map of Lie algebras.
• There is problem with prequantization: quantum mechanics tells us that
the space H0 is too big. Here is an example.
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Example 1.1. Consider a particle in R3. The corresponding classical
phase space is M = T ∗R3. The associated line bundle L = T ∗R3 × C is
trivial, and the prequantum Hilbert space is H0 = L2(T ∗R3,C). Physics
tells us that what we should have as our quantum phase space the vector
space L2(R3,C).

One then uses polarizations to cut the number of variables in half. The
introduction of polarizations leads to a number of technical problems. In
other words, this is where our trouble really begins.

In the first appendix to the paper we remind the reader what categories, functors,
natural transformations and equivalences of categories are. In the second appendix
we discuss densities.

2. From Newton’s law of motion to geometric mechanics in one hour

Consider a single particle of massmmoving on a line R subject to a force F (q, t).
Newton’s law of motion in this case says: the trajectory q(t) of the particles solves
the second order ordinary differential equation (ODE):

(2.1) m
d2q

dt2
= F (q(t), q′(t), t).

We now make two simplifying assumptions: (1) the force F only depends on position
q and (2) the force F is conservative — that is, F (q) = −V ′(q) for some V ∈
C∞(M). Then (2.1) becomes:

(2.2) m
d2q

dt2
= −V ′(q(t)).

The standard way to deal with equation (2.2) is to introduce a new variable p

(”momentum”) so that p = m
dq

dt
and convert (2.2) into a system of first order

ODEs. That is, if p = m
dq

dt
then m

d2q

dt2
=
dp

dt
. Thus every solution of

(2.3)

⎧⎪⎨⎪⎩
dq

dt
=

1

m
p

dp

dt
= −V ′(q)

solves (2.2). On the other hand, a solution of (2.3) is an integral curve of a vector
field Ξ(p, q), where

Ξ(p, q) =
1

m
p

∂

∂q
− V ′(q)

∂

∂p
.

Note: the energy H(q, p) =
1

2m
p2 + V (q) is conserved, i.e., it is constant along

solutions of (2.3). In fact the function H completely determines the vector field Ξ
in the following sense. Consider the two-form ω = dp ∧ dq on R2. It is easy to see
that

ι(Ξ)ω = −dH.
So H determines Ξ. Notice ω = dp ∧ dq is nondegenerate, so for any 1-form α the
equation ω(X, ·) = α(·) has a unique solution. To summarize: Newton’s equations

and m
d2q

dt
= −V ′(q) are equivalent to integrating the vector field ΞH defined by

ι(ΞH)ω = −dH. We now generalize this observation.
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Definition 2.1. A symplectic form ω on a manifoldM is a closed nondegenerate
2-form. The pair (M,ω) is called a symplectic manifold.

Remark 2.2. dω = 0 will give us an important property of the Poisson bracket:
the Jacobi identity.

Standard examples of symplectic manifolds.

Example 2.3. (R2, dp ∧ dq)

Example 2.4. (Σ, ω) where Σ is an orientable surface and ω is an area form
(nowhere zero form) on Σ. Note that since the surface Σ is two dimensional, dω is
automatically 0.

Example 2.5. Let Q be any manifold and set M = T ∗Q. If α denotes the
tautological 1-form then ω = dα is a symplectic form on M . Here are some details.
“Recall” that there are two ways of defining the tautological 1-form (also called the
Liouville form) α.

(1) In local coordinates α is defined as follows. If (q1, . . . qn) is a coordinate
chart on Q and (q1, . . . , qn, p1, . . . , pn) the corresponding coordinates on
the cotangent bundle T ∗M , then

α =
∑

pidqi.

It is not hard to check that dα = ω =
∑

dpi ∧ dqi is non-degenerate. It
is closed by construction, hence it’s symplectic. It is not obvious that α
(and hence ω) are globally defined forms.

(2) Alternatively, we have the projection π : T ∗Q → Q and dπ : T(q,p)(T
∗Q) →

TqQ. So given q ∈ Q, p ∈ T ∗
qQ and v ∈ T(q,p)(T

∗Q) define

α(q,p)(v) = p(dπ(v)).

It is a standard exercise to check that the two constructions agree. In the first
construction of α it is clear that α is smooth and dα is nondegenerate. In the
second construction it is clear that α is globally defined.

Definition 2.6. The Hamiltonian vector field Ξf of a function f on a symplectic
manifold (M,ω) is the unique vector field defined by ω(Ξf , ·) = −df .

Warning: the opposite sign convention is also frequently used in literature: ω(Ξf , ·) =
df .

Remark 2.7. The function f is always constant along the integral curves of
its Hamiltonian vector field Ξf .

Proof. Let γ be an integral curve of the vector field Ξf . Then

d

dt
f(γ(t)) = Ξf (f) = df(Ξf ) = −ω(Ξf , ·)(Ξf ) = −ω(Ξf ,Ξf ).

Since ω is skew-symmetric, ω(Ξf ,Ξf ) = 0. Hence
d

dt
f(γ(t)) = 0, i.e., f(γ(t)) is a

constant function of t, which is what we wanted to prove. �
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Poisson Bracket.

Definition 2.8. The Poisson bracket {·, ·} on a symplectic manifold (M,ω) is
a map

{·, ·} : C∞(M)× C∞(M) → C∞(M)

defined by
{f, g} = Ξf (g).

Remark 2.9. The Poisson bracket has a number of useful properties which we
list below. Proofs may be found in any symplectic geometry book.

(1) For any three function f, g, h ∈ C∞(M) we have

{f, g · h} = Ξf (g · h) = Ξf (g) · h+ g · Ξf (h) = {f, g} · h+ g · {f, h}.
(2) For any pair of functions f, g we have {f, g} = Ξf (g) = dg(Ξf ) =

−ω(Ξg,Ξf ) = ω(Ξf ,Ξg) = −{g, f}. In particular {f, f} = 0.
(3) One can show that the equation dω = 0 implies that

{f, {g, h}} = {{f, g}, h}+ {g, {f, g}},
which is the Jacobi identity. In other words the pair (C∞(M), {·, ·}) is a
Lie algebra.

(4) It is not hard to show that {f, g} = 0 if and only if g is constant along
integral curves of f . Indeed, let γ be an integral curve of the vector field
Ξf . Then

d

dt
g(γ(t)) = Ξf (g) (γ(t)) = {f, g}(γ(t)).

Therefore if the function g is constant along γ then the bracket {f, g} is
zero along γ. The converse is true as well. This generalizes the fact that a
function f is constant along the integral curves of its Hamiltonian vector
field Ξf .

(5) One can show that ι([Ξf ,Ξg])ω = −d{f, g}. Hence if the Poisson bracket
{f, g} of two functions f, g is 0 then flows of their Hamiltonian vector
fields commute. Here is a better interpretation of the same fact: The map

C∞(M) → vector fields on M, f �→ Ξf

is a map of Lie algebras: Ξ{f,g} = [Ξf ,Ξg].

Remark 2.10. It is not hard to show that is (M,ω) is a symplectic manifold,
then its dimension is necessarily even. This only involves linear algebra.

Say dimM = 2n. Then one can show further that the 2n-form ωn :=

n︷ ︸︸ ︷
ω ∧ · · · ∧ ω

(n-fold wedge product) is nowhere zero, hence defines an orientation of M . In par-
ticular, this allows us to integrate any compactly supported function f ∈ C∞(M)
over M by integrating the form fωn. The space L2(M,ω) is then defined as the
completion of the space C∞

c (M,C) of compactly supported functions with respect
to the L2 norm

‖f‖ :=

(∫
M

|f |2ωn

)1/2

.

It is a Hilbert space with the Hermitian inner product

〈〈f, g〉〉 :=
∫
M

f̄ gωn
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(in the convention I prefer, the Hermitian inner products are complex-linear in the
second variable).

We end the section with an easy lemma that we will need later.

Lemma 2.11. Let (M,ω) be a symplectic manifold and f : M → R a smooth
function. Then the Lie derivative LΞf

ω of the symplectic form with respect to the
Hamiltonian vector field of the function f is zero:

LΞf
ω = 0.

Proof. This is an application of Cartan’s formula: for a differential form
σ its Lie derivative LXσ with respect to a vector field X is given by LXσ =
ι(X)dσ+ dι(X)σ, where, as above, ι(X)σ denotes the contraction of X and σ, etc.
Thus

LΞf
ω = ι(Ξf )dω + dι(Ξf )ω.

The first summand above is 0 since dω = 0. By definition of Ξf , ι(Ξf )ω = −df .
Since d(df) = 0, the second summand is zero as well. �

3. Prequantization

The goal of this section is to describe geometric prequantization. This is a
procedure for turning a classical mechanical system mathematically formalized as
a symplectic manifold (M,ω) together with its Poisson algebra of smooth functions
C∞(M) (“classical observables”) into a quantum system formalized as a Hilbert
space H0 together with the Lie algebra of (densely defined) skew-Hermitian oper-
ators {Qf |f ∈ C∞(M)}. Moreover the map

Q : C∞(M) → End(H0), f �→ Qf ,

should (and would) be a map of Lie algebras:

Q{f,g} = [Qf , Qg]

for all functions f, g ∈ C∞(M). We start by recalling some notation.

Notation 3.1. We denote the space of sections of a vector bundle E → M
over a manifold M by Γ(E). Thus the space of vector fields on a manifold M is
denoted by Γ(TM).

3.1. Connections. We start by recalling a number of standard definitions
and facts. By a fact I mean a theorem the proof of which will take us too far afield.
Such proofs may be found in any number of textbooks.

Definition 3.2. A connection ∇ on a (complex) vector bundle E
π→ M is a

C-bilinear map

Γ(TM)× Γ(E) → Γ(E), (X, s) �→ ∇Xs

such that

(1) ∇fXs = f∇Xs for all functions f ∈ C∞(M,C) and all vector fields X ∈
Γ(TM) (i.e., ∇ is C∞(M,C) linear in the first variable) and

(2) ∇X(fs) = X(f)s+ f∇Xs for all functions f ∈ C∞(M,C) and all vector
fields X ∈ Γ(TM) (i.e., ∇ is a derivation in second slot).

If the vector bundle E carries a fiber-wise Hermitian inner product 〈·, ·〉 we can
talk about the connections respecting this structure. More precisely
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Definition 3.3. A connection ∇ on a vector bundle E
π→ M with a fiber-wise

inner product 〈·, ·〉 is Hermitian if

X(〈s, s′〉) = 〈∇Xs, s
′〉+ 〈s,∇Xs

′〉
for all vector fields X on M and all section s, s′ ∈ Γ(E).

Next recall that given any complex vector bundle E
π→ M we can consider the

bundle End(E) → M of endomorphisms with a fiber End(E)x at a point x ∈ M
given by

End(E)x = {A : Ex → Ex | A is C linear}.
We also have the subbundle of skew Hermitian maps End(E, 〈·, ·〉) ⊂ End(E) with
typical fiber

End(E, 〈·, ·〉)x = {A : Ex → Ex | A is C linear and 〈Av,w〉+〈w,Av〉 = 0 ∀v, w ∈ Ex}.
We have the following Fact :

Fact 3.4. The space of Hermitian connections on a vector bundle (E, 〈·, ·〉) is
non empty. In fact it is an infinite dimensional affine space: the difference of two
connections is a End(E, 〈·, ·〉) valued 1-form.

Definition 3.5. Let ∇ : Γ(TM)× Γ(E) → Γ(E) be a connection on a vector
bundle E → M . The curvature R∇ of the connection is a section of Λ2(T ∗M) ⊗
End(E) (i.e., an End(E) valued 2-form). It is defined by

R∇(X,Y )s = ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s

for all vector fields X and Y and all sections s ∈ Γ(E).

If ∇ is a Hermitian connection then its curvature R∇ is a 2-form with values
in End(E, 〈·, ·〉). Furthermore if E

π→ M is a complex line bundle then

End(E, 〈·, ·〉) ! M ×
√
−1R

hence
1√
−1

R∇ ∈ Ω2(M,R).

That is 1√
−1
R∇ is an ordinary real valued 2-form.

Fix a manifold M and consider the collection D(M) of all triples (L, 〈·, ·〉,∇),
where L → M is a complex line bundle, 〈·, ·〉 is a Hermitian inner product on L
and ∇ is a Hermitian connection on (L, 〈·, ·〉). Then curvature defines a map

(3.1) D(M) → Ω2(M), (L, 〈·, ·〉,∇) �→ 1√
−1

R∇

from the collection D(M) to the set of (real-valued) 2-forms Ω2(M).
To define geometric prequantization one needs to invert this map. That is, given

a symplectic manifold (M,ω) one would like to find a Hermitian line bundle with
a Hermitian connection ∇ so that

1√
−1

R∇ = ω.

However there are two problems: (1) the map (3.1) is not 1-1 and (2) not all
symplectic forms are in the image of the map. The first problem has to do with
the fact that taking curvature of a connection is very much like taking the exterior
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derivative of a 1-form. So recovering connection from its curvature is also like
recovering a 1-form from its exterior derivative.

The second problem is topological. It has to do with the fact that (isomorphism
classes of) complex line bundles are parametrized by degree 2 integral cohomology
classes, that is, elements of H2(M,Z). Moreover the cohomology class c1(M) of a
line bundle E → M and the de Rham class [ 1

2π
√
−1
R∇] defined by the curvature

R∇ of a Hermitian connection ∇ on E are closely related: [ 1
2π

√
−1
R∇] is the image

of c1(E) under the natural map

ι : H2(M,Z) → H2(M,Z)⊗ R ! H2
dR(M).

Consequently the integral of the 2-form 1
2π

√
−1
R∇ over any smooth integral 2-cycle

inM has to be an integer. Hence the only symplectic forms that can be prequantized
(that is, can occur as curvatures) are the forms whose integration over integral 2-
cycles give integers. And if a symplectic form ω is integral (that is, the de Rham
class [ω] lies in the image of the map ι above), the lift of [ω] to H2(M,Z) need
not be unique. A solution to these problems (independently due to Kostant and to
Souriau) can be stated as follows:

Theorem 3.6. Suppose the de Rham cohomology class of a closed 2-form σ
on a manifold M lies in the image of ι : H2(M,Z) → H2

dR(M). Then there
exists a Hermitian line bundle E → M with a Hermitian connection ∇ such that

1
2π

√
−1
R∇ = σ.

There is another solution to this problem that I find more satisfactory and to
which Theorem 3.6 is a corollary. It has the additional merit of allowing one to
prequantize orbifolds as well. It involves thinking of D(M) not just as a set but
as a collection of objects in a category and upgrading the map (3.1) to a functor.
The target of this functor is a category of differential cocycles: the objects of this
category involve integral cocycles and differential forms. The functor will turn out
to be an equivalence of categories. So it can be easily inverted (up to homotopy).
We will take this up in the last section of the notes. In the mean time we proceed
with prequantization.

Definition 3.7. Suppose (E → M, 〈·, ·〉,∇) is a Hermitian line bundle with
connection such that ω := 1

2π
√
−1
R∇ is symplectic. The prequantization is a linear

map
Q : C∞(M) → Hom(Γ(E),Γ(E)), f �→ Qf

where the operator Qf is defined by

Qf (s) = ∇Ξf
s− 2π

√
−1f · s

for all functions f ∈ C∞(M) and all section s ∈ Γ(E). Here, as before, Ξf denotes
the Hamiltonian vector field of f with respect to the symplectic form ω.

Remark 3.8. Our definition of Q differs from a more traditional one by
√
−1.

The physicists like to identify the Lie algebra of the unitary group with Hermitian
matrices (and operators).

We next prove:

Lemma 3.9. The prequantization map Q : C∞(M) → Hom(Γ(E),Γ(E)) is a
map of Lie algebras:

[Qf , Qg]s = Q{f,g}s
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for all sections s ∈ Γ(E) and all functions f, g ∈ C∞(M).

Proof. Since ω := 1
2π

√
−1
R∇, we have, by definition of curvature that

([∇X ,∇Y ]−∇[X,Y ])s = 2π
√
−1ω(X,Y ) · s

for all vector fields X,Y on M and all sections s ∈ Γ(E). Hence

[∇Ξf
,∇Ξg

]s = ∇[Ξf ,Ξg]s+ 2π
√
−1ω(Ξf ,Ξg) · s

for all f, g ∈ C∞(M). Since ω(Ξf ,Ξg) = {f, g} and since [Ξf ,Ξg] = Ξ{f,g} we get

(3.2) [∇Ξf
,∇Ξg

]s = ∇Ξ{f,g}s+ 2π
√
−1{f, g}s.

Next observe that

Qf (Qgs) = Qf (∇Ξg
s− 2π

√
−1g · s)

= ∇Ξf
(∇Ξg

s− 2π
√
−1g · s)− 2π

√
−1f · (∇Ξg

s− 2π
√
−1g · s)

= ∇Ξf
(∇Ξg

s)− 2π
√
−1Ξf (g) · s− 2π

√
−1g∇Ξf

s− 2π
√
−1f∇Ξg

s− 4π2fg · s
Similarly,

Qg(Qfs) = ∇Ξg
(∇Ξf

s)−2π
√
−1Ξg(f)·s−2π

√
−1f∇Ξg

s−2π
√
−1g∇Ξf

s−4π2g·f ·s.
Hence

[Qf , Qg]s = Qf (Qgs)−Qg(Qfs)

= [∇Ξf
,∇Ξg

]s− 2π
√
−1({f, g} − {g, f})s

= [∇Ξf
,∇Ξg

]s− 4π
√
−1{f, g}s

= ∇Ξ{f,g}s+ 2π
√
−1{f, g}s− 4π

√
−1{f, g}s by (3.2)

= ∇Ξ{f,g}s− 2π
√
−1{f, g}s = Q{f,g}s.

�
Definition 3.10. Let (M,ω) be a symplectic manifold of dimension 2m and

(E → M, 〈·, ·, )〉 be a Hermitian line bundle as before. A section s ∈ Γ(E) is square
integrable if the integral

∫
M
〈s, s〉 ωm converges.

Clearly any section s with compact support is square integrable. Moreover,
for any two compactly supported sections s, s′ of E → M the function 〈s, s′〉 is
compactly supported, hence the integral

∫
M
〈s, s′〉 ωm converges.

Notation 3.11. We denote the space of compactly supported sections of the
bundle E → M by Γc(E):

Γc(E) := {s ∈ Γ(E) | supp(s) is compact }.

The space Γc(E) of compactly supported sections carries a natural Hermitian inner
product defined by

〈〈s, s′〉〉 =
∫
M

〈s, s′〉 ωm

for all s, s′ ∈ Γc(E).

Definition 3.12. The prequantum Hilbert space associated with a prequan-
tum line bundle (E → M, 〈·, ·, )〉 is the completion of the inner product space
(Γc(E), 〈〈·, ·〉〉) with the respect to the corresponding L2 norm:

H0 := the completion of Γc(E).
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Lemma 3.13. The prequantization map Q : C∞(M) → Hom(Γc(E),Γc(E)) is
skew-Hermitian:

〈〈Qfs, s
′〉〉+ 〈〈s,Qfs

′〉〉 = 0

for all compactly supported sections s, s′ of E → M .

Proof. Observe that

〈2π
√
−1fs, s′〉+ 〈s, 2π

√
−1fs′〉 = 0

for all functions f ∈ C∞(M,R) and all square-integrable sections s, s′. Next note
that since the connection ∇ is Hermitian we have∫

M

〈∇Ξf
s, s′〉ωm +

∫
M

〈s,∇Ξf
s′〉ωm =

∫
M

Ξf 〈s, s′〉ωm.

Since the Lie derivative LΞf
ω of the symplectic form with respect to any Hamil-

tonian vector field Ξf zero (see Lemma 2.11), we have LΞf
ωm = 0 as well. Hence

LΞf
(〈s, s′〉ωm) = LΞf

(〈s, s′〉)ωm + 〈s, s′〉LΞf
(ωm) = Ξf 〈s, s′〉ωm + 0.

On the other hand by Cartan’s magic formula, for any top degree form μ we have

LΞf
μ = ι(Ξf )dμ+ d(ι(Ξf )μ) = d(ι(Ξf )μ),

since dμ = 0. We conclude that∫
M

〈∇Ξf
s, s′〉ωm +

∫
M

〈s,∇Ξf
s′〉ωm =

∫
M

Ξf 〈s, s′〉ωm

=

∫
M

LΞf
(〈s, s′〉ωm)

=

∫
M

d (ı(Ξf )〈s, s′〉ωm) = 0,

where the last equality holds by Stokes’ theorem. The result follows. �

Remark 3.14. Note that the operators Qf are not bounded in the L2 norm
since they involve differentiation. So they do not extend to bounded operators on
the completionH0. However, they are elliptic operators, and consequently extend to
closed densely defined operators on H0. Not surprisingly their domain of definition
consists of square integrable sections with square integrable (distributional) first
derivatives.

4. Polarizations

Recall that geometric prequantization associates to an integral symplectic man-
ifold (M,ω) a Hilbert space H0 and to each real-valued function f on M a skew-
Hermitian operator Qf : H0 → H0. Unfortunately this is not correct physics.

Example 4.1. Suppose our classical configuration space is R, the real line. This
is the example with which we started these lectures. The corresponding classical
phase space is the cotangent bundle M = T ∗R with the canonical symplectic form
ω = dp ∧ dq. The corresponding prequantum line bundle E is trivial: E = T ∗R ×
C → T ∗R. Hence the prequantum Hilbert space is H0 is the space L2(T ∗R,C)
of complex valued square integrable functions. Quantum mechanics tells us that
the correct Hilbert space consists of square-integrable functions of one variable
L2(R,C), not of functions of two variables.
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A standard solution to this problem is to introduce a polarization. To define
polarizations we start with linear algebra.

Definition 4.2. A Lagrangian subspace L of a symplectic vector space (V, ω)
is a subspace satisfying two conditions:

(1) L is isotropic: ω(v, v′) = 0 for all vectors v, v′ ∈ L;
(2) L is maximally isotropic: for any isotropic subspace L′ of V containing L

we must have L = L′.

Remark 4.3. A standard argument shows that if L ⊂ (V, ω) is Lagrangian
then

dimL =
1

2
dimV.

Example 4.4. If (V, ω) = (R2, ω = dp∧ dq) then any line L in V is Lagrangian.

The analogous definition for submanifolds is as follows:

Definition 4.5. An immersed submanifold L of a symplectic manifold (M,ω)
is Lagrangian if TxL ⊂ (TxM,ωx) is a Lagrangian subspace for each point x ∈ L.

Definition 4.6. A (real) polarization on a symplectic manifold (M,ω) is a
subbundle F ⊂ TM of its tangent bundle such that

(1) F is Lagrangian: Fx ⊂ (TxM,ωx) is a Lagrangian subspace for all points
x ∈ M .

(2) F is integrable (or involutive): for all local sections X,Y of F → M , the
Lie bracket [X,Y ] is again a local section of F . This conditions is often
abbreviated as [F ,F ] ⊂ F .

Remark 4.7. If F ⊂ TM is an integrable distribution, then by the Frobenius
theorem there exists a foliation LF ofM tangent to the distribution F . If in addition
F is Lagrangian then the leaves of LF are immersed Lagrangian submanifolds of
M .

Example 4.8. Suppose the symplectic manifold M is a cotangent bundle of
some manifold N : M = T ∗N with its standard symplectic form. Then M has a
polarization F given by the kernel of the differential of π : T ∗N → N :

F = ker(dπ) : T (T ∗N) → TN.

In local coordinates (q1, . . . , qn, p1, . . . , pn) : T ∗U → Rn × Rn (U ⊂ N open) on
T ∗N this polarization is given by

F =

{
n∑

i=1

ai
∂

∂pi
| ai ∈ C∞(U)

}
.

The polarization F is called the vertical polarization of T ∗N .

Example 4.9. Consider the punctured plane M := R2�{0} with the symplec-
tic form dp ∧ dq. The collection of circles

{
Cr := {(p, q) ∈ M | p2 + q2 = r2}

}
r>0

forms a Lagrangian foliation of M . The tangent lines to the circle define a polar-
ization F of M .

Remark 4.10. Real polarizations need not exist. Here is an example. It is not
hard to show that any real line bundle over the two-sphere S2 has to be trivial,
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hence has to have a nowhere zero section. Thus if S2 has a polarization then it has
a nowhere zero vector field, which contradicts a well-known theorem.

Since real polarization need not exist for interesting classical systems, one gen-
eralizes the notion of a real polarization to that of a complex polarization. A
complex polarization on a symplectic manifold (M,ω) is a complex Lagrangian in-
volutive subbundle of the complexified tangent bundle TM⊗C. We will not discuss
them further. There is a well-developed theory of complex polarizations that an
interested reader may consult.

Finally there are examples due to Mark Gotay [6] of symplectic manifolds that
admit no polarizations whatsoever, real or complex. One can reconcile oneself
to this fact by thinking that not all classical mechanical systems have quantum
counterparts.

Definition 4.11. Let F be a polarization on (M,ω) and (L
π→ M, 〈·, ·〉,∇)

a prequantum line bundle. A section s ∈ Γ(L) is covariantly constant along F if
∇Xs = 0 for all sections X ∈ Γ(F).

Notation 4.12. We denote the space of sections of the prequantum line bundle
L → M covariantly constant along a polarization F by ΓF (L). Thus

ΓF (L) := {s ∈ Γ(L) | ∇Xs = 0 for all X ∈ Γ(F)}.

Remark 4.13. It is common to refer to the space ΓF (L) as the space of polarized
sections.

Example 4.14. If M = T ∗N , L = T ∗N × C and F ⊂ TM is the vertical
polarization, then the space ΓF (L) ⊂ C∞(T ∗N,C) consists of functions constant
along the fibers of π : T ∗N → N . Thus ΓF (L) = π∗C∞(N,C).

Example 4.15. Consider again the punctured plane M = R2 � {0} with the
polarization F defined by circles. We may take the trivial bundle L = M × C →
M as the prequantum line bundle. Its space of sections is simply the space of
complex valued functions on M . The Hermitian inner product on L is defined by
the standard Hermitian inner product on C.

For any real-valued 1-form α on M the map ∇ : Γ(TM) × C∞(M,C) →
C∞(M,C) defined by

∇Xf = Xf +
√
−1α(X)f

is a Hermitian connection. Now consider the real-valued 1-form α on on M given in
polar coordinates (r, θ) by the equation α = r2dθ. A section f ∈ C∞(M,C) of L is
covariantly constant along the polarization defined by the circles (cf. Example 4.9)
if and only if

(4.1)
∂f

∂θ
= −

√
−1r2f.

A function f solves the above equation if and only if it is of the form

f(r, θ) = g(r)e−
√
−1r2θ

for some function g(r). Such an f is a well-defined function on the punctured plane
only if r2 ∈ Z. Thus (4.1) has no nonzero smooth solutions.

Let us go back to the general situation: a prequantum line bundle (L, 〈·, ·〉,∇)
over a symplectic manifold (M,ω) and a real polarization F ⊂ TM . We now make
several assumptions:
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(1) The space of leaves N := M/F is a Hausdorff manifold and the quotient
map π : M → M/F ≡ N is a submersion.

(2) The space of polarized sections ΓF (L) is nonzero.

Remark 4.16. If we assume that the quotient map π : M → M/F is proper
then it places very severe restrictions on what the connected components of the
leaves of F can be: they have to be compact tori. See Duistermaat [4], for example.
In particular the fact that compact leaves of the polarization of a punctured plane
turned out to be circles (i.e., one dimensional tori) should come as no surprise
(q.v. Example 4.15). More generally the leaves of a Lagrangian fibration are open
subsets of quotients of the form V/Γ where V is a finite dimensional real vector
spaces and Γ ⊂ V a discrete subgroup. That is, V/Γ ! (Rk/Zk)× Rl for some k, l
with k + l = dimV .

The issue with existence of nonzero parallel sections reduces to the holonomy of
the connection being trivial along the leaves. Since the curvature of the connection
vanishes identically on each leaf, the obstruction to the existence of nonzero parallel
(polarized) sections lies in the representations of the fundamental groups of the
leaves. This is why it is not uncommon for the fundamental groups of the leaves
to be assumed away. Fortunately there are examples of fibrations with simply
connected leaves that are slightly more general than the cotangent bundles. They
are the so-called “twisted cotangent bundles” and amount to the following. Let Q
be a manifold with an integral closed two-form τ (which may be degenerate) and let
M = T ∗Q. It is not hard to check that the two-form ω = π∗τ +ωT∗Q is symplectic.
Here π : T ∗Q → Q is the canonical projection and ωT∗Q is the canonical symplectic
form on T ∗Q (q.v. Example 2.5). The Lagrangian foliation of (T ∗Q,ω) is provided
by the fibers of π, which are contractible.

Definition 4.17. Given a polarization F ⊂ TM , the space of polarization
preserving functions is the space C∞

F (M) defined by

C∞
F (M) := {f ∈ C∞(M) | [Ξf , X] ∈ Γ(F) for all X ∈ Γ(F)},

where, as before, Ξf denotes the Hamiltonian vector field of the function f .

Remark 4.18. It is not hard to show that if f is a polarization preserving
function then the flow of its Hamiltonian vector field Ξf preserves the leaves of the
foliation defined by the distribution F .

Remark 4.19. If Ξf ∈ Γ(F) then, since F is involutive, f ∈ C∞
F (M). Using

again the fact that F is Lagrangian, it is not hard to show that if f = π∗h for some
h ∈ C∞(M/F) then Ξf ∈ Γ(F). In particular the space C∞

F (M) is non-trivial.

Lemma 4.20. The subspace C∞
F (M) of C∞(M) is closed under the Poisson

bracket.

Proof. Suppose f, g ∈ C∞
F (M) and X ∈ Γ(F). Then

Ξ{f,g} = [Ξf ,Ξg].

Hence
[X,Ξ{f,g}] = [X, [Ξf ,Ξg]] = [[X,Ξf ],Ξg] + [Ξf , [X,Ξg]]

where the second equality hold by the Jacobi identity. Since [X,Ξf ], [X,Ξg] ∈ Γ(F)
by assumption, and since Γ(F) is a subspace of Γ(TM) that is closed under brackets,
we have [X,Ξ{f,g}] ∈ Γ(F). �
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Lemma 4.21. If f ∈ C∞
F (M) is a polarization-preserving function then the

operator Qf defined by the prequantization map Q : C∞(M) → End(Γ(L)) preserves
the space ΓF (L) of F polarized sections, the sections covariantly constant along F .

Hence we get a map of Lie algebras

Q : C∞
F (M) → End(ΓF(L)).

Proof. Note first that for any vector field X ∈ Γ(TM) and any function
f ∈ C∞(M)

X(f) = df(X) = (ι(Ξf)ω)(X) = ω(X,Ξf ).

To prove the lemma we need to show that

∇X(Qfs) = 0

for all vector fields X ∈ Γ(F), all functions f ∈ C∞
F (M) and all polarized sections

s ∈ ΓF (L). Now

∇X(∇Ξf
s− 2π

√
−1fs) = ∇X(∇Ξf

s)− 2π
√
−1X(f) s− 2π

√
−1f∇Xs.

Note that by assumption 2π
√
−1f∇Xs = 0. By definition of curvature,

∇X(∇Ξf
s) = ∇Ξf

(∇Xs) +∇[X,Ξf ]s+R∇(X,Ξf)s.

By assumption on X, f and s, the first two terms are 0. Also, by definition of the
connection

R∇ = 2π
√
−1ω.

We conclude that

∇X(∇Ξf
s) = 0 + 0 + 2π

√
−1ω(X,Ξf )s.

Putting it all together we see that

∇X(Qfs) = 2π
√
−1ω(X,Ξf )s−2π

√
−1X(f) s = 2π

√
−1(ω(X,Ξf)−ω(X,Ξf ))s = 0.

�

We would now like to define an inner product on the space ΓF (L) of polarized
sections. If the fibers of π : M → M/F are compact, then as before we can
define an inner product on a subspace of ΓF (L) consisting of square integrable
sections — c.f. Definition 3.10 and the subsequent discussion. The completion of
this space would give us the desired Hilbert space. However, as we have seen in
Example 4.15, the space of (smooth) polarized section can be 0. This is not just
an accident of the particular example, but is fairly typical, since fibers of proper
Lagrangian fibrations are tori. The solution to this problem — the lack of nonzero
smooth polarized sections — is to consider distributional polarized sections. We
will not say anything further on this topic in these notes. A curious reader may
consult the discussion of distributional sections in [12].

If the leaves of the polarization on a symplectic manifold (M,ω) are not com-
pact (as is the case of the vertical polarization on a cotangent bundle T ∗N) then
none of the polarized sections are square integrable with respect to the symplectic
volume form ωm (m = 1

2 dimM). On the other hand, the Hermitian inner product
〈s, s′〉 of two polarized sections s, s′ ∈ ΓF (L) is constant along the fibers of the
submersion π : M → M/F , hence descends to a function on the leaf space M/F .
Thus it is tempting to push the function 〈s, s′〉 down to M/F and integrate it over
the leaf space. The problem is that the leaf space M/F has no preferred measure
or volume. For instance suppose (M,ω) is a 2-dimensional symplectic vector space
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(V, ωV ). Here we think of ωV as a constant coefficient differential form. Then any
line � ⊂ V defines a polarization whose space of leaves is the quotient vector space
V/�. While the vector space V/� is one dimensional in this example, and thus iso-
morphic to the real line R, there is no preferred identification of V/� with R and
no preferred measure on V/�.

Let us recap where we are. We have an integral symplectic manifold (M,ω), a
prequantum line bundle L → M with connection ∇ whose curvature is 2π

√
−1ω,

a Lagrangian foliation F of M so that the space of leaves M/F is a Hausdorff
manifold, the quotient map π : M → M/F is a fibration and the holonomy rep-
resentation of the fundamental groups of the leaves with respect to the connection
∇ are trivial. In this case the prequantum line bundle L → M descends to a Her-
mitian line bundle L/F → M/F . We now consider the new complex line bundle
L/F ⊗ |T (M/F)|1/2, the bundle L/F twisted by the bundle of half densities on
M/F (q.v. Definition B.11). We have an isomorphism

(4.2) Γ(L/F ⊗ |T (M/F)|1/2) ! Γ(L/F)⊗C∞(M/F) Γ(|T (M/F)|1/2)
of C∞(M/F) modules.

It makes sense to talk about the sections of L/F ⊗ |T (M/F)|1/2 being square
integrable, and it makes sense to define a sesquilinear pairing of two square in-
tegrable sections. This is done as follows. As we observed in Remark B.14, the
bundle |T (M/F)|1/2 of half densities is trivial, that is, it has a nowhere zero global
section. Hence any section of L/F ⊗ |T (M/F)|1/2 is of the form s ⊗ μ where
s ∈ Γ(L/F) ! ΓF(L) and μ is a 1/2 density on M/F . Now given a polarized
section s ∈ ΓF (L) and a 1/2 density μ on M/F we can form a 1 density

〈s, s〉μ̄μ = ||s||2|μ|2

on M/F . Moreover the map

(L/F)⊗C∞(M/F) Γ(|T (M/F)|1/2) → |M/F|1, s⊗ μ �→ ||s||2|μ|2

is well-defined. Here, as in Appendix B, |M/F|1 denotes the space of 1-densities
on the manifold M/F , which is the space of sections of the bundle |T (M/F)|1 of
1-densities. It is not hard to show that the space of compactly supported polar-
ized sections of the twisted prequantum line bundle forms a vector space with a
Hermitian inner product given by

〈〈s1 ⊗ μ1, s2 ⊗ μ2〉〉 :=
∫
M/F

〈s1, s2〉μ̄1μ2.

The completion of this complex vector space with respect to 〈〈·, ·〉〉 is the intrinsic
quantum space associate with the data (L → M,∇,F , 〈·, ·〉). A bit more effort gives
a representation of the Lie algebra C∞

F (M) on this quantum space. See [13],[12]
or [16].

5. Prequantization of differential cocycles

Let L
π→ M be a complex line bundle, 〈·, ·〉 a Hermitian inner product and

∇ a Hermitian connection. In Lecture 1 we were trying to find a section of the
curvature map

(5.1) curv : (L
π→ M, 〈·, ·〉,∇) �−→ 1√

−1
R∇ ∈ Ω2(M),
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which is neither 1-1 nor onto. Recall that a Hermitian line bundle with connection
over a manifold M defines a principal S1 bundle with a connection 1-form and
conversely. Since 1-forms obviously pull back, it will be convenient for us to replace
the problem of finding the section of (5.1) by the problem of finding a section of

(5.2) curv : (S1 → P → M,A ∈ Ω1(P,R)S
1

) → FA ∈ Ω2(M,R),

where FA denotes the curvature of the connection 1-form A. Note that here we
think of the circle S1 as R/Z and not as the group U(1) of unit complex numbers.
Hence now our connection 1-forms are R-valued.

For a given manifold M , the collection of all principal S1-bundles with connec-
tion 1-forms over M forms a category, which we will denote by DBS1(M).1 More
precisely the objects of the category DBS1(M) are pairs (P,A), where P is a prin-
cipal S1 bundle over M and A ∈ Ω1(P ) is a connection 1-form on P . Given two
objects (P,A), (P ′, A′) of DBS1(M) the set Hom((P,A), (P ′, A′)) of morphisms
between them is defined by

Hom((P,A), (P ′, A′)) = {φ : P → P ′ | φ is S1 equivariant,

φ induces identity on M, φ∗A′ = A}.
Notice that all morphisms are invertible, so the category DBS1(M) is a groupoid
by definition (see Appendix A).

Our solution of non-invertability of the curvature map proceeds along the fol-
lowing lines. We will construct a category DC(M) of differential cocycles, so that:

(1) The objects of DC(M) involve differential forms.

(2) There is an equivalence of categories DBS1(M)
DCh−→ DC(M).

Since equivalences of categories are invertible (up to natural isomorphisms) this
will achieve our objective.2 The construction of the category DC(M) was carried
out as a toy example in a paper by Hopkins and Singer [9], which is where we
copy the definition from. In constructing the functor DCh we will follow [11]. The
construction of DC requires several steps.

Step 1: Categories from cochain complexes. Let A• = {A• d→ A•+1}
be a cochain complex of abelian groups. For example, A• = Ω•(M), the complex
of differential forms on a manifold M . For each index n ≥ 0 there is a category
Hn(A•) with the set {z ∈ An|dz = 0} of cocycles of degree n being its set of objects.
The set of morphisms Hom(z, z′) for two cocycles z, z′ is defined by

Hom(z, z′) = {(z, [b]) ∈ ker(d : An → An+1)×An−1/dAn−2 | z′ = z + db}
! {[b] ∈ An−1/dAn−2 | z′ = z + db}

The composition of morphisms is addition +:

(z′, [b′]) ◦ (z, [b]) = (z, [b+ b′′]).

The category Hn(A•) is a groupoid with the set π0(Hn(A•) of equivalence classes
of objects being the cohomology group Hn(A•). The category Hn(A•) may also be

1This is not a standard notation. The BS1(M) is supposed to remind the reader of the clas-
sifying space BS1, maps into which classify principal S1 bundles. The D stands for “differential,”
i.e., the connection.

2A reader who is not fluent in category theory may wish at this point to contemplate Exam-
ple A.23 of two rather different looking but equivalent categories.
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viewed as an action groupoid for the action of An−1/dAn−2 on ker(d : An → An+1)
by way of d : An−1 → An.

Next suppose we have a contravariant functor from the category Man of man-
ifolds and smooth maps to the category CoChain of cochain complexes (such a
functor is often called a presheaf of cochain complexes):

A• : Manop → CoChain, M �→ A•(M).

An example to keep in mind is the functor that assigns to each manifold the complex
of differential forms and to a map of manifolds the pullback of differential forms.
Then each smooth map f : M → N between manifolds induces a functor

Hn(f) : Hn(A•(N)) → Hn(A•(M))

with

z′ z
(z,[b])

�� � �� (f∗z′ f∗z)
(f∗z,[f∗b])
�� .

Step 2: The presheaf of differential cocycles. We need to introduce more
notation. Denote by C•(M,Z) the complex of (C∞) singular integral cochains on a
manifold M and by C•(M,R) the complex of (C∞) singular real-valued cochains.
We have maps of complexes

C•(M,Z) → C•(M,R) and Ω•(M) → C•(M,R).

The second map sends a differential k-form σ to a functional on the space of real
k-chains: the value of this functional on a chain s is the integral

∫
s
σ. We would

like to find a complex DC•(M) that fits into the diagram

DC•(M) ������

��
�
�
�

Ω•(M)

��

C•(M,Z) �� C•(M,R)

.

We define this complex as follows:

DCk(M) = {(c, h, ω) ∈ Ck(M,Z)× Ck−1(M,R)× Ωk(M) | ω = 0 for k < 2}
with the differential d̃ defined by

d̃(c, h, ω) = (δc, ω − c− δh, dω).

Note that in defining d̃ we suppressed the maps C•(M,Z) → C•(M,R) and Ω•(M) →
C•(M,R). In particular, when we think of a differential k-form τ as a real cochain,
we write its differential as δτ . That is, for any k + 1 chain γ we have

δτ (γ) =

∫
γ

dτ.

It is not hard to show that

d̃ ◦ d̃ = 0.

Indeed,

d̃(d̃(c, h, ω)) = d̃(δc, ω− c− δh, dω) = (δ2c, dω− δc− δ(ω− c− δh), d2ω) = (0, 0, 0).

We are now ready to define the category DC(M) of differential cocycles by
setting

DC(M) := H2(DC•(M)).
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By construction the set of objects DC(M)0 of this category is

DC(M)0 = {(c, h, ω) ∈ C2(M,Z)×C1(M,R)×Ω2(M) | δc = 0, dω = 0, ω = c−δh}
and the morphisms are defined by

Hom((c, h, ω), (c′, h′, ω′))

=

⎧⎨⎩[e, k, 0]

∣∣∣∣∣∣ e ∈ C1(M,Z), k ∈ C0(M,R) and
c′ − c = δe

h′ − h = −δk − e
ω − ω′ = 0

⎫⎬⎭ .

The following theorem then holds (it is presented as a warm-up example in [9]):

Theorem 5.1. For each manifold M there exists an equivalence of categories

DChM : DBS1(M) → DC(M)

with DChM (P,A) = (c(P,A), h(P,A), FA) for each principal circle bundle with
connection (P,A). Here as before FA denotes the curvature of a connection A.

Remark 5.2. The functor that assigns a prequantum line bundle to a differ-
ential cocycle is the “homotopy inverse” of the functor DChM .

Finally here is an outline of an argument as to why this theorem is true and
how you would go about writing down the functor DCh. I will be following the
presentation in [11]. Here are the main ideas:

(1) Do it for all manifolds at once.
(2) Restate the theorem for presheaves of categories:

There exists a morphismDCh(·) : DBS
1(·) → DC(·) of presheaves

of categories with the desired properties.
Here the · is a place holder for a manifold.

(3) Write down the functor DCh explicitly for the sub-presheaf of trivial
bundles DBS1

triv(·) ⊂ DBS1(·). This is not hard. The set of objects of
the presheaf DBS1

triv(·) on a manifold M is the set

DBS1
triv(M)0 = {(M × S1, a+ dθ)|a ∈ Ω1(M)},

The set of morphisms is

Hom((M × S1, a+ dθ), (M × S1, a′ + dθ)) = {f : M → S1|a = a′ + f∗dθ}.
For each manifoldM we therefore define the functorDChM : DBS1

triv(M) →
DC(M) as follows: on objects

DChM (M × S1, a+ dθ) = (0, a, da),

on morphisms

DChM (f : M → S1) = [δ(f̃)− f∗dθ, f̃ , 0],

where f̃ : M → R is any lift of f (not necessarily continuous). We think

of f̃ as a real 0-cochain:

f̃

⎛⎝∑
p∈M

np

⎞⎠ =
∑

npf̃(p)

for any zero chain
∑

p∈M

np.
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The rest of the argument uses the following facts (see [11] for details):

(1) The functor DChM : DBS1
triv(M) → DC(M) is bijective on Hom’s (that

is, it is a fully faithful functor).
(2) If M is contractible (e.g. an open ball) then DChM is essentially sur-

jective. Of course, for a general manifold M not all bundles over M are
trivial, but they are all locally trivial.

(3) Any bundle with a connection can be glued together out of the trivial
ones.

(4) Differential cochains glue like bundles. Showing this requires work.

These last two facts amount to saying that the two presheaves DBS1(·) and DC(·)
are stacks over Man, the category of Manifolds.

The presheaf DBS1
triv is not a stack since gluing a bunch of trivial bundles

together need not result in a trivial bundle. There is an operation on presheaves
of categories called stackification. This is a version of sheafification for sheaves of
categories. The stackification of DBS1

triv, not surprisingly, is DBS
1. Therefore, by

the universal property of stackifications there is a unique functorDCh : DBS1(·) →
DC(·) making the following diagram

DBS1(·)
∃!

���
�

�
�

�

DC(·)

DBS1
triv(·)
��

��

DCh

		����������

commute. The resulting functor

DCh : DBS1(·) → DC(·)
is an equivalence of categories since it is an equivalence of categories locally.

Appendix A. Elements of category theory

A.1. Basic notions.

We start by recalling the basic definitions of category theory, mostly to fix our
notation. This appendix may be useful to the reader with some background in
category theory; the reader with little to no experience in category theory may
wish to consult a textbook such as [2].

Definition A.1 (Category). A category A consists of

(1) A collection3 A0 of objects;
(2) For any two objects a, b ∈ A0, a set HomA(a, b) of of morphisms (or

arrows);
(3) For any three objects a, b, c ∈ A0, and any two arrows f ∈ HomA(a, b)

and g ∈ HomA(b, c), a composite g ◦ f ∈ HomA(a, c), i.e., for all triples of
objects a, b, c ∈ A0 there is a composition map

3A collection may be too big to be a set; we will ignore the set-theoretic issues this may lead
to.
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◦ : HomA(b, c)×HomA(a, b) → HomA(a, c),

HomA(b, c)×HomA(a, b) " (g, f) �→ g ◦ f ∈ HomA(a, c).

This composition operation is associative and has units, that is,
i. for any triple of morphisms f ∈ HomA(a, b), g ∈ HomA(b, c) and
h ∈ HomA(c, d) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;
ii. for any object a ∈ A0, there exists a morphism 1a ∈ HomA(a, a),

called the identity, which is such that for any f ∈ HomA(a, b) we
have

f = f ◦ 1a = 1b ◦ f .
We denote the collection of all morphisms of a category A by A1:

A1 =
⊔

a,b∈A0

HomA(a, b).

Remark A.2. The symbol “◦” is customarily suppressed in writing out com-
positions of two morphisms. Thus

gf ≡ g ◦ f.

Example A.3 (Category Set of sets). The collection Set of all sets forms a
category. The objects of Set are sets, the arrows of Set are ordinary maps and the
composition of arrows is the composition of maps.

Example A.4 (Category Vect of vector spaces). The collection Vect of all real
vector spaces (not necessarily finite dimensional) forms a category. Its objects are
vector spaces and its morphisms are linear maps. The composition of morphisms
is the ordinary composition of linear maps.

Example A.5 (The category Mat of coordinate vector spaces). The objects
of this category are coordinate vector spaces 0 = R0,R1, . . . ,Rn . . .. The set of
morphism from Rm to Rn is the set of all n × m matrices. The composition of
morphisms is given by a matrix multiplication.

Remark A.6. For a category A there are two maps from the collection A1

of its arrows to the collection A0 of objects called source and target and denoted
respectively by s and t. They are defined by requiring that

s(f) = a and t(f) = b for any f ∈ HomA(a, b).

Definition A.7. A subcategory A of a category B is a collection of some objects
A0 and some arrows A1 of B such that:

• For each object a ∈ A0, the identity 1a is in A1;
• For each arrow f ∈ A1 its source and target s(f), t(f) are in A0;

• for each pair (f, g) ∈ A0 × A0 of composable arrows a
f→ a′

g→ a′′ the
composite g ◦ f is in A1 as well.

Remark A.8. Naturally a subcategory is a category in its own right.

Example A.9. The collection FinSet of all finite sets and all maps between
them is a subcategory of Set hence a category. The collection FinVect of real finite
dimensional vector spaces and linear maps is a subcategory of Vect.
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Example A.10. A subcategory FinVectiso is defined to have the same objects
as the category of FinVect. Its morphisms are isomorphisms of vector spaces. Since
the composition of two linear isomorphisms is an isomorphism FinVectiso is a sub-
category of FinVect.

Note that for any object V in FinVectiso, that is, for any finite dimensional
vector space V , the set of morphisms Hom(V, V ) in FinVectiso is GL(V ), the Lie
group of invertible linear maps from V to V .

Compare this to the fact that in the category FinVect the set of morphisms
Hom(V, V ) is End(V ), the space of all linear maps from V to itself.

Definition A.11 (isomorphism). An arrow f ∈ HomA(a, b) in a category A is
an isomorphism if there is an arrow g ∈ HomA(b, a) with g ◦ f = 1a and f ◦ g = 1b.
We think of f and g as inverses of each other and may write g = f−1. Clearly
g = f−1 is also an isomorphism.

Two objects a, b ∈ A0 are isomorphic if there is an isomorphism f ∈ HomA(a, b).
We will also say that a is isomorphic to b.

Definition A.12 (Groupoid). A groupoid is a category in which every arrow
is an isomorphism.

Example A.13. The category FinVectiso is a groupoid.

Definition A.14 (Functor). A (covariant) functor F : A → B from a category
A to a category B is a map on the objects and arrows of A such that every object
a ∈ A0 is assigned an object Fa ∈ B0, every arrow f ∈ HomA(a, b) is assigned an
arrow Ff ∈ HomB(Fa, Fb), and such that composition and identities are preserved,
namely

F (f ◦ g) = Ff ◦ Fg, F1a = 1Fa.

A contravariant functor G from A to B is a map on the objects and arrows of
A such that every object a ∈ A0 is assigned an object Ga ∈ B0, every arrow
f ∈ HomA(a, b) is assigned an arrow Gf ∈ HomB(Gb,Ga) (note the order reversal),
such that identities are preserved, and the composition of arrows is reversed:

G(f ◦ g) = G(g) ◦G(f)

for all composable pairs of arrows f, g of A.

Example A.15. There is a natural functor ι : Mat → FinVect which is the
identity on objects and maps an n×m matrix to the corresponding linear map.

Example A.16. The functor (−)∗ : FinVect → FinVect that takes the duals,

that is, (V
A−→ W ) �→ (V ∗ A∗

←− W ∗) is a contravariant functor.

Remark A.17. Since functors are maps, functors can be composed.

Definition A.18. A functor F : A → B is

(1) full if F : HomA(a, a
′) → HomB(Fa, Fa

′) is surjective for all pairs of ob-
jects a, a′ ∈ A0;

(2) faithful if F : HomA(a, a
′) → HomB(Fa, Fa

′) is injective for all pairs of
objects a, a′ ∈ A0

(3) fully faithful if F : HomA(a, a
′) → HomB(Fa, Fa

′) is a bijection for all
pairs of objects a, a′ ∈ A0;

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



168 EUGENE LERMAN

(4) essentially surjective if for any object b ∈ B0 there is an object a ∈ A0 and
an isomorphism f ∈ HomB(F (a), b). That is, for any object b of B there
is an object a of A so that b and F (a) are isomorphic.

Example A.19. The functor ι : Mat → FinVect is fully faithful (since any linear
map from Rn to Rm is uniquely determined by what it does on the standard basis)
and essentially surjective (since any real vector space of dimension n is isomorphic
to Rn).

Definition A.20 (Natural Transformation). Let F,G : A → B be a pair of
functors. A natural transformation τ : F ⇒ G is a family of {τa : Fa → Ga}a∈A0

of morphisms in B, one for each object a of A, such that, for any f ∈ HomA(a, a
′),

the following diagram commutes:

Fa Fb

Ga Gb

Ff
��

τb

��

τa

�� Fg
��

If each τa is an isomorphism, we say that τ is a natural isomorphism (an older term
is natural equivalence).

Definition A.21 (Equivalence of categories). An equivalence of categories con-
sists of a pair of functors

F : A → B, E : B → A

and a pair of natural isomorphisms

α : 1A ⇒ E ◦ F β : 1B ⇒ F ◦ E.

In this situation the functor F is called the pseudo-inverse or the homotopy
inverse of E. The categories A and B are then said to be equivalent categories.

Proposition A.22. A functor F : A → B is (part of) an equivalence of cate-
gories if and only if it is fully faithful and essentially surjective.

Proof. See [2, Proposition 7.25] �

Example A.23. The categories Mat of matrices and FinVect of finite dimen-
sional vector spaces are equivalent categories since the functor ι : Mat → FinVect
(q.v. Example A.15) is fully faithful and essentially surjective. Note that the functor
ι is not surjective on objects.

Appendix B. Densities

In this section we borrow from a manuscript by Guillemin and Sternberg [8].

B.1. Densities on a vector space. Consider an n-dimensional real vector
space V . Recall that a basis {v1, . . . , vn} defines a linear isomorphism v : Rn → V
by v(x1, . . . , xn) =

∑
xivi. Conversely any linear isomorphism v : Rn → V defines

a basis {v1, . . . , vn} of V by setting the ith basis vector vi to be the image v(ei) of
the standard ith basis vector ei of R

n under the isomorphism v. From now on we
will not distinguish between a basis of V and a linear isomorphism from Rn to V .
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Definition B.1 (Frame). We denote the space of bases of an n dimensional
real vector space V by Fr(V ) and refer to it as the space of frames of V .

Note that there is a natural right action • of the Lie group GL(n,R) ≡ GL(Rn)
on the space of frames Fr(V ) of an n-dimensional vector space V by composition
on the right:

v •A := v ◦A
for all isomorphisms v : Rn → V and all A ∈ GL(n,R). Moreover this action is free
and transitive: given v, v′ ∈ Fr(V ) and A ∈ GL(n,R)

v •A = v if and only if A = (v−1 ◦ v′).

Remark B.2. A space X with a free and transitive action of a group G is
called a G torsor.

With these preliminaries out of the way we are ready to define α-densities on a
vector space.

Definition B.3 (α-density). Let α denote a complex number. An α-density
(also called a density of order α) on an n-dimensional real vector space V is a map

τ : Fr(V ) → C with τ (v •A) = τ (v)| det(A)|α

for all v ∈ Fr(V ) and all A ∈ GL(n,R).

Notation B.4. Since α-densities on a fixed vector space V are complex valued
functions, they form a complex vector space. We denote it by |V |α. In other words

|V |α := {τ : Fr(V ) → C | τ (v•A) = τ (v)| det(A)|α for all v ∈ Fr(V ), A ∈ GL(n,R)}.

Remark B.5. Alternatively one may view the space of frames Fr(V ) as a
principal GL(n,R) bundle over a point. An α-density is then a section of the asso-
ciated bundle (Fr(V )× C)/GL(n,R), where GL(n,R) acts on C by the character
A �→ | detA|α. Since (Fr(V )×C)/GL(n,R) is a complex line bundle over a point,
it is a one dimensional complex vector space. Hence the space of sections of this
bundle, i.e., the space of densities |V |α, has complex dimension 1. In particular we
have proved:

Lemma B.6. The space |V |α of α-densities on a vector space V is a complex
1-dimensional vector space.

Remark B.7. Any nonzero n-form ω ∈ Λn(V ∗) on an n-dimensional real vector
space V defines an α-density |ω|α by the formula

|ω|α(v1, . . . , vn) := |ω(v1, . . . , vn)|α

for all frames {v1, . . . , vn} ∈ Fr(V ).
Conversely, since the space |V |α of α densities is 1-dimensional, any density

τ ∈ |V |α is of the form τ = c|ω|α for some nonzero n-form ω ∈ Λn(V ∗) and a
constant c ∈ C.

Remark B.8. Densities pull back under linear isomorphisms. If T : W → V is
an isomorphism of n-dimensional vector spaces and τ ∈ |V |α is a density then its
pullback T ∗τ : Fr(W ) → C is defined by

T ∗τ (w1, . . . wn) = τ (Tw1, . . . Twn)
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for any frame w = {w1, . . . , wn} ∈ Fr(W ). Note that since T is an isomorphism
the tuple (Tw1, . . . Twn) is a frame of V , so the definition of pullback does make
sense.

Remark B.9. Densities can be multiplied: if ρ ∈ |V |α and τ ∈ |V |β are two
densities of order α and β respectively then their product defined by

(ρ · τ )(v) = ρ(v)τ (v)

is easily seen to be a density of order α+β. Since the multiplication map (ρ, τ ) �→ ρ·τ
is C bilinear, we get a C linear map

|V |α ⊗ |V |β → |V |α+β .

Since the map is nonzero, it is an isomorphism of vector spaces by dimension count.
In particular we have a canonical isomorphism

|V |1/2 ⊗ |V |1/2 �→ |V |1.

Remark B.10. It makes sense to take a complex conjugate of a density. If
ρ ∈ |V |α is an α-density then ρ̄ : Fr(V ) → C defined by

ρ̄(v) := ρ(v)

for all v ∈ Fr(V ) is easily seen to be an ᾱ-density.
Therefore we can define on the space |V |1/2 of half-densities a |V |1-valued

Hermitian inner product by

(μ, τ ) := μ̄τ.

B.2. Densities on manifolds. Recall that for any real vector bundle E → M
of rank k over a manifold M we have the principal GL(k,R) bundle Fr(E) → M ,
the so-called frame bundle of E → M . A typical fiber Fr(E)q of this bundle above
a point q of M consists of the frames of the fiber Eq of the bundle E:

Fr(E)q := Fr(Eq).

Recall also that we can think of Fr(E) as an open subset of the vector bundle
Hom(M × Rk, E) → M ; Fr(E) consists of isomorphisms. There is a natural right
GL(k,R) action of Fr(E) making it a principal GL(k,R) bundle.

Next recall that given a principal G-bundle G → P → M over a manifold M
and a (complex) representation ρ : G → GL(W ), we can build out of this data a
complex vector bundle P ×ρ W → M over M . This bundle is the quotient of the
trivial bundle P ×W by a free and proper left action of G:

P ×ρ W := (P ×W )/G, g · (p, w) := (pg−1, ρ(g)w).

It will be useful to recall that the space of sections of the associated bundle Γ(P ×ρ

W ) is isomorphic to the space of equivariant W -valued functions on P :

Γ(P ×ρ W ) ! {ϕ : P → W | ϕ(p · g) = ρ(g)−1ϕ(p)}.

Definition B.11 (densities on a manifold). We define the complex line bundle
|TM |α → M of α-densities on a manifold M to be the associated bundle

|TM |α := Fr(TM)×| det |−α

C,

where the representation | det |−α : GL(k,R) → GL(C) is defined by

| det |−α(A)z := | detA|−αz for all A ∈ GL(k,R), z ∈ C.
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We refer to the sections of the bundle |TM |α → M as α-densities on the manifold
M . We denote the space of α-densities on a manifold M by |M |α:

|M |α := Γ(Fr(TM)×| det |−α

C).

Remark B.12. We may and will identify the space of α-densities on a manifold
M with the space of equivariant complex functions on its frame bundle:

|M |α ! {τ : Fr(TM) → C | τ (v •A) = | detA|ατ (v)
for all A ∈ GL(m,R), v ∈ Fr(TM)}.

Remark B.13. Note that by design the fiber of the bundle |TM |α → M at
a point q is the 1-dimensional complex vector space |TqM |α of α-densities on the
tangent space TqM .

Remark B.14. By construction the transition maps for the complex line bundle
|TM |α → M take their values in positive real numbers. It follows that |TM |α → M
is a trivial bundle but not canonically. In particular its space of sections |M |α is
a rank 1 C∞(M,C) module. Since the space of sections of the tensor product is
isomorphic to the tensor product of sections (as C∞(M) modules), it follows that
for any complex line bundle L → M , a section of L ⊗ |TM |α is of the form s ⊗ τ
for some section s ∈ Γ(L) of L → M and some α-density τ .

Remark B.15. Since densities on a vector space pull back under a linear
isomorphism, densities on a manifold pull back under local diffeomorphisms: If
F : N → M is a local diffeomorphism between two manifolds and τ : Fr(TM) → C

an α-density on M , the pullback F ∗τ ∈ |N |α is defined as follows: for any point
q ∈ N and any frame (v1, . . . , vn) of TqN

(F ∗τ )q(v1, . . . , vn) := τF (q)(dFqv1, . . . , dFqvn).

Remark B.16. For any open subset U of Rm we have the canonical α-density
|dx1 ∧ · · · dxm|α (q.v. Remark B.7). Here, of course, x1, . . . , xm are the Cartesian
coordinates on Rm. This density defines an isomorphism U×C → |TU |α. Therefore,
for any α-density τ on U there exists a unique function fτ ∈ C∞(U) with

τ = fτ |dx1 ∧ · · · dxn|α.
Indeed,

fτ = τ

(
∂

∂x1
, . . . ,

∂

∂xm

)
.

Putting the preceding remarks together we note that for a diffeomorphism
F : U → V of open subsets of Rm and an α-density f(y)|dy1 ∧ . . .∧ dym|α on V we
have

(B.1) F ∗ (f(y)|dy1 ∧ . . . ∧ dym|α) = f(F (x))| detdFx|α|dx1 ∧ · · · ∧ dxn|α.
Formula (B.1) is a reason why 1-densities can be integrated over manifolds. The
story parallels the familiar story of integration of top degree forms on oriented
manifolds. The 1-densities have the advantage that the manifold doesn’t have to
be oriented (or even be orientable) for their integrals to make sense.

The story proceeds as follows. If U ⊂ Rn is an open set and τ ∈ |U |1 a
1-density, then, as remarked above,

τ = fτ |dx1 ∧ . . . ∧ dxn|
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for a unique complex valued smooth function fτ on U . One defines the integral∫
U
τ by ∫

U

τ :=

∫
U

fτ .

Or, if you prefer, ∫
U

f |dx1 ∧ . . . ∧ dxn| :=
∫
U

f dx1 . . . dxn

for any smooth integrable function f on the set U . This is a complex valued integral.
If M is a manifold of dimension m, φ : U → Rm a coordinate chart and τ is a

1-density on M with support in U one defines∫
M

τ :=

∫
φ(U)

(φ−1)∗τ.

If ψ : U → Rm is another coordinate chart, then

(ψ−1)∗τ = f(y) |dy1 ∧ · · · ∧ dym|
for some f ∈ C∞(ψ(U)). Consider the diffeomorphism F = ψ◦φ−1 : φ(U) → ψ(U).
We have

(φ−1)∗τ = (ψ−1 ◦ ψφ−1)∗τ = F ∗(ψ−1)∗τ.

By (B.1)

(φ−1)∗τ = f(F (x))| detDFx||dx1 ∧ · · · ∧ dxm|.
Therefore∫

φ(U)

(φ−1)∗τ =

∫
φ(U)

f(F (x)) | detDFx| dx1 · · · dxm

=

∫
F (φ(U))=ψ(U)

f(y) dy1 · · · dym =

∫
ψ(U)

(ψ−1)∗τ, .

where the second equality holds by the change of variables formula for functions
on regions of Rm. Therefore integrals of 1-densities supported in coordinate charts
are well-defined.

Next one makes sense of integrability of non-negative densities. A 1-density τ
on a manifold M is non-negative if its value at any frame {v1, . . . vm} ⊂ TqM is
a non-negative real number. It is not hard to see that “non-negativity” is well-
defined. Now choose a locally finite cover {Uα} of M by coordinate charts and
choose a partition of unity {ρα} subordinate to the cover. We say that a non-
negative 1-density is integrable if the sum∑

α

∫
M

ρατ =
∑
α

∫
Uα

ρατ

converges. We then define
∫
M
τ to be the sum:∫

M

τ :=
∑
α

∫
Uα

ρατ.

The rest of the definition of integration of 1-densities proceeds just like for functions.
A given real-valued 1-density τ can be written as a difference of two (continuous)
non-negative 1-densities τ+ and τ−:

τ = τ+ − τ−.
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We call τ integrable if
∫
M
τ+ and

∫
M
τ− are finite. We then set

∫
M
τ =

∫
M
τ+ −∫

M
τ−. Finally we define a complex valued 1-density τ integrable if its real and

imaginary parts are integrable; we define its integral to be the sum∫
M

τ =

∫
M

Re(τ ) +
√
−1

∫
M

Im(τ ).

B.3. The “Intrinsic” Hilbert space. Suppose (L → M, 〈·, ·〉) is a Hermit-
ian line bundle. Then given a 1-density τ on M we can define a Hermitian pairing
pairing of sections of L by

〈〈s, s′〉〉 :=
∫
M

〈s, s′〉τ.

There is an associated Hilbert space of “square integrable” sections, which, of
course, depends on the choice of our density τ . There is also a more intrinsic pairing
of sections of a slightly different bundle. Consider the tensor product of complex
line bundles L⊗ |M |1/2 → M . By Remark B.14 a section of L⊗ |M |1/2 → M is of
the form s⊗μ, where s ∈ Γ(L) and μ is a 1

2 -density. Now given two sections s1⊗μ1

and s2 ⊗ μ2 we can pair them to get a 1-density 〈s1, s2〉μ̄1μ2 (q.v. Remark B.10).
Hence the Hermitian inner product

Γ(L⊗ |M |1/2)× Γ(L⊗ |M |1/2) → R, 〈〈s1 ⊗ μ1, s2 ⊗ μ2〉〉 :=
∫
M

〈s1, s2〉μ̄1μ2

makes sense (whenever the integral converges). It is easy to see that the integral
above does converge for all sections in the space

L2(L⊗|M |1/2,M)∩Γ(L⊗|M |1/2) :=
{
s⊗ μ ∈ Γ(L⊗ |M |1/2)

∣∣∣ ∫
M

〈s, s〉 |μ|2 < ∞
}
.

The completion of the space with respect to the Hermitian inner product gives us
the “intrinsic Hilbert space of square-integrable sections” L2(L⊗ |M |1/2,M).
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Lectures on group-valued moment maps
and Verlinde formulas

Eckhard Meinrenken

1. Introduction

The theory of q-Hamiltonian G-spaces has its origins in the theory of Hamilton-
ian loop group actions, which in turn is motivated by moduli spaces of flat bundles
over surfaces with boundary (cf. [10, 59]).

It is a well-known guiding principle that loop groups for compact, simply con-
nected Lie groups G behave in many ways like compact Lie groups. The role of
the co-adjoint action of G on the dual of the Lie algebra g∗ is played by the gauge
action of LG on the space Lg∗ = Ω1(S1, g) of connections on the trivial G-bundle
over S1, where the pairing with Lg = Ω0(S1, g) is given by integration over S1

(using an invariant inner product on the Lie algebra g). See e.g. [61]. The action of
the based loop group L0G ⊂ LG on Lg∗ is free, with quotient Lg∗/L0G the group
G and quotient map the holonomy of a connection. Given an infinite-dimensional
Hamiltonian LG-manifold M, with symplectic form σ and equivariant moment
map Ψ: M → Lg∗, the action of L0G on M is again free (by equivariance), and
we obtain a space M = M/L0G, with an action of G = LG/L0G, and with an
equivariant map Φ: M → G induced by Ψ:

M −−−−→
Ψ

Lg∗⏐⏐9/L0G

⏐⏐9/L0G

M −−−−→
Φ

G

Under suitable properness assumptions on Ψ, the spaceM is finite-dimensional and
compact. The original idea of q-Hamiltonian geometry is to replace the infinite-
dimensional spaceM with the finite-dimensional spaceM , regarding Φ as a moment
map. An obstacle is that the symplectic form σ on M is not L0G-basic, and hence
it does not descend, in general. It was observed in [3] that there is nevertheless a
2-form ω on M , canonically determined by σ, and satisfying a G-valued moment
map condition. The 2-form ω is neither closed nor non-degenerate, in general, but
both properties are replaced by precise conditions involving the moment map.
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176 ECKHARD MEINRENKEN

The axioms for q-Hamiltonian spaces [3] seemed a little strange at first, but
led to useful theory with remarkably good properties. A few years later, Ping Xu
[73] and Bursztyn-Crainic [19] provided a more conceptual interpretation of group-
valued moment maps in terms of Dirac geometry. This led to major simplifications
of the proofs (e.g. [2, 56]), and paved the way for applications involving non-
compact groups or in complex-holomorphic settings (e.g. [15, 20, 23]).

These notes will give an overview of the theory of group-valued moment maps,
avoiding loop groups. Particular emphasis will be on the subject of quantization
of group-valued moment maps, and its application to Verlinde formulas for moduli
space. The notes are based on lectures at the ‘Summer School on Quantization’ at
Notre Dame University, May 31-June 4, 2011. Some additional material is included
from a lecture series at the IGA workshop in Adelaide, September 2011. The
audience for the summer school were postdoctoral and graduate students, with a
variety of backgrounds. I made an effort to keep the lectures at a moderate pace,
and to present motivation and foundational material, without going into technical
details. These notes, while more detailed than the actual lectures, are written with
a similar audience in mind.

2. Motivation: Moduli spaces of flat bundles

Suppose G is a compact, simply connected Lie group, and · an invariant inner
product (‘metric’) on its Lie algebra g. Let Σ be a closed, connected, oriented
2-manifold of genus h

Σ =

Since G is assumed to be simply connected, any principal G-bundle over Σ is trivial.
Let A(Σ) = Ω1(Σ, g) be the infinite-dimensional affine space of connections on the
trivial G-bundle over Σ. (We are treating infinite-dimensional manifolds in an
informal manner; in any case we will soon pass to a finite-dimensional picture.)
The group G(Σ) = Map(Σ, G) acts on A(Σ) by gauge transformations,

g.A = Adg(A)− g∗θR.

(We denote by θR, θL ∈ Ω1(G, g) the right-invariant Maurer-Cartan form on G.)
The curvature

curv(A) = dA+ 1
2 [A,A] ∈ Ω2(Σ, g)

transforms nicely under this action: curv(g.A) = Adg curv(A). In particular, the
subset Aflat = {A ∈ Ω1(Σ, g)| curv(A) = 0} of flat connections is gauge invariant.
Let

M(Σ) = Aflat(Σ)/G(Σ)
be the moduli space of flat connections on the trivial G-bundle over Σ. As observed
by Atiyah-Bott [11, 10], the space M(Σ) carries a natural symplectic structure,
depending only on the choice of the metric · on g. Here the symplectic form is
obtained by symplectic reduction, as follows. (We suggest the book [21] for back-
ground on symplectic reduction; this particular example is discussed on p. 158 of
the book.) First, the affine space A(Σ) carries a symplectic form, given on tangent
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vectors a, b ∈ TAΩ
1(Σ, g) = Ω1(Σ, g) by

ωA(a, b) =

∫
Σ

a · b.

The action of the gauge group G(Σ) preserves this 2-form, and is in fact Hamilton-
ian, with moment map the curvature curv : A(Σ) → Ω2(Σ, g). That is,

ω(ξA(Σ), ·) = −d

∫
Σ

curv ·ξ.

Here the integral on the right hand side is the function A �→
∫
Σ
curv(A) · ξ, and ‘d’

is the exterior differential on the infinite-dimensional manifold A(Σ). The moduli
space is hence recognized as a symplectic reduction

M(Σ) = A(Σ)//G(Σ) = curv−1(0)/G(Σ).

To see that M(Σ) is finite-dimensional, choose a base point x0 on Σ, and
let G(Σ, x0) ⊂ G(Σ) be the gauge transformations that are trivial at the base
point. For any flat connection A on Σ, its holonomy along a based loop in Σ
depends only on the homotopy class of that loop. It hence determines a group
homomorphism κ(A) : π1(Σ;x0) → G. Under the gauge action of g ∈ G(Σ),
κ(g.A) = Adg(x0)(κ(A)). Conversely (using that G is simply connected), any homo-
morphism π1(Σ;x0) → G arises from a flat connection. Hence there is a canonical
identification,

Aflat(Σ)/G(Σ, x0) ∼= Hom(π1(Σ;x0), G),

equivariant for the action of G(Σ)/G(Σ, x0) ∼= G. In particular,

M(Σ) = Hom(π1(Σ;x0), G)/G.

To be more explicit, we use a presentation of the fundamental group. This is done,
as usual, by cutting the surface along A-cycles (winding around the handles) and
B-cycles (going along the handles), as in the picture:

A1

B1

A2

B2

A1

B1

A1

B1A2

B2

A2

B2

After cutting, the surface becomes a polygon with 4h sides, where h is the genus
(number of handles) of the surface. Each handle gives rise to a word AiBiA

−1
i B−1

i ,

and we obtain the relation
∏h

i=1AiBiA
−1
i B−1

i = 1 since the boundary of the poly-
gon is contractible. Thus

π1(Σ;x0) =
〈
A1, B1, . . . , Ah, Bh|

h∏
i=1

AiBiA
−1
i B−1

i

〉
is a presentation of the fundamental group. Letting ai, bi ∈ G be the holonomies
of a connection along the paths Ai, Bi we obtain,

Hom(π1(Σ;x0), G) = Φ−1(e)
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178 ECKHARD MEINRENKEN

where Φ: G2h → G is the map

Φ(a1, b1, . . . , ah, bh) =
h∏

i=1

aibia
−1
i b−1

i ,

and finally

M(Σ) = Φ−1(e)/G.

From this description, it is evident that M(Σ) is a compact space. If h ≥ 2, then
the subset Φ−1(e)reg of points whose stabilizer in G equals the center Z(G) ⊂ G,
is open and dense in Φ−1(e). One may check that Φ has maximal rank at such
points. It follows that Φ−1(e)reg/G is a smooth symplectic manifold of dimension
(2h− 2) dimG.

In the 1990s, the holonomy picture was used as a starting point for finite-
dimensional constructions of the symplectic form on the moduli space, and an
investigation of its cohomology. Important references include [35, 37, 38, 42,
44, 45, 71]. Jeffrey and Huebschmann [38, 42] developed an approach where
the logarithm of the map Φ is viewed as a moment map, proving that M(Σ) can
be written as a symplectic quotient of a finite-dimensional Hamiltonian G-space.
Unfortunately, since the ‘logarithm’ is not globally defined, one cannot take this
Hamiltonian space to be compact, and consequently many of the standard tech-
niques of Hamiltonian geometry do not apply. One of the purposes of the theory of
group-valued moment maps is to provide a more natural framework, in which the

holonomy map Φ(a1, b1, . . . , ah, bh) =
∏h

i=1 aibia
−1
i b−1

i (rather than its logarithm)
is directly viewed as a moment map.

3. Group-valued moment maps

Given a Lie group G, we denote by θL ∈ Ω1(G, g) the left-invariant Maurer-
Cartan form and by θR ∈ Ω1(G, g) the right-invariant Maurer-Cartan form. In
terms of a matrix representation of G, we have

θL = g−1 dg, θR = dgg−1.

Suppose g carries an Ad(G)-invariant non-degenerate symmetric bilinear form (‘met-
ric’), denoted by a dot ‘·’. Thus Adg(ξ1) · Adg(ξ2) = ξ1 · ξ2 for all ξ1, ξ2 ∈ g. We
denote by

η = 1
12 [θ

L, θL] · θL ∈ Ω3(G)

the Cartan 3-form. Since θR = Adg θ
L and since · is invariant, we may also write

η = 1
12 [θ

R, θR] · θR. Thus η is a bi-invariant form on G, and hence it is closed:
dη = 0.

Definition 3.1 (Alekseev-Malkin-M [3]). A q-Hamiltonian G-space (M,ω,Φ)
is a G-manifold M , with a G-invariant 2-form ω ∈ Ω2(M) and a G-equivariant map
Φ ∈ C∞(M,G), called the moment map, satisfying

(i) ι(ξM )ω = − 1
2Φ

∗(θL + θR) · ξ, ξ ∈ g

(ii) dω = −Φ∗η,
(iii) ker(ω) ∩ ker(dΦ) = 0.

Here the G-equivariance of Φ is relative to the conjugation action on G.
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Remark 3.2. In the original definition [3], an alternative version of condition
(iii) was used, requiring

(iii′) ker(ωm) = {ξM (m)| AdΦ(m) ξ = −ξ}.
However, assuming conditions (i), (ii) one may show that (iii’) is equivalent to (iii).
This was observed by Bursztyn-Crainic [19] and Xu [73], independently.

Remark 3.3. In [3], the theory of group-valued moment maps was developed
under the assumption that the metric · on g is positive definite, which only happens
if the adjoint group G/Z(G) is compact. Using the more conceptual approach via
Dirac geometry, initiated by [19], the main results all generalize to possibly non-
compact groups (e.g. semi-simple Lie groups with · the Killing form on g), as well
as to the holomorphic category. For details, see [2, 56].

Let us contrast the definition of q-Hamiltonian spaces with the usual definition
of a Hamiltonian G-space. The latter is given by a G-manifold M with an invariant
2-form ω and an equivariant map Φ: M → g∗ satisfying the conditions,

(i) ι(ξM )ω = −〈dΦ, ξ〉,
(ii) dω = 0,
(iii) ker(ω) = 0.

Remark 3.4. Assuming (i),(ii), the condition ker(ω) = 0 can be shown to be
equivalent to the condition ker(ω) ∩ ker(dΦ) = 0.

We will now discuss the main examples and basic properties of q-Hamiltonian spaces
parallel to their Hamiltonian counterparts.

3.1. Examples.
3.1.1. Coadjoint orbits, conjugacy classes. The first examples of Hamiltonian

G-spaces are the orbits O ⊂ g∗ of the co-adjoint action

g.μ = (Adg−1)∗μ, g ∈ G, μ ∈ g
∗.

(The choice of an invariant metric on g identifies the coadjoint and adjoint actions;
hence we will denote the coadjoint action also by Adg μ := (Adg−1)∗μ.) The mo-
ment map is the inclusion Φ: O ↪→ g∗. The 2-form on the coadjoint orbit O is
determined by the moment map condition, and is given at any point μ ∈ O by the
formula

ω(ξO, ξ
′
O)μ = 〈μ, [ξ, ξ′]〉, ξ, ξ′ ∈ O.

Similarly, the first examples of q-Hamiltonian G-spaces are the orbits of the con-
jugation action on G. The moment map for a conjugacy class is the inclusion
Φ: C ↪→ G, and the 2-form is uniquely determined by the moment map condition:

ω(ξC, ξ
′
C)a = 1

2 (Ada −Ada−1)ξ · ξ′.
Since dΦ is injective in this example, condition (iii) is automatic. Note that the
2-form ω may well-be degenerate: If elements of C square to central elements, the
2-form is even zero. Note also that conjugacy classes may be odd-dimensional (e.g.
the conjugacy class C ∼= S1 of O(2) consisting of reflections in the plane) or non-
orientable (e.g. the conjugacy class C ∼= RP (2) of SO(3) consisting of rotations by
π). On the other hand, one can show that connected q-Hamiltonian G-spaces for
connected, simply connected groups G are always even-dimensional and oriented
(see [7, 4]).
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180 ECKHARD MEINRENKEN

3.1.2. Cotangent bundles, the double. The cotangent bundle T ∗G, with the
cotangent lift of the G × G-action on G, (g1, g2).a = g1ag

−1
2 , is an example of a

Hamiltonian G×G-space. Using left trivialization T ∗G ∼= G× g∗ of the cotangent
bundle, the cotangent action reads (g1, g2).(a, μ) = (g1ag

−1
2 ,Adg2 μ). The two

components of the moment map are Φ1(a, μ) = Ada(μ), Φ2(a, μ) = −μ.
Similarly, an example of a q-Hamiltonian G × G-space is the double D(G) ∼=

G×G, with action
(g1, g2).(a, b) = (g1ag

−1
2 , g2bg

−1
1 )

moment map components

Φ1(a, b) = ab, Φ2(a, b) = a−1b−1,

and 2-form
ω = 1

2a
∗θL · b∗θR + 1

2a
∗θR · b∗θL

(here we view a, b as maps D(G) → G). Replacing the variable b with d = ba
makes this look similar to the action on T ∗G in left trivialization; for instance
Φ1 = Ada(d), Φ2 = d−1.

One can also consider T ∗G with the cotangent lift of the conjugation action,
with corresponding moment map (a, μ) �→ Ada μ−μ. The q-Hamiltonian analogue
is the double D(G) = G × G 1 with the action g.(a, b) = (Adg(a),Adg(b)), with
moment map the Lie group commutator

Φ(a, b) = aba−1b−1,

and with the 2-form

ω = 1
2a

∗θL · b∗θR + 1
2a

∗θR · b∗θL + 1
2 (ab)

∗θL · (a−1b−1)∗θR.

This is a special case of the fusion operation to be discussed below.
3.1.3. Linear spaces, spheres. The space Cn = R2n, with its standard sym-

plectic form, is a Hamiltonian U(n)-space. Similarly, the even-dimensional sphere
S2n is a q-Hamiltonian U(n)-space, where the action is defined by the embedding
U(n) ↪→ SO(2n) ⊂ SO(2n + 1). This example was found independently in [7],
[40] for n = 2, and generalized to higher dimensions by Hurtubise-Jeffrey-Sjamaar
[39]. There is a similar pair of examples, due to Eshmatov [27], of a Hamiltonian
Sp(n)-action on the quaternionic space Hn, and a q-Hamiltonian Sp(n)-action on
quaternionic projective space HP(n).

3.1.4. Moduli spaces of surfaces with boundary. Assume G simply connected.
Let Σ be a compact, connected surface with a single boundary component. Fix a
base point x0 ∈ ∂(Σ) on the boundary, and let

M(Σ) = Aflat(Σ)/G(Σ;x0)
be the moduli space of flat connections on Σ, up to gauge transformations that
are trivial at x0. The space M(Σ) carries a residual action of G(Σ)/G(Σ;x0) ∼= G,
and the map taking the holonomy around ∂Σ descends to a G-equivariant map
Φ: M(Σ) → G. A generalization of the Atiyah-Bott gauge theory construction dis-
cussed above gives 2-form ω on M(Σ), making (M(Σ), ω,Φ) into a q-Hamiltonian
G-space. More generally, if Σ has r boundary components, fix one base point on
each boundary component. Then the moduli space M(Σ) of flat connections mod-
ulo based gauge transformations is a q-Hamiltonian Gr-space. It turns out that the

1We use the bold face notation to indicate that we consider the double as a G-space, rather
than as a G×G-space.
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LECTURES ON GROUP-VALUED MOMENT MAPS AND VERLINDE FORMULAS 181

space associated to a cylinder (2-punctured sphere) is isomorphic to D(G), while
the space associated to a 1-punctured torus is isomorphic to D(G).

3.2. Basic constructions: products. Given two HamiltonianG-spaces, their
direct product, with the diagonal G-action and with the sum of moment maps and
2-forms, is again a Hamiltonian G-space. For q-Hamiltonian spaces, the product
operation uses the product of the moment maps, but it is necessary to modify the
sum of the 2-forms.

Proposition 3.5. [3] Suppose (Mi, ωi,Φi), i = 1, 2 are two q-Hamiltonian
G-spaces. Then their fusion product

(M1 ×M2, ω1 + ω2 +
1
2Φ

∗
1θ

L · Φ∗
2θ

R,Φ1Φ2),

is again a q-Hamiltonian G-space.

Here the modification of the 2-form is required due to the following property
of the 3-form η under group multiplication Mult : G×G → G,

Mult∗η = pr∗1 η + pr∗2 η − 1
2d pr

∗
1 θ

L · pr∗2 θR,
where pr1, pr2 : G×g → G are the two projections. More generally, if (M,ω, (Φ1,Φ2))
is a q-Hamiltonian G×G-space, then we obtain a q-Hamiltonian G-space

(Mfus, ωfus,Φfus),

where Mfus is M with the diagonal G-action, Φfus = Φ1Φ2 and ωfus = ω+ 1
2Φ

∗
1θ

L ·
Φ∗

2θ
R.

Remark 3.6. The fusion property finds a natural proof within the framework
of Dirac structures [2, 19, 56] . Here, the axioms of a q-Hamiltonian are absorbed
into a morphism of Manin pairs (strong Dirac morphism) from M into G, equipped
with the so-called Cartan-Dirac structure. Since group multiplication in G is again
a morphism of Manin pairs, the fusion operation becomes simply a composition of
morphisms.

As an application, the space G2h, with G acting diagonally by conjugation and

with moment map Φ(a1, b1, . . . , ah, bh) =
∏h

i=1 aibia
−1
i b−1

i carries the structure of
a q-Hamiltonian G-space as an h-fold fusion of the double D(G). The following
nice way of looking at the 2-form was described by Pavol Ševera in [64]. For any
manifold X, the space C∞(X,G)× Ω2(X) has a group structure

(q1, ω1)(q1, ω2) = (q1q2, ω1 + ω2 +
1
2q

∗
1θ

L · q∗2θR).
Take X = G2h, with elements x = (a1, b1, . . . , ah, bh), and let q1, . . . , q4h : G

2g → G
be the maps

x �→ a1, b1, a
−1
1 , b−1

1 , a2, b2, a
−1
2 , b−1

2 , . . . , a−1
h , b−1

h .

Then (q1, 0) · · · (q4h, 0) = (Φ, ω) defines the q-Hamiltonian 2-form ω ∈ Ω2(G2h)
and the moment map Φ.

The name ‘fusion’ corresponds to the fusion of surfaces, as in the following
example. See [59] for a similar discussion for Hamiltonian loop group actions.

Example 3.7 (Fusion of moduli spaces). Suppose G is simply connected. For
any compact, oriented surface Σ with boundary component, with a marked point on
each boundary component, we denote byM(Σ) the moduli space of flat connections
on Σ, up to gauge transformations that are trivial at the marked points. (See
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182 ECKHARD MEINRENKEN

Section 3.1.4.) Suppose Σ has (at least) two boundary components. For instance, Σ
could be a disjoint union of two surfaces Σ1 and Σ2 with one boundary component,
as in the following picture.

Then the fusion M(Σ)fus is naturally identified with the moduli space M(Σfus)
of the surface Σfus,

which is obtained by joining the two boundary components of Σ by a pair of pants:
the two pant legs are attached to two boundaries.

For example, the moduli space of flat connections on the cylinder can be identified
with the double D(G) ∼= G×G, a q-Hamiltonian G×G space. Fusing D(G) with
itself, we obtain the moduli space D(G) of flat connections on the punctured torus.

One can construct the punctured surface of genus h by joining h copies of the
punctured torus together with h− 1 pairs of pants.

. . .

Thus, the moduli space of flat g-connections on the punctured surface of genus h is

M(Σh) := D(G)× · · · ×D(G)︸ ︷︷ ︸
h

∼= G2h.

3.3. Reduction. Symplectic reduction of q-Hamiltonian G-spaces works just
the same as for ordinary Hamiltonian spaces. Suppose (M,ω,Φ) is a q-Hamiltonian
G-space, such that the group unit e is a regular value of the moment map. Then it
is automatic that the G-action on Φ−1(e) has discrete stabilizers. If G is compact
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(or more generally if the action is proper), it follows that the quotient

M//G = Φ−1(e)/G

is an orbifold. Furthermore, the pull-back of ω to Φ−1(e) is basic, and the resulting
2-form on M//G is symplectic – even though ω itself was neither closed nor non-
degenerate. This is possible because ωm is non-degenerate for all m ∈ Φ−1(e), and
since its pull-back to Φ−1(e) is closed. If e is a singular value of Φ the space M//G
is a singular symplectic space in the sense of Sjamaar-Lerman [66].

As an application of reduction, we obtain a symplectic structure on the moduli
space of flat G-bundles, viewed as a symplectic quotient,

M(Σh) = G2h//G.

Note that e is never a regular value of Φ: G2h → G, since Φ−1(e) contains the point
(e, . . . , e) whose stabilizer is the entire group G. More generally, if C1, . . . , Cr ⊂ G
are conjugacy classes,

(3.1) M(Σr
h, C1, . . . , Cr) = (G2h × C1 × · · · × Cr)//G

is the moduli space of flat G bundles over a surface with r boundary components,
with holonomies around boundary circles in prescribed conjugacy classes Cj .

C1 C2 C3

One of the main results in [3] asserts that, for G compact and simply connected,
the symplectic structure obtained by q-Hamiltonian reduction coincides with that
coming from the Atiyah-Bott construction.

3.4. Convexity theorem. We next describe some convexity results for q-
Hamiltonian spaces. Here we assume that the group G is compact and simply
connected.

3.4.1. Weyl chamber, alcove. We fix a maximal torus T in G, with Lie algebra
t ⊂ g. An open Weyl chamber in t is a connected component of the set

{ξ ∈ t| ker(adξ) = t} = {ξ ∈ t| Gξ = T},
while an open alcove is a connected component of the set

{ξ ∈ t| ker(eadξ − 1) = t} = {ξ ∈ t| Gexp ξ = T},
here Gζ resp. Gg are the stabilizers of ζ ∈ g resp. g ∈ G under the adjoint action.
Pick an open Weyl chamber, let t+ be its closure, and let A be the unique closed
alcove with 0 ∈ A ⊂ t+.

{ξ | ker(adξ) = t} {ξ | ker(eadξ − 1) = t}

0 0

t+

A
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Let t∗+ be the image of t+ under the isomorphism t ∼= t∗ defined by the invariant
metric on g. (This does not depend on the choice of metric.)

The fundamental Weyl chamber labels the set of coadjoint orbits O ⊂ g∗, in
the sense that every such orbit is of the form G.μ for a unique element μ ∈ t∗+.
(See [17, Ch. IX, §2, Proposition 7].) Similarly, the fundamental Weyl alcove labels
the conjugacy classes C ⊂ G, in the sense that every conjugacy class is of the form
G. exp ξ for a unique ξ ∈ A. (See [17, Ch. IX, §5, Corollary 2].)

3.4.2. Convexity theorem. The following result is known as the Hamiltonian
convexity theorem.

Theorem 3.8 (Atiyah [9], Guillemin-Sternberg [32, 34], Kirwan [49]). Let
(M,ω,Φ) be a compact connected Hamiltonian G-space. Then

(1) the fibers of Φ are connected,
(2) the set

Δ(M) = {μ ∈ t
∗
+| μ ∈ Φ(M)}

is a convex polytope.

Similarly, the q-Hamiltonian convexity theorem states:

Theorem 3.9 (M-Woodward [59]). Let (M,ω,Φ) be a compact connected q-
Hamiltonian G-space. Then

(1) the fibers of Φ are connected,
(2) the set

Δ(M) = {ξ ∈ A| exp ξ ∈ Φ(M)}
is a convex polytope.

The result was phrased in [59] in terms of Hamiltonian loop group actions; the
formulation in terms of q-Hamiltonian spaces follows using the equivalence theorem
in [3].

3.4.3. Eigenvalue problems. The Hamiltonian convexity theorem has nice ap-
plications to eigenvalue problems. Let Rn

+ be the set of λ ∈ Rn with λ1 ≥ · · · ≥ λn.
For a complex Hermitian n × n matrix A, let λ(A) ∈ Rn

+ be its ordered tuple of
eigenvalues. One then has:

Corollary 3.10 (Horn polytope). Let μ, μ′ ∈ Rn
+ be given. Then the set

γ ∈ Rn
+ for which there exist Hermitian matrices A,A′ with

λ(A) = μ, λ(A′) = μ′, λ(A+A′) = γ,

is a convex polytope.

In short, the possible eigenvalues of a sum of Hermitian matrices with prescribed
eigenvalues form a convex polytope. Corollary 3.10 follows by identifying Hermitian
matrices with u(n)∗, the cone Rn

+ with the positive Weyl chamber t∗+, and matrices
with prescribed eigenvalues with coadjoint orbits O ⊂ u(n)∗. The Corollary is
then an immediate consequence of the Hamiltonian convexity theorem applied to
a product of coadjoint orbits O×O′. A description of the faces of this polytope in
terms of explicit eigenvalue inequalities was known as the Horn conjecture, this was
solved by Klyachko [50] in 1994. For more general compact groups, the inequalities
for the moment polytopes of products of coadjoint orbits in general were determined
by Berenstein-Sjamaar [13].
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The q-Hamiltonian convexity theorem has applications to multiplicative eigen-
value problems. The eigenvalues of any special unitary matrix A ∈ SU(n) may be

written in the form e2π
√
−1λ1(A), . . . , e2π

√
−1λn(A), for a unique λ(A) ∈ Rn with

n∑
i=1

λi(A) = 0, λ1(A) ≥ · · · ≥ λn(A) ≥ λ1(A)− 1.

Corollary 3.11 (M-Woodward). Given μ, μ′ ∈ Rn, the set

{γ ∈ Rn| ∃A,A′ ∈ SU(n) : λ(A) = μ, λ(A′) = μ′, λ(AA′) = γ},

is a convex polytope.

In short, the possible eigenvalues of a product of special unitary matrices with
prescribed eigenvalues forms a convex polytope. The corollary is obtained by apply-
ing Theorem 3.9 to a fusion product of two conjugacy classes, C ×C′. The problem
of determining the faces of this polytope was solved by Agnihotri-Woodward [1].
The moment polytope for products of conjugacy classes in a general compact simply
connected Lie group was determined by Teleman-Woodward [67].

3.4.4. Connectivity of the fibers. Let us also note the following consequences of
the first part of Theorem 3.9, concerning connectivity of the fibers of the moment
map.

Corollary 3.12. Let G be a compact, simply connected Lie group, and (M,ω,Φ)
a compact connected q-Hamiltonian G-space. Then the symplectic quotient M//G
is connected.

In particular, the moduli spaces (3.1) are connected.

Corollary 3.13. For any compact, simply connected Lie group G, the fibers
of the commutator map G×G → G, (a, b) �→ aba−1b−1 are connected.

This follows by applying Theorem 3.9 to the double D(G). Note that this result
is not easy to prove ‘by hand’.

3.4.5. Multiplicity-free spaces. An interesting class of Hamiltonian G-spaces are
the multiplicity-free spaces. These are spaces such that the map M/G → Δ(M) is a
homeomorphism; equivalently, the symplectic quotients are 0-dimensional. In case
G is a torus, Delzant [22] proved that multiplicity-free spaces are determined by
their moment polytopes. This result was extended by Woodward [72] to ‘reflective’
multiplicity-free spaces for non-abelian groups. The classification of multiplicity-
free spaces in general is more involved, and was completed only recently by F. Knop
[51] following Losev’s proof of the ‘Knop conjecture’. The definition of multiplicity-
free spaces carries over verbatim to the q-Hamiltonian setting. For instance, the
q-Hamiltonian SU(n)-space S2n and the q-Hamiltonian Sp(n)-space HP(n) are
multiplicity free. The following picture shows the moment polytopes for a reflective
multiplicity free Hamiltonian SU(3)-space (left) and a reflective multiplicity free q-
Hamiltonian SU(3)-space (right). These examples are due to Chris Woodward.
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3.5. Volume forms. The Liouville form of a symplectic manifold (M,ω) is
the volume form defined as Γ = 1

n!ω
n, or equivalently as the top degree part of the

exponential of ω,
Γ = (expω)[top].

In local Darboux coordinates q1, p1, . . . , qn, pn, one has ω =
∑

i dqi ∧ dpi, and
the Liouville form is dq1 ∧ dp1 · · · ∧ dqn ∧ dpn. Given a compact Hamiltonian G-
space (M,ω,Φ), one defines the Duistermaat-Heckman measure [26] to be the push-
forward on g∗ of the associated measure, m = Φ∗|Γ|. It has interesting properties,
and may be calculated using localization techniques.

For a q-Hamiltonian G-space (M,ω,Φ), we saw that the 2-form ω may be
degenerate or even zero. Assuming thatG is compact and simply connected, it turns
out that there is nevertheless a distinguished volume form on M . In particular, M
carries a canonical orientation. The construction involves a certain differential form
on G.

Proposition 3.14. For any compact, simply connected Lie group G, the func-

tion g �→ det(
Adg +1

2 ) admits a smooth global square root, equal to 1 at g = e.
Furthermore, there is a well-defined smooth differential form ψ ∈ Ω(G), given on
the set where det(Adg +1) �= 0 by

ψ = det1/2(
1+Adg

2 ) exp( 14
Adg −1
Adg +1θ

L · θL).

Note that the set where det(Adg +1) �= 0 is open and dense in G. Note that the
2-form inside the exponential becomes singular on the subset where det(Adg +1) =
0, but the scalar factor in front of the exponential has zeroes there. The Proposition
says that the zeroes compensate the singularities, so that the form extends smoothly
across the set det(Adg +1) = 0.

Theorem 3.15. [7] Suppose G is compact and simply connected. For any q-
Hamiltonian G-space (M,ω,Φ), the top degree part of the form exp(ω)Φ∗ψ is a
G-invariant volume form,

Γ = (eωΦ∗ψ)[top].

In particular, M is even-dimensional and carries a canonical orientation. A
conceptual explanation of the volume form is given in [2, 56], where the differen-
tial form ψ is identified as a pure spinor, and the Theorem is interpreted as the
non-degeneracy of a pairing between two pure spinors. As shown in [7], the push-
forward m = Φ∗|Γ| ∈ E ′(G) plays the role of a Duistermaat-Heckman measure, with
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properties similar to the Hamiltonian Duistermaat-Heckman measure. In partic-
ular, it encodes volumes of symplectic quotients, and for G compact and simply
connected it can be computed by localization [5].

3.6. Kirwan surjectivity. There are many other aspects of the Hamilton-
ian theory that carry over the q-Hamiltonian setting, with suitable modifications.
One result of central importance for Hamiltonian spaces is the Kirwan surjectivity
theorem. We assume that G is compact. For any G-manifold M , let H•

G(M) be
its equivariant cohomology ring with coefficients in R. It may be realized as the
cohomology of the Cartan complex (Ω•

G(M), dG) where

Ωk
G(M) =

⊕
2i+j=k

(Sig∗ ⊗ Ωj(M))G.

Viewing elements of ΩG(M) as G-equivariant polynomial maps β : g → Ω(M), the
differential is given by

(dGβ)(ξ) = dβ(ξ)− ι(ξM )β(ξ), ξ ∈ g.

Example 3.16. (1) If (M,ω,Φ) is a Hamiltonian G-space, then ωG =
ω +Φ ∈ Ω2

G(M) is an example of a closed equivariant 2-form.
(2) If G carries an invariant metric ·, then

ηG(ξ) = η + 1
2 (θ

L + θR) · ξ

defines a closed equivariant 3-form ηG ∈ Ω3
G(M). Conditions (i),(ii) in

the definition of a q-Hamiltonian G-space may be combined into a single
condition dGω = −Φ∗ηG.

Theorem 3.17 (Kirwan [48]). Let (M,ω,Φ) be a Hamiltonian G-space, with
0 a regular value of the moment map Φ. Then the pull-back map

HG(M) → HG(Φ
−1(0)) ∼= H(M//G)

is a surjective ring homomorphism.

Thus, all cohomology classes on the symplectic quotient are obtained from
equivariant cohomology classes on the unreduced space. For instance, the class [ωG]
descends to the class of the symplectic form on M//G. This result is the starting
point for the calculation of intersection pairings on M//G using localization on M ,
see e.g. [43], [68].

For a q-Hamiltonian G-space, the map HG(M) → HG(Φ
−1(e)) = H(M//G)

need not be surjective, in general. There are in fact examples where H2
G(M) = 0, so

that the class of the symplectic form onM//G need not lie in the image of this map.
It turns out that the correct version of the surjectivity theorem involves the topology
of the group G. We assume that G is compact and simply connected. As is well-
known, the inclusion of bi-invariant differential forms (∧g∗)G ∼= Ω(G)G×G ↪→ Ω(G)
induces an isomorphism in cohomology. Since the de Rham differential restricts to
zero on bi-invariant differential forms, it follows that

H(G) = (∧g∗)G.
On the other hand, it is known that the invariants (∧g∗)G are an exterior algebra
over a graded subspace P • ⊂ (∧•g∗)G of primitive elements.

(∧g∗)G = ∧P.
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Here dimP = l equals the rank of G, and all homogeneous elements in P are of
odd degree. Let η1, . . . , ηl ∈ Ω2di−1(G) be a homogeneous basis of P , where η1 is
the Cartan 3-form. For instance, if G = SU(n + 1), the generators of (∧g∗)G are
of degree 3, 5, 7, . . . , 2n + 1. It turns out that each of the ηi admits an extension
ηGi ∈ Ω2di−1

G (G) to an equivariantly closed form. These may be constructed using an
equivariant version of the Bott-Shulman complex [41] (see also [55]). In particular,
ηG1 = ηG.

Suppose now that (M,ω,Φ) is a q-Hamiltonian G-space. Define a new complex,

Ω̃G(M) = ΩG(M)[u1, . . . , ul],

where [u1, . . . , ul] denotes the graded ring of polynomials in given variables ui of
degree 2di − 2, and with the differential

d̃G = dG +
l∑

i=1

Φ∗ηGi
∂

∂ui
.

(Here Φ∗ηGi acts by exterior multiplication, raising the degree by 2di − 1, while the

differentiation ∂
∂ui

lowers the degree by 2di − 2. We hence see that d̃G raises the

degree by 1, as required.) The cohomology of this complex is denoted H̃•
G(M). Let

(3.2) Ω̃•
G(M) → Ω̃•

G(Φ
−1(e)) → Ω•

G(Φ
−1(e))

be the cochain map, given by pull-back followed by the augmentation map for
[u1, . . . , ul] (setting these variables equal to zero). For instance, the element

ω + u1

is a cocycle (since dGω = −Φ∗ηG), and its image under the map (3.2) is simply the
pull-back of ω to Φ−1(e) (a closed, basic form).

Theorem 3.18 (Kirwan surjectivity for q-Hamiltonian G-spaces). Suppose
(M,ω,Φ) is a q-Hamiltonian G-space, where G is compact and simply connected,
and suppose e is a regular value of Φ. Then the map

H̃•
G(M) → H•

G(Φ
−1(e)) = H•(M//G)

is a surjective ring homomorphism.

The surjectivity result was originally proved by Bott, Tolman and Weitsman
[16] in terms of Hamiltonian loop group actions. In unpublished work with A. Alek-
seev, we obtained the reformulation above, using a ‘small model’ for the equivariant
cohomology of the loop group space. As an application, one obtains generators for
the cohomology rings of moduli spaces, see e.g. [55].

4. Quantization of Hamiltonian G-spaces

Our aim in these lectures is to explain the quantization of q-Hamiltonian G-
spaces. In this Section, we set the stage by reviewing aspects of the quantization
of ordinary Hamiltonian G-spaces. The term ‘quantization’ will be used in a wide
sense. Ideally, the quantization of a symplectic manifold should be Hilbert space,
and a Hamiltonian G-action (thought of as classical symmetries) should be quan-
tized to define a representation of G by unitary operators on the Hilbert space
(thought of as quantum symmetries). The method of geometric quantization pro-
duces such G-representations, but requires further data and additional assumptions.
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Rather than dealing with concrete Hilbert spaces, we will be content with isomor-
phism classes of G-representations. That is, we will take the quantization of a
Hamiltonian G-space to be a certain element of the representation ring of G.

4.1. Background in representation theory. In this Section, we take G
to be compact and connected. For any G-representation π : G → Aut(V ), let
χV ∈ C∞(G) be its character, χV (g) = tr(π(g)). Characters have the properties

χV⊕W = χV + χW , χV⊗W = χV χW , χV ∗ = χ∗
V ,

hence they form a subring R(G) ⊂ C∞(G) of the ring of complex-valued functions,
invariant under the involution ∗. As an additive group, R(G) is the Z-module
spanned by the characters of irreducible representations, also called the irreducible
characters.

Fix a maximal torus T ⊂ G, with Lie algebra t ⊂ g, and let P ⊂ t∗ be the (real)
weight lattice. Thus μ ∈ t∗ lies in P if and only if the Lie algebra homomorphism

t → u(1), ξ �→ 2π
√
−1〈μ, ξ〉

exponentiates to a group homomorphism eμ : T → U(1). For any G-representation
π : G → Aut(V ), we define the weight spaces Vμ = {v ∈ V | ∀t ∈ T : π(t)v =
eμ(t)v}, μ ∈ P , and the set of weights

P (V ) = {μ ∈ P | Vμ �= 0}.
Let t∗+ ⊂ t∗ be a choice of fundamental Weyl chamber. It is known that if V is
irreducible, then there is a unique weight μ ∈ P (V ) such that μ + ε has maximal
length, for any ε ∈ int(t∗+). This element μ ∈ P (V )∩ t∗+ is called the highest weight
of V . By H. Weyl’s theorem, this sets up a 1-1 correspondence between the set of
irreducible representations and the set

P+ = P ∩ t∗+

of dominant weights of G. Thus, as a Z-module we have

R(G) = Z[P+],

with basis the irreducible characters χμ indexed by dominant weights μ ∈ P+. In
the figure below, the shaded area is the fundamental Weyl chamber for the group
SU(3), while the dominant weights are indicated as dots.

0

4.2. Quantization of Hamiltonian G-spaces. Suppose now that (M,ω,Φ)
is a Hamiltonian G-space, with moment map Φ: M → g∗.

Definition 4.1. A pre-quantum line bundle L → M is a G-equivariant Her-
mitian line bundle with connection ∇, such that

(1) curv(∇) = ω,
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(2) The g-action on L is given by Kostant’s formula

ξL = Lift∇(ξM ) + 〈Φ, ξ〉∂θ
where ∂θ ∈ X(L) generates the S1-action on L.

Remarks 4.2. (1) The existence of a pre-quantum line bundle is equiv-
alent to the integrality of the 2-form ω.

(2) If G is simply connected, the existence of the pre-quantum lift of the G-
action from M to L is automatic. Indeed, the formula for ξL defines a Lie
algebra action of g on L by infinitesimal Hermitian automorphisms, and
this Lie algebra action integrates to a Lie group action.

(3) If a G-equivariant pre-quantum line bundle exists, then the choice of L is
unique up to a flat G-equivariant line bundle.

Given an equivariant pre-quantization, we obtain an element Q(M) of the rep-
resentation ring, as follows. Let J : TM → TM be a G-invariant compatible almost
complex structure, i.e. g(v, w) = ω(Jv, w) is a Riemannian metric. (In other words,
every tangent space admits an isomorphism TmM → Cn = R2n taking ωm to the
standard symplectic structure

∑n
i=1 e2i−1 ∧ e2i and Jm to the standard complex

structure e2i−1 �→ e2i, e2i �→ −e2i−1.) The space of G-invariant compatible almost
complex structures is well-known to be contractible; hence the particular choice of
J is unimportant for what follows. Let TMC = T 1,0M ⊕ T 0,1M be the decomposi-
tion into ±i eigenbundles of J . Then ∧T 0,1M is a spinor module over the Clifford
bundle C l(TM), where the Clifford action of T 0,1M is by exterior multiplication
and that of T 1,0M is by contraction. (See Section 7 below.) Tensoring with L one
obtains a new spinor module,

S = ∧T 0,1M ⊗ L

Let /∂ : Γ(S) → Γ(S) be the associated Dirac operator, given by the covariant de-
rivative ∇ : Γ(S) → Γ(T ∗M ⊗ S) followed by the Clifford action of T ∗M ∼= TM ⊂
C l(TM) on S. Then /∂ is a G-equivariant elliptic operator, and hence it has a
G-equivariant index. Let S+, S− be the even, odd part of the spinor bundle.

Definition 4.3. The quantization Q(M) ∈ R(G) of the pre-quantized Hamil-
tonian G-space (M,ω,Φ) is the G-index

Q(M) = indexG(/∂) = χker(/∂|S+ ) − χker(/∂|S− ).

For any given L, the construction of /∂ involves a few choices such as the choice
of J and of connections; however, the stability property of indices guarantees that
Q(M) is independent of those choice. (In fact, it turns out that for G connected,
even the choice of L does not affect Q(M). This is immediate from the equivariant
index formula of Berline and Vergne [14], cf. [54].) The basic properties of the
quantization are as follows:

(1) Q(M1 ∪M2) = Q(M1) +Q(M2),
(2) Q(M1 ×M2) = Q(M1)Q(M2),
(3) Q(M∗) = Q(M)∗,
(4) Borel-Weil-Bott (weak version): G.μ, μ ∈ t∗+ is pre-quantized if and only

if μ ∈ P+. In this case,

Q(G.μ) = χμ.
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Property (d) is a weak version of the Borel-Weil-Bott theorem: the strong
version uses Kähler quantization, and realizes the irreducible representation corre-
sponding to μ as a space of holomorphic sections of the pre-quantum line bundle.

Let R(G) → Z, χ �→ χG be the group homomorphism defined on basis elements
by χG

μ = δμ,0. That is, χ
G is the coefficient of the basis element χ0 in χ. The map

χ �→ χG may be regarded as the ‘quantum counterpart’ to symplectic reduction
(taking the coefficient of μ = 0 corresponds to setting the moment map value equal
to 0). The following fact was conjectured by Guillemin-Sternberg in the 1980s. (In
[33], Guillemin and Sternberg gave a full proof of a similar statement for Kähler
quantization.)

Theorem 4.4 (Quantization commutes with reduction).

Q(M)G = Q(M//G).

Remark 4.5. The right hand side of this result requires some explanation. If
0 is a regular value of the moment map, and G acts freely on the zero level set
Φ−1(0), then M//G is a symplectic manifold with pre-quantum line bundle L//G =
L|Φ−1(0)/G. In this case, the right hand side is defined as the (non-equivariant)
index of the corresponding Spinc-Dirac operator. If the action on the zero level set
is only locally free, then L//G becomes an orbifold line bundle over the orbifold
M//G, and the index has to be interpreted accordingly (using Kawasaki’s index
theorem for orbifolds). In the most general case, one can define the right hand
side by a partial desingularization of M//G, reducing to the orbifold case. In this
generality, the result was proved in [58].

Example 4.6. Let Nμ1μ2μ3
for μ1, μ2, μ3 ∈ P+ be the tensor coefficients, de-

fined by

χμ1
χμ2

=
∑

μ3∈P+

Nμ1μ2μ3
χ∗
μ3
.

Equivalently, Nμ1μ2μ3
= (χμ1

χμ2
χμ3

)G. Let Oi be the coadjoint orbits of μi ∈ P+.
Then

Nμ1μ2μ3
= Q(O1 ×O2 ×O3//G),

realizing the tensor coefficients as an index.

Given a pre-quantized Hamiltonian G-space (M,ω,Φ), let N(μ) ∈ Z be the
multiplicity of χμ in the quantization Q(M),

Q(M) =
∑
μ∈P+

N(μ)χμ.

Thus N(0) = Q(M)G. For any μ ∈ t∗+, let M//μG = Φ−1(μ)/Gμ be the symplectic
quotient at level μ ∈ g∗. The shifting trick expresses M//μG as a reduction at 0:

M//μG = (M × (G.μ)∗)//G;

here (G.μ)∗ denotes the coadjoint orbit G.μ with minus the standard symplectic
structure and minus the inclusion as a moment map. Suppose μ ∈ P+ ⊂ g∗. Since

Q((G.μ)∗) = Q(G.μ)∗ = χ∗
μ,

Theorem 4.4 shows that the multiplicity of 0 in Q(M × (G.μ)∗) equals the multi-
plicity N(μ) of μ in Q(M). Thus

N(μ) = Q(M//μG).
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4.3. Localization. In most cases, the ‘quantization commutes with reduction’
theorem is not very practical for the calculation of weight multiplicities in Q(M).
Instead, the result is often used in the opposite direction: One obtains the indices of
symplectic quotients Q(M//μG) from the knowledge of Q(M). The main technique
for the computation of Q(M) is localization.

The Atiyah-Segal-Singer equivariant index theorem for elliptic operators, spe-
cialized to the case of Spinc-Dirac operators, gives the formula

Q(M)(g) =
∑

F⊂Mg

∫
F

Â(F ) Ch(L|F , g)1/2
DR(νF , g)

where the sum is over fixed point manifolds F ⊂ Mg for the action of g. Here L
is the ‘Spinc-line bundle’ L = L2 ⊗K−1, with K the canonical bundle, and νF is

the normal bundle to F . The terms Â(F ),Ch(L|F , g)1/2, and DR(νF , g) are certain
characteristic classes of TF, L|F , νF . (For details, see e.g. [57, Section 5.3].)

Remark 4.7. The fixed point formula can also be written in ‘Riemann-Roch
form’,

Q(M)(g) =
∑

F⊂Mg

∫
F

Td(F ) Ch(L|F , g)
DC(νF , g)

,

which is often easier to use for computations. However, the ‘Spinc-form’ will be
more convenient for our discussion.

Remark 4.8. If one tries develop a similar quantization procedure for q-
Hamiltonian G-spaces (M,ω,Φ), one is faced with several obstacles. First, the
2-form ω need not be closed, hence it cannot be the curvature form of a line bun-
dle. Secondly, since ω can be degenerate, there is no obvious notion of ‘compatible
complex structure’. (In fact, there are examples of conjugacy classes C of compact,
simply connected Lie groups not admitting any Spinc-structure.) Hence, there is
no suitable Dirac operator in sight. In the following sections we will explain how
to get around these problems.

5. The level k fusion ring

From the correspondence with Hamiltonian loop group spaces, we expect that
the result of the quantization procedure of q-Hamiltonian spaces should be an
element not of the representation ring but of the fusion ring of G, at suitable level.

For the remainder of these lecture notes, we will assume that G is compact,
simply connected and simple. We fix a maximal torus T and a fundamental Weyl
chamber t∗+. Recall that P+ = P ∩ t∗+ are the dominant weights. Let θ ∈ P+ be the

highest root, i.e. the highest weight of the adjoint representation of G on gC. The
fundamental alcove has the following description

A = {ξ ∈ t+| 〈θ, ξ〉 ≤ 1}.
We denote by ρ ∈ P+ the unique shortest weight in P+ ∩ int(t∗+); equivalently 2ρ
is the sum of the positive roots of G. The basic inner product · on g is the unique
invariant inner product such that θ · θ = 2 (using the identification g ∼= g∗ given by
the inner product). We will use the basic inner product to identify g and g∗. The
dual Coxeter number of G is the positive integer defined by

h∨ = 1 + θ · ρ.
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For G = SU(N) one has h∨ = N .

Definition 5.1. Let k ∈ {1, 2, . . .}. The level k weights of G are the elements
of

Pk = P ∩ kA.

The following pictures show the set of level k weights, as well as the weights
ρ, θ, in two examples. The shaded area is kA.

ρ = θ ρ

θ

G = SU(3)
k = 3

G = Spin(5)
k = 4

For λ ∈ Pk define the special element

tλ = exp( λ+ρ
k+h∨ ) ∈ T.

Definition 5.2. The level k fusion ring (Verlinde algebra) is the quotient

Rk(G) = R(G)/Ik(G)

by the level k fusion ideal, Ik(G) = {χ ∈ R(G)| χ(tλ) = 0 ∀ λ ∈ Pk}.

The fusion ring Rk(G) plays an important role in conformal field theory (see
e.g. [28]). It is also known as the level k Verlinde algebra, after the physicist Erik
Verlinde [69].

Remark 5.3. Rk(G) is also the fusion ring of level k projective representations
of the loop group LG. However, we will not need this interpretation here.

Some basic properties of the level k fusion ring are as follows:

(1) the unit and involution of R(G) descend to a unit and involution of Rk(G),
(2) Rk(G) has finite Z-basis the images τμ of χμ, μ ∈ Pk. Thus

Rk(G) = Z[Pk].

(3) Rk(G) has a trace,

Rk(G) → Z, τ �→ τG

where τGμ = δμ,0.
(4) The integers

N (k)
μ1μ2μ3

= (τμ1
τμ2

τμ3
)G, μi ∈ Pk
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are called the level k fusion coefficients. They encode the multiplication
in Rk(G):

τμ1
τμ2

=
∑

μ3∈Pk

N (k)
μ1μ2μ3

τ∗μ3
.

If μ1, μ2, μ3 ∈ P+ are fixed, the fusion coefficients become independent of
k for sufficiently large k, and coincide with the tensor coefficients:

N (k)
μ1μ2μ3

= Nμ1μ2μ3
, k >> 0.

Example 5.4. For G = SU(2), it is not difficult to determine the level k fusion
ring ‘by hand’. Identify t ∼= R in such a way that P+ = {0, 1, . . .}. Here m ≥ 0
is realized as the dominant weight for the m-th symmetric power of the defining
representation, SmC2. We have ρ = 1, θ = 2, and the alcove is the interval
[0, 1] ⊂ R. Hence Pk = {0, 1, . . . , k}. The product in R(SU(2)) is given by the
well-known formula

χlχm = χl+m + χl+m−2 + . . .+ χ|l−m|.

Equivalently, the tensor coefficients are given by

Nm1m2m3
= 1

if m1 + m2 + m3 is even with mi ≤ 1
2 (m1 + m2 + m3) for i = 1, 2, 3, and are

zero in all other cases. One finds that the level k fusion ideal is Ik(SU(2)) =
〈χk+1〉, and the quotient map R(G) → Rk(G) is ‘signed reflection’ across indices
k + 1, 2k + 3, 3k + 5, . . ..

To illustrate, if k = 5 we find τ3τ4 = τ3 + τ1 since

χ3χ4 = χ7 + χ5 + χ3 + χ1,

and because χ7 �→ −τ5, χ5 �→ τ5 under the quotient map. For m1,m2,m3 ∈
{0, 1, . . . , k}, the SU(2) fusion coefficients at level k are given by

N (k)
m1m2m3

= 1

provided m1 +m2 +m3 is even with

mi ≤ 1
2 (m1 +m2 +m3) ≤ k

for i = 1, 2, 3, and are zero in all other cases.

For a general compact simple Lie group G, the quotient map R(G) → Rk(G)
is a ‘signed reflection’ for a shifted Stiefel diagram. We illustrate the quotient map
for G = SU(3) and level k = 3. Consider the set Pk of level k weights

3A
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LECTURES ON GROUP-VALUED MOMENT MAPS AND VERLINDE FORMULAS 195

One can show that the weights Pk, shifted by ρ, are exactly the weights in the
interior the shifted alcove at level k + h∨:

Pk + ρ = P ∩ (k + h∨) int(A).

The affine reflections across the faces of the shifted alcove (k + h∨)A − ρ alcove
generate the ρ-shifted level k + h∨ Stiefel diagram, shown in the following picture.

3A

The shifted affine Weyl group is the group of transformations of t, generated by
reflections across these affine hyperplanes:

The last picture shows the weights that can be reflected into Pk. If μ ∈ P+ lies on
the walls of the shifted Stiefel diagram, then χμ lies in the kernel of the quotient
map Rk(G). Otherwise, the quotient map takes χμ to ±τν , where ν ∈ Pk is the
unique level k weight related to μ by a sequence of affine reflections, and where the
sign (plus or minus) is given by the parity (even or odd) of the required number of
reflections.
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Remark 5.5. It was shown by Gepner [31] and Bouwknegt-Ridout [18] that
for G = SU(N), the level k fusion ideal has the description

Ik(G) = 〈χ(k+1)�1
, . . . , χ(k+N−1)�1

〉,

where �1 (the first fundamental weight) is the highest weight of the defining rep-
resentation of SU(N) on CN . There is a similar presentation of the fusion ideal for
the symplectic group Sp(r). Explicit presentations of the fusion rings for the other
simple groups, with small numbers of generators, were obtained by C. Douglas in
[25].

By definition of the ideal Ik(G), the evaluation maps

R(G) → C, χ �→ χ(tλ)

for λ ∈ Pk vanishes on Ik(G), hence they descend to the fusion ring:

Rk(G) → C, τ �→ τ (tλ).

After complexification, we obtain a new additive basis τ̃μ, μ ∈ Pk of Rk(G) ⊗ C,
characterized by the property

τ̃μ(tλ) = δλ,μ.

In the new basis, the product is diagonalized: τ̃μτ̃ν = δμ,ν τ̃ν . The two bases are
related by the S-matrix

S ∈ End(C[Pk]).

The S-matrix is the unique unitary matrix with properties

Sμ,ν = Sν,μ, S0,ν > 0

for μ, ν ∈ Pk, and such that

τμ =
∑
ν∈Pk

S−1
0,ν S

∗
μ,ν τ̃ν ;

In terms of the S-matrix, the fusion coefficients take on the form,

N (k)
μ1μ2μ3

=
∑
ν∈Pk

Sμ1,νSμ2,νSμ3,ν

S0,ν
.

6. Pre-quantization of q-Hamiltonian spaces

While the 2-form ω for a q-Hamiltonian G-space (M,ω,Φ) is not closed, in
general, the pair (ω,−η) defines a relative cocycle for the map Φ. To explain in
more detail, we recall the cone construction from homological algebra.

6.1. Relative cohomology.

Definition 6.1. Let F • : S• → R• be a cochain map between cochain com-
plexes. The algebraic mapping cone is the cochain complex

conek(F ) = Rk−1 ⊕ Sk, d(x, y) = (f(y)− dx, dy).

Its cohomology is denoted H•(F ), and is called the relative cohomology of the
cochain map F •.
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LECTURES ON GROUP-VALUED MOMENT MAPS AND VERLINDE FORMULAS 197

The short exact sequence of cochain complexes 0 → Rk−1 → conek(F ) → Sk →
0 gives rise to a long exact sequence of cohomology groups,

· · · → Hk−1(R) → Hk(F ) → Hk(S) → Hk(R) → · · · .

The connecting homomorphism H•(S) → H•(R) is just the map induced by F .
Given a smooth map Φ: M → N between manifolds, we define Ω•(Φ) =

cone•(Φ∗) to be the algebraic mapping cone for the pull-back of differential forms,
Φ∗ : Ω•(N) → Ω•(M). Its cohomology H•(Φ) := H•(Φ∗) is called the relative de
Rham cohomology of the map Φ. The usual isomorphism with the singular coho-
mology with real coefficients carries over the the relative setting, and there is a
coefficient homomorphism

H•(Φ,Z) → H•(Φ) = H•(Φ,R).

6.2. Definition of pre-quantization. For a q-Hamiltonian G-space, we have
dω = −Φ∗η and dη = 0. Hence

(ω,−η) ∈ Ω3(Φ)

is a cocycle. (In fact, working with equivariant forms the pair (ω,−ηG) is an
equivariant relative cocycle in Ω3

G(Φ), using the algebraic mapping cone for the
Cartan complexes.) Suppose G simple, simply connected, · the basic inner product.

Definition 6.2. [52, 57] Let (M,ω,Φ) be a q-Hamiltonian G-space, Φ: M →
G. A level k pre-quantization of (M,ω,Φ) is an integral lift of

k[(ω,−η)] ∈ H3(Φ,R).

There is an equivariant version of this condition, but for simply connected
compact groups G the equivariance is automatic. Indeed, in this case the natural
mapH•

G(X,Z) → H•(X,Z) for aG-spaceX is an isomorphism in degrees≤ 2, while
for any G-map Φ the map H•

G(Φ,Z) → H•(Φ,Z) is an isomorphism in degrees ≤ 3.
Cf. Krepski [52, Section 3].

Remark 6.3. The geometric interpretation of the pre-quantization condition
involves ‘gerbes’. Loosely speaking, the pre-quantization of the condition d(kω) =
−kΦ∗η is given by a gerbe over G, with 3-curvature form kη, together with a
trivialization of the pull-back of this gerbe to M , with kω the curvature form of
the trivialization. See Shahbazi [65] for further details.

6.3. Basic properties, examples. One has the following criterion for the
integrality of the relative form k(ω,−η) ∈ Ω3(Φ). For any manifold M , let C•(M)
be the chain complex of smooth singular chains on M (i.e. Ck(M) consists of Z-
linear combinations of smooth maps Δk → M , where Δk is the k-simplex). Recall
that a closed differential form α ∈ Ωk(M) is integral (i.e. its class [α] ∈ Hk(M,R)
lies in the image of Hk(M,Z)) if and only if

∫
Σ
α ∈ Z for all k-cycles Σ ∈ Zk(M).

This criterion extends to the relative case, so that we have:

Proposition 6.4. A q-Hamiltonian G-space (M,ω,Φ) is pre-quantizable at
level k if and only if for all Σ ∈ Z2(M), and any X ∈ C3(G) with Φ(Σ) = ∂X,

k(

∫
Σ

ω +

∫
X

η) ∈ Z.
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Note that for given Σ, it suffices to check for any X, due to the integrality of
η. In particular, the criterion is satisfied if the second homology group H2(M,Z) is
zero. Indeed, in this case we can take X = Φ(Y ) with Y ∈ C3(M), ∂Y = Σ, and
the criterion holds true by Stokes’ theorem.

Example 6.5. The doubleD(G) = G×G, Φ(a, b) = aba−1b−1 is pre-quantizable
for all k ∈ N, since H2(D(G),Z) = 0.

Example 6.6. The q-Hamiltonian SU(n)-spaceM = S2n and the q-Hamiltonian
Sp(n)-space M = HP(n) are pre-quantized at all levels k ∈ N, since H2(M,Z) = 0
in these examples.

Recall that conjugacy classes C ⊂ G are parametrized by points in the alcove,
where ξ ∈ A corresponds to the conjugacy class C = G. exp ξ. We have:

Example 6.7. The level k pre-quantized conjugacy classes C ⊂ G are those
indexed by

ξ ∈ 1
kPk ⊂ A.

The following picture shows the pre-quantized conjugacy classes for SU(3) at
level k = 3.

G = SU(3)
k = 3

In all these examples, the torsion subgroup of H2(M,Z) is trivial, hence the
pre-quantization is unique.

Pre-quantizations are well-behaved with respects to products: If M1,M2 are
level k-pre-quantized q-Hamiltonian G-spaces, then their fusion product M1 ×
M2 inherits a level k pre-quantization. In particular, the q-Hamiltonian G-space
D(G)h×C1×· · ·×Cr has a level k pre-quantization, provided the conjugacy classes
Cj have level k pre-quantizations.

Furthermore, if M is a level k pre-quantized q-Hamiltonian G-space, then the
symplectic quotient M//G inherits a pre-quantization at level k, i.e. for the k-
th multiple of the symplectic form. (If the symplectic quotient is singular, this
statement should be interpreted as in [58].)

7. Twisted Spinc-structures on q-Hamiltonian spaces

Besides the notion of pre-quantization, a key ingredient in the quantization of
Hamiltonian G-spaces is the existence of a canonical Spinc-structure (defined by a
compatible almost complex structure). For q-Hamiltonian G-spaces, there need not
be a Spinc-structure in general, but it turns out that there is a canonical twisted
Spinc-structure.

7.1. Spinc-structures. We will use the following viewpoint toward Spinc-
structures. Given a Euclidean vector space V , let C l(V ) denote its complex Clif-
ford algebra. Thus C l(V ) is the complex unital algebra with generators v ∈ V
and relations v1v2 + v2v1 = 2〈v1, v2〉. Using a basis e1, . . . , en ∈ V to iden-
tify V ∼= Rn, the Clifford algebra has basis the products eI = ei1 . . . eik for
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I = {i1, . . . , ik} ⊂ {1, . . . , n} with i1 < · · · < ik, with the convention e∅ = 1. Thus,
C l(V ) = ∧(V ) ⊗ C as a vector space. The Clifford algebra carries a Z2-grading,
where the even (resp. odd) part is spanned by products of an even (resp. odd)
number of elements of V .

Definition 7.1. Suppose dimV is even. A spinor module over C l(V ) is a Z2-
graded Hermitian vector space S, together with an isomorphism C l(V ) → End(S)
preserving Z2-gradings and involutions ∗.

A concrete spinor module is obtained by the choice of an orthogonal com-
plex structure J ∈ End(V ): Let V C = V 1,0 ⊕ V 0,1 be the decomposition into ±i
eigenspaces of J , the space ∧V 0,1 is a spinor module, with Clifford action of gen-
erators v = v1,0 + v0,1 given by ι(v1,0) + ε(v0,1) (here ι denotes contraction, ε is
exterior multiplication). One has the following fact:

Proposition 7.2. For any two spinor modules S, S′ over C l(V ), the space

HomC l(V )(S, S
′)

of linear maps S → S′ intertwining the Clifford actions is 1-dimensional.

These definitions generalize to Euclidean vector bundles V → M in an obvi-
ous way. In particular, we define a spinor module over C l(V ) to be a Z2-graded
Hermitian vector bundle S → M , together with an even isomorphism of ∗-algebra
bundles C l(V ) → End(S). Given an orthogonal complex structure J on V , the
bundle ∧V 0,1 → M is such a spinor module.

Definition 7.3. A Spinc-structure on an even rank Euclidean vector bundle
V → M is a spinor module S over C l(V ). A Spinc-structure on an even-dimensional
Riemannian manifold is a Spinc-structure on TM .

Remarks 7.4. (1) A Spinc-structure on a Euclidean vector bundle V of
rank n can also be defined as an orientation on V together with a lift of the
structure group from SO(n) to the group Spinc(n). The two definitions
are equivalent [60].

(2) For Euclidean vector bundle of odd rank, one can define a Spinc-structure
on V to be a Spinc-structure on V ⊕ R.

(3) There are two topological obstructions to the existence of a Spinc-structure
on V . The first obstruction w1(V ) ∈ H1(M,Z2) is simply the obstruction
to orientability of V . The second obstruction W 3(V ) ∈ H3(M,Z) is
the third integral Stiefel-Whitney class, given as the image of w2(V ) →
H2(M,Z2) under the Bockstein homomorphism. Note that W 3(V ) is 2-
torsion, which is consistent with the fact that V ⊕ V = V ⊗ C carries a
Spinc-structure.

(4) If S is spinor module, then so is the graded S ⊗ L for any Z2-graded
Hermitian line bundle L. (A Z2-grading on a complex line bundle L → M
is just the assignment of an even or odd parity over each component of
M .) Proposition 7.2 generalizes to the fact that any two Spinc-structures
S, S′ on V differ by a Z2-graded Hermitian line bundle:

S′ = S⊗ L; L = HomC l(V )(S, S
′).
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7.2. Dixmier-Douady theory. Given a separable Hilbert space H, we de-
note by K(H) the ∗-algebra of compact operators on H, i.e. the norm closure of the
algebra of operators of finite rank. One may think of K(H) as an appropriate notion
of infinite matrices. The action of the unitary group U(H) by conjugation on K(H)
descends to the projective unitary group PU(H) = U(H)/U(1), and in fact it is
known that

Aut(K(H)) = PU(H),

where PU(H) carries the strong topology.2

Definition 7.5. A (Z2-graded) Dixmier-Douady bundle over M is a (Z2-
graded) bundle of ∗-algebras A → M , with typical fiber K(H) for some (Z2-graded)
Hilbert space H. A Morita trivialization of the Dixmier-Douady bundle A is a bun-
dle of (Z2-graded) Hilbert spaces E → M with an even isomorphism of ∗-algebra
bundles A → K(E).

Example 7.6. For an even rank Euclidean vector bundle V → M , the Clifford
bundle C l(V ) is a Z2-graded Dixmier-Douady bundle. A Z2-graded Morita trivi-
alization of C l(V ) is the same thing as a spinor module S over C l(V ), i.e. it is a
Spinc-structure on V .

Generalizing this example, one finds that for any two Morita trivializations
E , E ′ of a Z2-graded DD-bundle A → M , the bundle HomA(E , E ′) is a Z2-graded
Hermitian line bundle, and conversely any two Morita trivializations differ by such
a line bundle

E ′ = E ⊗ L; L = HomA(E , E ′).

Given a DD-bundle A → M , there is an obstruction DD(A) ∈ H3(M,Z) to the
existence of a Morita trivialization E , called the Dixmier-Douady class. In the Z2-
graded setting, there is an additional obstruction in H1(M,Z2) to introducing a
compatible Z2-grading on E .

Remark 7.7. One viewpoint towards the DD-class is as follows. Consider the
principal PU(H)-bundle P → M associated to A. Choose a trivializing open cover
Uα of M , so that P is described by transition functions χαβ : Uα ∩ Uβ → PU(H).
Over triple overlaps, χαβχβγχαγ = 1. Lift to U(H)-valued functions χ̃αβ. Then
ψαβγ = χ̃βγχ̃

−1
αγ χ̃αβ is a U(1)-valued function on triple overlaps. On quadruple

overlaps one has, by definition of ψ,

ψβγδψ
−1
αγδψαβδψ

−1
αβγ = 1,

which means that ψ is a Čech cocycle, defining a class in H2(M,U(1)) = H3(M,Z).

For a detailed discussion of Dixmier-Douady theory, see [62].

More generally, if H1,H2 are two Hilbert spaces, we have the Banach space
K(H1,H2) of compact operators from H1 to H2, again defined as the norm closure
of finite rank operators. It is a bimodule:

K(H2) � K(H1,H2) � K(H1).

If Hi carry Z2-gradings, then this bimodule structure is compatible with Z2-gradings.

2In the following discussion, some subtleties are being ignored. See [57], and references given
there, for a more careful treatment.
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Definition 7.8. Suppose Ai → Mi, i = 1, 2 are two (Z2-graded) Dixmier-
Douady bundles, with typical fiber K(Hi). A (Z2-graded) Morita morphism

(Φ, E) : A1 ��	 A2

is a map Φ: M1 → M2 together with a (Z2-graded) Banach bundle E → M1 of
bimodules

Φ∗A2 � E � A1

locally modeled on K(H2) � K(H1,H2) � K(H1).

The composition of two Morita morphisms (Φ, E) : A1 ��	 A2 and
(Φ′, E ′) : A2 ��	 A3 has underlying map the composition Φ′ ◦ Φ, and bimodule
a completion of the tensor product Φ∗E ′⊗Φ∗A2

E . A Morita morphism is invertible
if Φ is; the inverse is defined using an ‘opposite’ bimodule.

A Morita trivialization of A → M is equivalent to a Morita morphism
(p, E) : A ��	 C, where C → pt is the trivial DD bundle. Again, Morita mor-
phisms may be twisted by line bundles, and any two Morita morphisms A1 ��	 A2

differ by a Hermitian line bundle:

L = HomΦ∗A2−A1
(E , E ′) ←→ E ′ = E ⊗ L.

The Dixmier-Douady theorem states that DD-bundles A → M are classified, up
to Morita isomorphisms inducing the identity map on the base, by H3(M,Z). The
result extends to G-equivariant DD-bundles, see [12].

7.3. The Dixmier-Douady bundle ASpin
G . It is known that

H2(SO(n),Z) = 0, H3(SO(n),Z) = Z, H1(SO(n),Z2) = Z2

for n = 3 and all n ≥ 5. If V is a Euclidean vector space of dimension dimV ≥ 5, we
denote by ASO(V ) → SO(V ) the SO(V )-equivariant Z2-graded DD-bundle whose

characteristic classes in H3(SO(V ),Z) and H1(SO(V ),Z2) represent the genera-
tors. Since H2(SO(V ),Z) = 0, the particular choice of this DD-bundle does not
matter. If V ⊂ V ′ is a subspace of a larger Euclidean vector space, then ASO(V )

is canonically Morita isomorphic to the pull-back of ASO(V ′) under the inclusion
SO(V ) ↪→ SO(V ′). Consequently, we may extend the definition to dimV < 5
by taking ASO(V ) to be the pull-back of ASO(V ′), where dimV ′ ≥ 5. (E.g., take

V ′ = V ⊕R5). An explicit construction of this bundle may be found in Atiyah-Segal
[12], see also [4] for a discussion of their result.

Given a compact, connected Lie group G, with an invariant inner product on
g, we let

ASpin
G → G

be the pull-back of ASO(g) under the adjoint representation G → SO(g). (The
notation is motivated by a relationship with the spin representation of the loop

group.) A nice property of ASpin
G is that it is multiplicative: there is a Morita

morphism ASpin
G × ASpin

G ��	 ASpin
G covering group multiplication on G, and with

an associativity property.

Remark 7.9. IfG is compact, simple and simply connected, so thatH3
G(G,Z) =

H3(G,Z) = Z, it is known that DD(ASpin
G ) represents the h∨-th multiple of the gen-

erator of H3(G,Z), where h∨ is the dual Coxeter number.
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7.4. Twisted Spinc-structure.

Theorem 7.10 (Alekseev-M [4]). Let G be a compact Lie group, with a posi-
tive definite invariant metric · on its Lie algebra. For any q-Hamiltonian G-space
(M,ω,Φ), there is a distinguished G-equivariant Z2-graded Morita morphism

(Φ, ESpin) : C l(TM) ��	 ASpin
G .

Keeping in mind that a Morita trivializationC l(TM) ��	 C is a Spinc-structure,
we think of this morphism as a twisted Spinc-structure (following the terminology
from [70]).

Remark 7.11. The restriction of ASpin
G to the group unit e is G-equivariantly

Morita trivial, and the Morita trivialization is essentially unique (since there are no
non-trivial G-equivariant line bundles over pt.) By composing the twisted Spinc-
structure with this Morita trivialization, it follows that the restriction TM |Φ−1(e)

inherits an ordinary Spinc-structure. It turns out [4] that this is equal to the
Spinc-structure defined by the non-degenerate 2-form given by the restriction of ω
to TM |Φ−1(e), hence it induces the correct Spinc-structure on M//G.

In the Hamiltonian setting, the next step is to twist the Spinc-structure coming
from the almost complex structure by the pre-quantum line bundle L. Similarly,
for q-Hamiltonian spaces we can twist by the pre-quantization. To simplify the
discussion, we will return to the assumption that G is simple and simply connected.

Let A(k)
G → G be any G-DD bundle over G whose Dixmier-Douady class is k times

the generator of H3
G(G,Z) = Z. For example, ASpin

G may be used as A(h∨)
G . A level

k pre-quantization of (M,ω,Φ) determines a Morita morphism,

(Φ, EPreq) : M × C ��	 A(k)
G .

(Classes in H3(Φ,Z) may be realized in terms of DD bundles over the target,
together with Morita trivializations of the pull-back under Φ.) Tensoring the two
Morita morphisms, we obtain a G-equivariant Morita morphism,

(7.1) (Φ, ESpin ⊗ EPreq) : C l(TM) ��	 A(k+h∨)
G .

In the following section we will use this Morita morphism to obtain a push-forward
in twisted K-homology.

8. Quantization of q-Hamiltonian G-spaces

8.1. Twisted K-homology. Recall that a C∗-algebra is a Banach algebra
with a conjugate linear involution ∗, isomorphic to a norm closed subalgebra of
the algebra B(H) of bounded operators on a Hilbert space, with ∗ induced by the
adjoint. For instance, K(H) is a C∗-algebra. If A → X is a G-equivariant Dixmier-
Douady bundle, the space

A = Γ0(X,A)

of sections vanishing at infinity (i.e. the closure of the space of sections of compact
support) is a G-equivariant C∗-algebra.

Definition 8.1 (Donovan-Karoubi [24], Rosenberg [63]). The twisted G-equi-
variant K-homology of X with coefficients in A is defined as

KG
• (X,A) := K•

G(Γ0(X,A)),

the equivariant K-homology of the G-C∗-algebra Γ0(X,A).
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Remark 8.2. Here we are working with Kasparov’s definition of theK-homology
of G-C∗-algebras [46, 47]. Let us very briefly sketch Kasparov’s approach; an ex-
cellent reference for this material is the book [36] by Higson and Roe. Let A be a
Z2-graded C∗ algebra. A Fredholm module over A is a Z2-graded Hilbert space H
with a ∗-representation π : A → B(H), together with an odd element F ∈ B(H),
s.t. ∀a ∈ A

(1) [π(a), F ] ∈ K(H),
(2) (F 2 + I)π(a) ∈ K(H).

Kasparov defines the K-homology group K0(A) as the set of all Fredholm modules
over A, modulo a suitable notion of ‘homotopy’. (For A = C(X) the continuous
functions on a compact Hausdorff space, a definition along similar lines had been
proposed by Atiyah [8].) One puts K1(A) = K0(A⊗ C l(R)). It is a contravariant
functor in C∗-algebras, hence K•(X) = K•(C(X)) is a covariant functor in spaces
X. The definition has a straightforward extension toG-C∗-algebras, defining groups
K•

G(A).

The twisted K-homology groups are functorial with respect to Morita mor-
phisms of Dixmier-Douady-bundles.

Example 8.3. There is a canonical ring isomorphism KG
0 (pt) = R(G), where

the ring structure on the left hand side is given by push-forward under the map
pt× pt → pt.

Example 8.4. SupposeD is an equivariant skew-adjoint odd elliptic differential
operator acting on a Z2-graded Hermitian vector bundle V = V + ⊕ V − → M over
a compact manifold M . It has an equivariant index indexG(D) := χkerD|V +

−
χkerD|V − . The pair

H = ΓL2(M,V ), F = D√
1+D∗D

with the natural action of C(M) defines a K-homology class [D] ∈ KG
0 (M). The

index is a push-forward under the map p : M → pt to a point:

p∗[D] = indexG(D).

Example 8.5. LetM be a compact Riemannian G-manifold of even dimension.
Then there is a fundamental class

[M ] ∈ KG
0 (M,C l(TM)),

represented by the de Rham Dirac operator on Γ(M,∧T ∗M). A Spinc-structure on
M defines a Morita trivialization of C l(TM) and a Spinc-Dirac operator /∂M . The
class [/∂M ] is the image of [M ] under the resulting isomorphism KG

0 (M,C l(TM)) →
KG

0 (M). Thus C l(TM) plays the role of an ‘orientation bundle’ in K-theory.
Compare with singular homology: Any compact manifold, regardless of orientation,
has a fundamental class in the homology group HdimM (M, oM ) with coefficients in
the orientation bundle oM = det(TM). An orientation on M trivializes the bundle
oM , and identifies the fundamental class as an element of HdimM (M). Recall
also that there is an isomorphism HdimM (M, oM ) ∼= H0(M,Z), taking [M ] to 1.
Similarly, for an even-dimensional Riemannian manifold there is an isomorphism

(8.1) KG
0 (M,C l(TM)) ∼= K0

G(M)

with equivariant K-theory, taking [M ] to the element 1 ∈ K0
G(M).
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Example 8.6. Let G be compact, simply connected, and simple. Denote by

A(l)
G → G a G-Dixmier-Douady bundle at level l ∈ Z ∼= H3(G,Z). KG

0 (G,A(l)
G ) has

a ring structure defined by (MultG)∗. (Note that Mult∗G A(l) is Morita isomorphic

to pr∗1 A
(l)
G ⊗ pr∗2 A

(l)
G since the two bundles have the same Dixmier-Douady class;

the specific choice of Morita isomorphism is unimportant since H2
G(G×G,Z) = 0.)

The theorem of Freed-Hopkins-Teleman [29] shows that for all non-negative integers
k ≥ 0, there is a canonical isomorphism of rings

(8.2) KG
0 (G,A(k+h∨)

G ) ∼= Rk(G)

where Rk(G) is the level k fusion ring (Verlinde ring).

8.2. Quantization as a push-forward. Suppose G is a compact, simple,
simply connected Lie group, and (M,ω,Φ) is a level k pre-quantized q-Hamiltonian
G-space. The Morita morphism (7.1) defines a push-forward in twistedK-homology,

Φ∗ : K
G
0 (M,C l(TM)) → KG

0 (G,A(k+h∨)
G ).

Using the isomorphism (8.1) and the Freed-Hopkins-Teleman result (8.2), we have
constructed an R(G)-module homomorphism

Φ∗ : K
G
0 (M) → Rk(G).

Definition 8.7. [57] The quantization of a level k pre-quantized q-Hamiltonian
G-space (M,ω,Φ) is the element

Q(M) = Φ∗(1) ∈ Rk(G).

As shown in [57], the quantization of q-Hamiltonian spaces has properties par-
allel to those for Hamiltonian spaces:

(1) Q(M1 ∪M2) = Q(M1) +Q(M2),
(2) Q(M1 ×M2) = Q(M1)Q(M2),
(3) Q(M∗) = Q(M)∗,
(4) Let C be the conjugacy class of exp( 1kμ), μ ∈ Pk. Then

Q(C) = τμ.

Recall the trace Rk(G) → Z, τ �→ τG where τGμ = δμ,0.

Theorem 8.8 (Quantization commutes with reduction). Let (M,ω,Φ) be a
level k prequantized q-Hamiltonian G-space. Then

Q(M)G = Q(M//G).

This result is a combination of the [Q,R] = 0 theorem for Hamiltonian loop
group actions, due to Alekseev-M-Woodward [6], with the localization theorem for
q-Hamiltonian spaces, Theorem 8.15 below. In [6] the quantization of a Hamiltonian
loop group space is essentially defined in terms of fixed point data, and the [Q,R] =
0 theorem was proved in those terms. On the other hand, Theorem 8.15 identifies
the fixed point formula with the more satisfactory definition of Q(M) as a K-
homology push-forward.

Similar to Example 4.6 we have:

Example 8.9. Let Ci be the conjugacy classes of exp( 1kμi), μi ∈ Pk. Then

Q(C1 × C2 × C3//G) = (τμ1
τμ2

τμ3
)G = N (k)

μ1μ2μ3
.
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Example 8.10. The double D(G) = G × G, Φ(a, b) = aba−1b−1 has level k
quantization

Q(D(G)) =
∑
μ∈Pk

τμτ
∗
μ.

Remark 8.11. The Hamiltonian analogue of the double is the non-compact
Hamiltonian G-space T ∗G, with the cotangent lift of the conjugation action. Any
reasonable quantization scheme for non-compact spaces gives

Q(T ∗G) =
∑
μ∈P+

χμχ
∗
μ,

the character for conjugation action on L2(G), defined as an element of a completion
of R(G).

Since Q(M1 ×M2) = Q(M1)Q(M2), we also get the quantization of iterated
fusions of copies of D(G) and of level k prequantized conjugacy classes Cj . To work
out the product, it is convenient to re-write these results in terms of the basis τ̃μ
of Rk(G)⊗ C, where τ̃μ(tλ) = δλ,μ:

Q
(
G. exp( 1kμ)

)
= τμ =

∑
ν∈Pk

S∗
μ,ν

S0,ν
τ̃ν .

Q(D(G)) =
∑
ν∈Pk

1

S2
0,ν

τ̃ν

Using Q(M1 ×M2) = Q(M1)Q(M2) this gives

Proposition 8.12. Let μ1, . . . , μr ∈ Pk, and Cj = G. exp( 1kμj). Then the level
k quantization of D(G)g × C1 × · · · × Cr is given by the formula,

Q
(
D(G)g × C1 × · · · × Cr

)
=

∑
ν∈Pk

S∗
μ1,ν · · ·S∗

μr,ν

S2g+r
0,ν

τ̃ν

Hence, using the q-Hamiltonian ‘quantization commutes with reduction’ theo-
rem, we obtain,

Theorem 8.13 (Symplectic Verlinde formulas). Let μ1, . . . , μr ∈ Pk, and Cj =
G. exp( 1kμj). The level k quantization of the moduli space

M(Σr
g, C1, . . . , Cr) = (D(G)g × C1 × · · · × Cr)//G

is given by the formula

Q
(
M(Σr

g, C1, . . . , Cr)
)
=

∑
ν∈Pk

Sμ1,ν · · ·Sμr,ν S
−(2g+r−2)
0,ν

C1 C2 C3

Remark 8.14. The choice of a complex structure on Σ, compatible with the
orientation, defines a Kähler structure on the moduli space, and its pre-quantization
is given by a holomorphic line bundle (using an appropriate interpretation in case
the moduli space is singular). The more common setting for the Verlinde formulas
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is as the dimension of the space of holomorphic sections of the pre-quantum line
bundle (i.e. the Kähler quantization). Provided the higher cohomology groups
vanish, this dimension equals the index computed above.

8.3. Localization. As in the case of Hamiltonian spaces, the main technique
for actually calculating the quantization of q-Hamiltonian spaces is by localization.
Let (M,ω,Φ) be a level k pre-quantized q-Hamiltonian G-space. Since the pull-
back of the Cartan 3-form η ∈ Ω3(G) to the maximal torus T ⊂ G vanishes, the
map in cohomology H3(G,R) → H3(T,R) is the zero map. Due to the absence of

torsion, this is also true with integer coefficients, proving that A(k+h∨)|T is Morita
trivial. In fact, by considering the pull-back of the generator of H3

G(G,Z) = Z to
a class in H3

T (T,Z) (see [57, Section 5.1]), one finds that it is Tk+h∨-equivariantly
Morita trivial, where Tk+h∨ ⊂ T is the finite subgroup generated by the elements
tλ, λ ∈ Pk. (Note that while the conjugation action of Tk+h∨ on T is trivial, there is

still a non-trivial action onA(k+h∨)|T .) Let us choose any such Morita trivialization,

with the additional property that the resulting Morita trivialization of A(k+h∨)|e
is G-equivariant. Even with this additional normalization the choice is not quite
canonical: One may still twist by a line bunde over T with a trivial T -action.

Suppose now that t ∈ T is a regular element (i.e. Gt = T ), and let (M,ω,Φ)
be a q-Hamiltonian G-space. If F ⊂ M t is a component of the fixed point set, then
Φ(F ) ⊆ T , by T -equivariance of the moment map. By composition, we obtain a
Tk+h∨-equivariant Morita morphism

C l(TM |F ) ��	 A(k+h∨)|T ��	 C,

or equivalently a Tk+h∨ -equivariant Spinc-structure on TM |F . Thus, even though
M itself does not carry a global Spinc-structure, one does have Spinc-structures
along the fixed point manifolds. Consequently, the fixed point contributions from
the equivariant index theorem for Spinc-Dirac operators are well-defined, even
though there is no globally defined operator.

We specialize to the case t = tλ, λ ∈ Pk. Recall again (Section 5) that the
evaluation of elements τ ∈ Rk(G) at the points tλ is well-defined, and τ can be
recovered from the values τ (tλ).

Theorem 8.15. Let (M,ω,Φ) be a level k pre-quantized q-Hamiltonian G-
space. For λ ∈ Pk,

Q(M)(tλ) =
∑

F⊂Mtλ

∫
F

Â(F ) Ch(LF , tλ)
1/2

DR(νF , tλ)

where LF is the Spinc-line bundle for TM |F .

Remark 8.16. As mentioned before, in [6] quantization of a Hamiltonian loop
group space was defined in terms of fixed point data, and this definition was used
to establish its main properties. However, it was unclear in [6] what the ‘equi-
variant object’ might be of which the right hand side of this formula are the lo-
calization contributions. The definition of Q(M) as a push-forward in twisted
equivariant K-homology provides an answer to this question, avoiding the use of
infinite-dimensional manifolds and loop groups.

As a typical application of Theorem 8.15, consider the caseM = D(G)h = G2h.
Since the G-action on M is just conjugation, and tλ is regular, the fixed point set
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is simple F = T 2h ⊂ G2h, with Φ(T 2h) = {e} and with a trivial normal bundle
νF = (g/t)2h. Since the geometry is so simple, the evaluation of the fixed points
contributions poses no problems. See [6] or [57] for the calculation.

Remark 8.17. Since G is compact and simply connected, its center Z(G) is
finite. Let Z ⊂ Z(G) be a central subgroup, and G′ = G/Z. The 2-form and
moment map for the fused double D(G) = G × G (cf. Section 3.1.2) are Z × Z-
invariant, hence they descend to give the structure of a q-Hamiltonian G-space
on

D(G′) = G′ ×G′, Φ: D(G′) → G.

Put differently, the q-HamiltonianG′-spaceD(G′) may be regarded as a q-Hamilton-
ian G-space, using the canonical lifting of the moment map. The symplectic quo-
tientsD(G′)×· · ·×D(G′)//Gmay be interpreted as moduli spaces of flat G′-bundles
over closed surfaces. More generally, one can consider surfaces with boundary, and
moduli spaces of flat G′-bundles with prescribed holonomies around boundary cir-
cles. The quantizations of thus spaces are expected to be given by Verlinde-type
formulas, conjectured by Fuchs-Schweigert [30]. However, pre-quantizibility condi-
tions, and the evaluation of the fixed point contributions, are much more involved
than in the case of simply connected groups. For G′ = SO(3) the results are worked
out in full generality in Krepski-M [53]; the higher rank case will be considered in
forthcoming work.
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Quantization and automorphic forms

Tatyana Barron

Abstract. This short survey is based on my talk given at the Conference
on Mathematical Aspects of Quantization at the Center for Mathematics at
Notre Dame in June 2011.

1. Introduction

The relationship between automorphic forms and quantization is a recurrent
topic in quantization literature. See, for example, monographs [Hu], [P], [U1],
[U2].

The main purpose of this paper is to give a brief explanation (which, hopefully,
is easy to understand) of how exactly automorphic forms appear in Berezin-Toeplitz
quantization. We also mention some results that provide explicit constructions of
automorphic forms via Poincaré series. At the end of the paper there are some
remarks on deformation quantization.

This survey emphasizes the complex geometry point of view rather than
representation-theoretic or arithmetic or analytic aspects of the relationship be-
tween automorphic forms and quantization.

Section 2 contains relevant definitions and facts from the theory of automorphic
forms. The discussion that involves quantization is in Section 3.
Acknowledgements. I thank the referee for helpful suggestions.

2. Automorphic forms

2.1. One complex variable. The upper half plane
H = {z ∈ C | Im(z) > 0} is biholomorphic to the unit disc D = {z ∈ C | |z| <
1}. The group SL(2,R) acts on H by fractional-linear transformations: for γ =(
a b
c d

)
∈ SL(2,R), z ∈ H

γ : z �→ γz =
az + b

cz + d
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(we denote the automorphism H → H defined by a matrix γ by the same letter, γ,
to simplify notations). Note that the complex Jacobian of γ

J(γ, z) =
d(γz)

dz
=

1

(cz + d)2
.

The group SL(2,R) is isomorphic to the group SU(1, 1) = {
(
a b
b̄ ā

)
| a, b ∈

C, |a|2 − |b|2 = 1} which acts on D by

z �→ γz =
az + b

b̄z + ā

z ∈ D, γ =

(
a b
b̄ ā

)
∈ SU(1, 1). Note that the complex Jacobian is 1/(b̄z + ā)2.

Let Γ be a discrete subgroup of SL(2,R) such that the quotient X = Γ\H is
smooth and compact. Thus X is a compact Riemann surface of genus g > 1.

Denote byKH the holomorphic cotangent bundle onH, byKD the holomorphic
cotangent bundle on D, and by KX the holomorphic cotangent bundle on X.

Let k be a non-negative integer.

Definition 2.1. A function f : H → C is called a (holomorphic)
Γ-automorphic form of weight k if f is holomorphic and satisfies

(2.1) f(γz) = f(z)(cz + d)2k ∀γ =

(
a b
c d

)
∈ Γ, z ∈ H.

Condition (2.1) is often called the automorphy law and can be restated as

f(γz)J(γ, z)k = f(z) ∀γ ∈ Γ, z ∈ H.

The assumption that f is holomorphic may be modified (e.g. it can be replaced
by the requirement that f is an eigenfunction of the hyperbolic Laplacian). The
assumption that X is smooth and compact can be removed (in fact, this has to be
done in order to consider the case when Γ is SL(2,Z) or a congruence subgroup),
but then another condition on f is usually added. Also, instead of (cz + d)2k

the automorphy factor can be taken to be (cz + d)kχ(γ), where χ : Γ → C is a
normalized character on Γ. See, for example, [B] and [Bu] for details.

If Γ = SL(2,Z) then the term ”automorphic form” is usually replaced by ”mod-
ular form”. Also, if k = 0 then the terms ”automorphic function” and ”modular
function” are used.

Finally, let’s observe that a holomorphic function f satisfies (2.1) if and only
if the holomorphic k-differential f(z)dzk is Γ-invariant. A holomorphic Γ-invariant

section f(z)dzk of K⊗k
H can also be viewed as a holomorphic section of K⊗k

X , i.e. an

element of the complex vector space H0(X,K⊗k
X ) (which has dimension g if k = 1

and dimension k(2g − 2)− (g − 1) for k ≥ 2).
Here is a quick example of a function that satisfies an automorphy law.

Example 2.2. Let Γ be the cyclic subgroup generated by the matrix γ0 =(
1 1
0 1

)
that corresponds to the transformation H → H defined by z �→ z + 1.

The quotient X = Γ\H is an infinite cylinder. The automorphy law (2.1) becomes
the condition f(z + 1) = f(z) ∀z ∈ H. Note that k does not play any role. The
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function f(z) = e2πiz is a holomorphic function on H that satisfies the automorphy

law, and e2πizdzk is a holomorphic Γ-invariant section of K⊗k
H . �

In this example the quotient Γ\H is of infinite volume. Explicit examples of
Γ that provide compact quotients can be found in [I], [K], see also discussion and
references in [VGS].

The definition of an automorphic form is similar for the disk:

Definition 2.3. A function f : D → C is called a (holomorphic)
Γ-automorphic form of weight k if f is holomorphic and satisfies

(2.2) f(γz) = f(z)(b̄z + ā)2k ∀γ =

(
a b
b̄ ā

)
∈ Γ, z ∈ D.

As before, a holomorphic function f satisfies (2.2) if and only if the holomorphic
k-differential f(z)dzk is Γ-invariant.

2.2. Several complex variables. For n ≥ 2 there are several kinds of auto-
morphic forms of n complex variables. In this note we shall consider only C-valued
holomorphic automorphic forms on irreducible bounded symmetric domains.

Let D be an irreducible bounded symmetric domain in Cn (n is a positive inte-
ger). Thus D = G/K, where G is a real semisimple Lie group and K is a maximal
compact subgroup of G. There is a classification of bounded symmetric domains
(four series corresponding to the classical matrix Lie groups plus two exceptional
domains). For n = 1, D is isomorphic to the unit disc SU(1, 1)/U(1) (i.e., in-
formally speaking, there is only one bounded symmetric domain for n = 1). The
action of G on D is induced by the action of G on itself by left multiplication. Let’s
denote an element of G and the corresponding automorphism D → D by the same
letter. For γ ∈ G J(γ, z) will denote the determinant of the n × n Jacobi matrix

(
∂(γz)j
∂zk

).

Example 2.4. Let G = SU(n, 1) = {A ∈ SL(n + 1,C) | AtσĀ = σ}, K =

S(U(n)×U(1)), where σ =

(
1n×n 0
0 −1

)
. Then D is the unit ball in Cn. It is also

called the n-dimensional complex hyperbolic space. G acts onD by fractional-linear
transformations: for γ = (ajk)

γ : D → D

z = (z1, ..., zn) �→ (
a11z1 + ...+ a1nzn + a1,n+1

an+1,1z1 + ...+ an+1,nzn + an+1,n+1
, ...,

(
an1z1 + ...+ annzn + an,n+1

an+1,1z1 + ...+ an+1,nzn + an+1,n+1
).

and J(γ, z) = 1/(an+1,1z1 + ...+ an+1,nzn + an+1,n+1)
n+1. �

Let Γ be a discrete subgroup of G such that the quotient X = Γ\D = Γ\G/K
is smooth and compact. There are explicit examples of such manifolds X for any n.
D has a G-invariant Kähler structure, so X is naturally a compact Kähler manifold.
Let KD denote the canonical bundle of D, i.e. KD =

∧n T ∗′
D, where T ∗′

D is the
holomorphic cotangent bundle. Let KX denote the canonical bundle on X. Denote
by ω the Kähler form on X, normalized so that c1(KX) = [ω].

As before, let k be a non-negative integer.
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Definition 2.5. ([Ba], [PS]) A function f : D → C is called a (holomorphic)
Γ-automorphic form of weight k if f is holomorphic and satisfies

(2.3) f(γz)J(γ, z)k = f(z) ∀γ ∈ Γ, z ∈ D.

As in the case n = 1, the assumptions of f being holomorphic and X being
smooth and compact can be relaxed. Also, f is a holomorphic Γ-automorphic form
of weight k on D if and only if the corresponding holomorphic section f(z)(dz1 ∧
... ∧ dzn)

⊗k of K⊗k
D is Γ-invariant. Thus, there is a natural isomorphism between

H0(X,K⊗k
X ) and the space Sk(Γ) of holomorphic Γ-automorphic forms of weight k

on D.

2.3. Poincaré series. A well-known way to construct automorphic forms is
via Poincaré series. For a function F : D → C the associated Poincaré series is
formally defined as

(2.4) Θ
(k)
F (z) =

∑
γ∈Γ

F (γz)J(γ, z)k.

If F is holomorphic and integrable (i.e. F is in the weighted Bergman space
A(k)(D)), and k is sufficiently large (e.g. for n = 1, k ≥ 2), then the series converges

absolutely and uniformly on compact sets, Θ
(k)
F is in Sk(Γ), and the Poincaré series

map A(k)(D) → Sk(Γ) is surjective.

Remark 2.6. The essense of the idea utilized in (2.4) can be seen in the follow-
ing simple observation. Suppose N is a finite group that acts on a set S. How can
one construct an N -invariant (complex-valued) function on S ? Take any function
F : S → C and define a new function as follows: θF (x) =

∑
g∈N F (gx), x ∈ S. It’s

easy to see that θF is N -invariant.
Similarly one can begin with an integrable holomorphic section s of K⊗k

D and

construct a Γ-invariant holomorphic section of K⊗k
D as

∑
γ∈Γ s(γz) (assuming that

k is sufficiently large, to ensure convergence). Representing sections of K⊗k
D by

functions on D, one obtains the Poincaré series (2.4). �
Remark 2.7. There is a modification of this construction, called relative Poincaré

series, with the summation taken over Γ0\Γ, where Γ0 is a subgroup of Γ. �
The following theorem, due to Petersson, tells us how to construct explicitly

all automorphic forms for n = 1, k ≥ 2.

Theorem 2.8. ([Pe], [H]) Let Γ ⊂ SU(1, 1) be such that X = Γ\D is smooth
and compact and let k ≥ 2. Let g be the genus of X. Then any holomorphic Γ-
automorphic form of weight k on D is

∑
γ∈Γ p(γz)J(γ, z)

k, where p is a polynomial

in z of degree ≤ k(2g − 2).

The following generalization of this statement was proven in [F2]:

Theorem 2.9. Let D, Γ be as above and k be sufficiently large. Let f ∈ Sk(Γ).
Then f(z) =

∑
γ∈Γ p(γz)J(γ, z)

k where p = p(z) is a polynomial in z1,..,zn of

degree not higher than kn volωn(X).

Note that for n = 1 the upper bound for the degree of the polynomial in
Theorem 2.9 is k(2g − 2), i.e. we recover Theorem 2.8.
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3. Quantization

3.1. Automorphic forms as quantum-mechanical states. Recall that
the setting of Berezin-Toeplitz quantization (which is also called Kähler quantiza-
tion) is as follows. Let X be a compact Kähler manifold. Assume that the Kähler
form ω is integral. Let L → X be a holomorphic Hermitian line bundle such that
the curvature of the Hermitian connection is equal to −2πiω (we observe: it follows
that c1(L) = [ω] and also that L is ample). X, with the symplectic form on it, is
viewed as the classical phase space. The complex vector space H0(X,L⊗k) is inter-
preted as the space of quantum-mechanical wave functions. The positive integer k
is formally regarded as 1/�, where � is the Planck constant, and the limit k → ∞
is called the semi-classical limit. ”Quantization” means a way to associate a linear
operator Tf to a function f ∈ C∞(X) so that a version of Dirac’s quantization con-

ditions holds. The quantum observables T
(k)
f are Berezin-Toeplitz operators acting

on H0(X,L⊗k). See [Bo], [S2] for details.
Note that Berezin-Toeplitz quantization is, in a sense, a version of geometric

quantization. In geometric quantization the manifold is symplectic but not neces-
sarily Kähler. See [T], [BMS], [S2] for the relation between operators of geometric
quantization and Berezin-Toeplitz operators.

In the context of Section 2 the compact Kähler manifold X is Γ\D, L = KX

and the space of quantum-mechanical wave functions is Sk(Γ).
Interpretation of wave functions as automorphic forms leads to a more explicit

understanding of the space of wave functions (comparing to other situations of
Kähler quantization), and, perhaps, gives a better control over analytic properties
of the wave functions.

3.2. More on Poincaré series. Relative Poincaré series in the context of
Berezin-Toeplitz quantization appeared in [BPU], where certain sequences of sec-
tions uk ∈ H0(X,L⊗k) were studied. Here L → X is a quantizing line bundle on
an integral compact Kähler manifold X (not necessarily a quotient of a bounded
symmetric domain). These sections have meaning of ”delta-functions” in appropri-
ate sense and are associated to Bohr-Sommerfeld Lagrangian submanifolds of X,
equipped with a half-form. The semiclassical asymptotics obtained in this paper
provided valuable information about relative Poincaré series for n = 1. Later these
asymptotics were used in [F1], [F3], to study relative Poincaré series on compact
smooth quotients of the unit ball SU(n, 1)/S(U(n)× U(1)).

It was mentioned earlier that the Poincaré series map is a useful tool for con-
structing automorphic forms. There are a number of results that give conditions
under which the Poincaré series of a given function is not identically zero (non-
vanishing problem) or, alternatively, results that provide information about the
kernel of the Poincaré series operator. For n = 1 see, in particular, [K1], [K2], [L],
[Ma], [Me].

In a recent paper [AF] we worked in the following setting.
Let Σ be a hyperbolic Riemann surface, with a covering map π : D → Σ. Let

Λ be a closed subset of Σ such that π−1(Σ − Λ) is connected. Denote V = Σ − Λ
and U = D − π−1(Λ). Let k ≥ 2 be an integer.

In this paper we study spaces of integrable, square-integrable, and bounded
holomorphic k-differentials on V .
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For example, we observe that if Λ is finite, then the space of integrable holomor-
phic sections of K⊗k

V is isomorphic to the space of integrable meromorphic sections

of K⊗k
Σ , with at most simple poles, all in Λ.
One of the main results of this paper is a description of the kernel of the

Poincaré series operator Θ : A(1)(U) → A(1)(V ), where A(1)(U) (resp. A(1)(V ))

denotes the space of integrable holomorphic sections of K⊗k
U (resp. of K⊗k

V ).
The interpretation in terms of quantization is as before: V is the classical

phase space, A(1)(V ) is the space of wave functions (or we can say that P(A(1)(V ))
is the space of quantum-mechanical states), k is 1/�. Note that if Λ is non-empty
then V is non-compact. Hence, this paper provides information about the space of
quantum states for a class of non-compact phase spaces. From the point of view of
physics the case when the classical phase space is non-compact is most interesting.

3.3. Automorphic forms and deformation quantization. Berezin-Toeplitz
quantization is closely related to deformation quantization. Recall that the goal of
deformation quantization is to construct a star product on an algebra of functions
on X. There is a star product on C∞(X) defined via symbols of Berezin-Toeplitz
operators [S1].

Another situation when automorphic forms appear in the context of deforma-
tion quantization arises in the discussion of Rankin-Cohen brackets [Z], [CMZ].

Let n = 1 and Γ = SL(2,Z). Denote by Mk the space of weight k modular
forms. The j-th Rankin-Cohen bracket of two modular forms f ∈ Mr and g ∈ Ms

is

[f, g]j =

j∑
l=0

(−1)l
(
2r + j − 1

j − l

)(
2s+ j − 1

l

)
dlf

dzl
dj−lg

dzj−l
∈ Mr+s+j .

Rankin-Cohen brackets define a star product on the algebra of modular forms
⊕∞

k=0Mk. It was shown in [BTY] that this star product is equivalent to the
Moyal product. In [P1] it is explained how the Rankin-Cohen brackets arise in
the framework of quantization of coadjoint orbits. One possible higher-dimensional
generalization is presented in [DP]. See also surveys [P2] and [P3].
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[H] D. Hejhal. Monodromy groups and Poincaré series. Bull. Amer. Math. Soc. 84 (1978), no. 3,

339-376. MR0492237 (58:11383)
[Hu] N. Hurt. Geometric quantization in action. Mathematics and Its Applications (East Eu-

ropean Series), 8. D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1983. MR689710
(84f:58053)

[I] H. Iwaniec. Spectral methods of automorphic forms. Second edition. Graduate Studies in
Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática
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Math. 153 (1984), no. 1-2, 47–116. MR744999 (86b:30070)
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Noncommutative Poisson structures, derived representation
schemes and Calabi-Yau algebras

Yuri Berest, Xiaojun Chen, Farkhod Eshmatov, and Ajay Ramadoss

Abstract. In this paper, we introduce and study the notion of a derived
Poisson structure on an associative algebra A. This structure is character-
ized by the property of being the weakest structure on A that induces natu-
ral (graded commutative) Poisson structures on the derived moduli spaces of
finite-dimensional representations of A. A derived Poisson structure is repre-
sented by a graded (super) Lie algebra bracket on the cyclic homology HC•(A)
and can be viewed as a higher homological extension of the H0-Poisson struc-
ture introduced by W. Crawley-Boevey (2011). In the second part of the paper,
we construct a large class of examples of derived Poisson structures arising from
finite-dimensional n-cyclic coalgebras. These examples include linear duals of
finite-dimensional n-cyclic algebras which are n-Calabi-Yau categories in the
sense of Kontsevich and Soibelman (2009).

1. Introduction

Recall that a Poisson structure on a commutative algebra A is a Lie bracket
{ – , – } : A × A → A satisfying the Leibniz rule {a, bc} = b{a, c} + {a, b}c for
all a, b, c ∈ A. For noncommutative algebras, this definition is known to be too
restrictive: if A is a noncommutative domain (more generally, a prime ring), any
Poisson bracket on A is a multiple of the commutator [a, b] = ab − ba (see [FL],
Theorem 1.2). Motivated by recent work on noncommutative geometry (see [Ko,
G, BL, CBEG, VdB]), Crawley-Boevey [CB] proposed a different notion of the
Poisson structure on an associative algebra A that agrees with the above definition
for commutative algebras and has surprisingly nice categorical properties. His idea
was to find the weakest structure on A that induces natural Poisson structures on
the moduli spaces of finite-dimensional semisimple representations of A. It turns
out that such a weak Poisson structure is given by a Lie bracket on the 0-th cyclic
homology HC0(A) = A/[A,A] satisfying some extra conditions; it is thus called an
H0-Poisson structure in [CB]. The very terminology of [CB] suggests that there
might exist a ‘higher’ homological extension of this construction. The aim of the
present paper is to show that this is indeed the case: our main construction yields
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a graded (super) Lie algebra structure on the full cyclic homology of A :

{ – , – } : HC•(A)×HC•(A) → HC•(A)

that satisfies certain properties and restricts to Crawley-Boevey’s H0-Poisson struc-
ture on HC0(A). We call such structures the derived Poisson structures on A.

To explain our results in more detail we first recall the main theorem of [CB].
Let A be an associative unital algebra and let V be a finite-dimensional vector space,
both defined over a field k of characteristic zero. The classical representation scheme
RepV (A) parametrizing the k-linear representations of A in V can be defined as a
functor on the category of commutative algebras:

(1) RepV (A) : Comm Algk → Sets , B �→ HomAlgk
(A, B ⊗k EndV ) .

It is well known that (1) is representable, and we denote the corresponding com-
mutative algebra by k[RepV (A)] . The group GL(V ) acts naturally on RepV (A),
with orbits corresponding to the isomorphism classes of representations. The closed
orbits correspond to the classes of semisimple representations and are parametrized
by the affine quotient scheme RepV (A)//GL(V ) = Spec k[RepV (A)]

GL(V ) (see, for
example, [K]). Now, there is a natural trace map

(2) TrV : HC0(A) → k[RepV (A)]
GL(V )

defined by taking characters of representations. In terms of (2), we may state the
main result of [CB] as

Theorem 1 ([CB], Theorem 1.6). Given an H0-Poisson structure on A, for
each V , there exists a unique Poisson structure on RepV (A)//GL(V ) satisfying

{TrV (a), TrV (b)} = TrV ({a, b}) , ∀ a, b ∈ HC0(A) .

Our generalization of Theorem 1 is based on results of the recent paper [BKR],
where the trace map (2) is extended to higher cyclic homology. We briefly review
these results referring the reader to [BKR] (and Section 2 below) for details. Vary-
ing A (while keeping V fixed) one can regard the representation functor (1) as a
functor on the category Algk of algebras. This functor can then extended to the
category DGAk of differential graded (DG) algebras, and the scheme RepV (A) can
be derived by replacing A by its cofibrant resolution in DGAk. The fact that the re-
sult is independent of the choice of resolution was first proved in [CK]. In [BKR],
we gave a more conceptual proof, using Quillen’s theory of model categories [Q1],
and found a simple algebraic construction for the total derived functor of RepV .
When applied to A, this derived functor is represented (in the homotopy cate-
gory of DG algebras) by a commutative DG algebra DRepV (A). The homology of
DRepV (A) depends only on A and V , with H0[DRepV (A)] being isomorphic to
k[RepV (A)]. Following [BKR], we will refer to H•[DRepV (A)] as the representa-
tion homology of A and denote it by H•(A, V ). The action of GL(V ) on RepV (A)
extends naturally to DRepV (A), and we have an isomorphism of graded algebras
H•[DRepV (A)

GL(V )] ∼= H•(A, V )GL(V ). Now, one of the key results of [BKR] is
the construction of canonical trace maps

(3) (TrV )n : HCn(A) → Hn(A, V )GL(V ) , ∀n ≥ 0 ,

extending (2) to the higher cyclic homology1. In terms of (3), the main result of
the present paper may be stated as a direct generalization of Theorem 1.

1We will review this construction in Section 2 below.
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Theorem 2. Given a derived Poisson structure on A, for each V , there is a
unique graded Poisson bracket on the graded commutative algebra H•(A, V )GL(V )

such that

{(TrV )•(α), (TrV )•(β)} = (TrV )•({α, β}) , ∀ α, β ∈ HC•(A) .

In fact, we will prove a more refined result (Theorem 10), of which Theorem 2
is an easy consequence. Our key observation is that, when extended properly to
the category of DG algebras, the weak Poisson structures behave well with respect
to homotopy (in the sense that the homotopy equivalent Poisson structures on A
induce, via the derived representation functor, homotopy equivalent DG Poisson
algebra structures on DRepV (A)). Working in the homotopy-theoretic framework
allows us to give a precise meaning to the claim that the derived Poisson struc-
tures are indeed the weakest structures on A inducing the usual (graded) Poisson
structures under the representation functor (see Remark 3.3).

The paper is organized as follows. In Section 2, we review basic definitions and
results of [BKR] and [BR] needed for the present paper. In Section 3, we extend
Crawley-Boevey’s definition of a NC Poisson structure to the category of DG alge-
bras and introduce a relevant notion of homotopy for such structures. We also prove
our first main result (Theorem 10) in this section. In Section 4, we then propose
the definition of a noncommutative P∞-algebra extending the results of Section 3
to strong homotopy algebras. We show that a noncommutative P∞-algebra struc-
ture on A induces a P∞-structure on DRepV (A) and that the homotopy equivalent
noncommutative P∞-algebra structures induce homotopy equivalent P∞-structures
on DRepV (A). This result is part of Theorem 12, which is the second main result
of this paper. The proof of Theorem 12 is parallel to the proof of Theorem 10,
however the calculations are technically more complicated. Finally, Section 5 pro-
vides an interesting class of examples of derived Poisson structures. These examples
arise from n-cyclic coalgebras (through Van den Bergh’s double bracket construc-
tion) and include, in particular, linear duals of finite-dimensional n-cyclic algebras.
The main result of Section 5 – Theorem 15 – shows that there is a natural double
Poisson algebra structure on the cobar construction of any cyclic coassociative DG
coalgebra. The finite-dimensional n-cyclic algebras are known to be a special case
of n-Calabi-Yau categories in the sense of [KS, Cos]; our results imply that these
algebras carry noncommutative (2 − n)-Poisson structures. We conclude with a
few remarks on string topology clarifying the relation of the present paper to the
recent work of two of the current authors (X. Ch. and F. E.) with W. L. Gan (see
[CEG]).
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Notation and Conventions

Throughout this paper, k denotes a base field of characteristic zero. Unless
stated otherwise, all differential graded (DG) objects (complexes, algebras, mod-
ules, etc.) are equipped with differentials of degree −1. The Koszul sign rule is
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always assumed when we operate with such objects: whenever two DG maps (or
operations) of degrees p and q are permuted, the sign is multiplied by (−1)pq.

2. The Derived Representation Functor and Higher Trace Maps

In this section, we review basic definitions and results of [BKR] and [BR].
Our aim is to give a short and readable survey which goes slightly beyond the
preliminaries for the present paper. This survey evolved from notes of the talk
given by the first author at the Notre Dame conference on quantization.

2.1. Representation functors. Let DGAk be the category of associative uni-
tal DG k-algebras, and let CDGAk be its full subcategory consisting of commutative
DG algebras. The inclusion functor CDGAk ↪→ DGAk has a natural left adjoint
which assigns to a DG algebra A its maximal commutative quotient; we denote it
by

(4) ( – )�� : DGAk → CDGAk , A �→ A/〈[A,A]〉 .

Now, given a finite-dimensional k-vector space V , we introduce the following functor

(5) V
√

– : DGAk → DGAk , A �→ (A ∗k EndV )EndV .

Here A ∗k EndV denotes the free product of A with the endomorphism algebra of
V and ( – )EndV stands for the centralizer of EndV as the subalgebra in that free
product. Combining (4) and (5), we define

(6) ( – )V : DGAk → CDGAk , A �→ AV := (
V
√
A)�� .

Theorem 3 ([BKR], Theorem 2.2). For any A ∈ DGAk , the DG algebra AV

represents the functor

RepV (A) : CDGAk → Sets , B �→ HomDGAk(A, B ⊗k EndV ) .

Theorem 3 implies that there is a bijection

(7) HomCDGAk(AV , B) = HomDGAk(A, B ⊗k EndV ) ,

functorial in A ∈ DGAk and B ∈ CDGAk. Informally, it suggests that AV =
k[RepV (A)] should be thought of as a DG algebra of functions on the affine DG
scheme parametrizing the representations of A in V . Letting B = AV in (7), we
get a canonical DG algebra homomorphism

(8) πV : A → AV ⊗ EndV ,

which is the universal representation of A. Furthermore, for g ∈ GLk(V ), we
have a unique automorphism of AV corresponding under the adjunction (7) to the
composite map

A
πV−−→ AV ⊗ EndV

Id⊗Ad(g)−−−−−−→ AV ⊗ EndV .

This defines an action of GLk(V ) on AV by DG algebra automorphisms, that is
functorial in A. Thus, we can introduce the GLk(V )-invariant subfunctor of (6):

(9) ( – )GL
V : DGAk → CDGAk , A �→ A

GLk(V )
V .
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DERIVED POISSON STRUCTURES 223

Next, we recall that the categories DGAk and CDGAk carry natural model struc-
tures2 in the sense of Quillen [Q1]. The weak equivalences in these model categories
are the quasi-isomorphisms and the fibrations are the degreewise surjective maps.
The cofibrations are characterized in abstract terms: as the morphisms satisfying
the left lifting property with respect to the acyclic fibrations (see, e.g., [H]). Every
DG algebra A ∈ DGAk has a cofibrant resolution which is given by a surjective

quasi-isomorphism QA
∼� A , with QA being a cofibrant object in DGAk. In partic-

ular, if A is concentrated in non-negative degrees (for example, an ordinary algebra

A ∈ Algk), any almost free resolution R
∼� A is cofibrant in DGAk. Replacing DG

algebras by their cofibrant resolutions one defines the homotopy category Ho(DGAk),
in which the morphisms are given by the homotopy classes of morphisms between
cofibrant objects in DGAk. The category Ho(DGAk) is equivalent to the (abstract) lo-
calization of the category DGAk at the class of weak equivalences. The corresponding
localization functor DGAk → Ho(DGAk) acts as the identity on objects while map-
ping each morphism f : A → B in DGAk to the homotopy class of its cofibrant lifting
Qf : QA → QB.

We can now state one of the main results of [BKR] which combines (part of)
Theorem 2.2 and Theorem 2.6 of loc. cit.

Theorem 4 ([BKR]). (a) The functor (6) has a total left derived functor

L( – )V : Ho(DGAk) → Ho(CDGAk) , A �→ (QA)V , f �→ (Qf)V ,

which is adjoint to the derived functor EndV ⊗ – : Ho(CDGAk) → Ho(DGAk) .
(b) The functor (9) has a total left derived functor

L( – )GL
V : Ho(DGAk) → Ho(CDGAk) , A �→ (QA)GL

V , f �→ (Qf)GL
V .

Here QA is any cofibrant replacement of A and Qf is the corresponding cofibrant
lifting of f .

The point of Theorem 4 is that the DG algebras (QA)V and (QA)GL
V depend

only on A and V , provided we view them as objects in the homotopy category
Ho(CDGAk). In particular, for A ∈ Algk, we set DRepV (A) := L(A)V and define3

H•(A, V ) := H•[DRepV (A)]. This last object is a graded commutative algebra
which we call the representation homology of A. Using the standard adjunction
(7), it is not difficult to show that H0[DRepV (A)]

∼= k[RepV (A)] whenever A is an
ordinary algebra (see [BKR], 2.3.4). In addition, we have the following property
which shows that homology commutes with taking invariants.

Proposition 5 ([BKR], Theorem 2.6). For any A ∈ DGAk, there is a natural
isomorphism of graded commutative algebras

H•[L(A)GL
V ] ∼= H•(A, V )GLk(V ) .

2For basic definitions of the theory of model categories and results needed for the present
paper we refer the reader to [BKR], Appendix A. A leisurely introduction to this theory can be
found in [DS].

3Sometimes, we will abuse this notation letting H•(A,V ) denote H•[L(A)V ] for any DG
algebra A ∈ DGAk.
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2.2. Higher traces. We now construct the trace maps (3) relating cyclic
homology to representation homology. Given an associative DG algebra R with the
identity element 1R ∈ R , we write

R� := R/[R,R] , C(R) := R/(k · 1R + [R,R]) .

Both R� and C(R) are complexes of vector spaces with differentials induced from

R. If A ∈ Algk is an ordinary algebra, we let HC•(A) and HC•(A) denote its cyclic
and reduced cyclic homology, respectively. The precise relation between the two is
explained in [L], Sect. 2.2.13; here, we only recall a canonical map

(10) HC•(A) → HC•(A)

which is induced by the projection of complexes CC•(A) � CC•(A)/CC•(k),
where CC•(A) is the Connes cyclic complex computing HC•(A).

The starting point for our construction is the following well-known result due
to Feigin and Tsygan.

Theorem 6 ([FT], Theorem 1). For any A ∈ Algk, there is an isomorphism
of graded vector spaces

HC•(A) ∼= H•[C(R)] ,
where R = QA is a(ny) cofibrant resolution of A in DGAk.

For a simple conceptual proof of this theorem, we refer to [BKR], Section 3.

Now, for any R ∈ DGAk, consider the composite map

R
πV−−→ RV ⊗ EndV

Id⊗Tr−−−−→ RV

where πV is the universal representation of R in V (see (8)), and Tr : EndV → k
is the usual matrix trace. It is clear that this map factors through R� and its image
lies in RGL

V . Hence, we get a map of complexes

(11) TrV (R)• : R� → RGL
V ,

which extends by multiplicativity to the map of graded commutative algebras

(12) TrV (R)• : Λ(R�) → RGL
V ,

where Λ denotes the graded symmetric algebra over k. We will need the following
result which is a generalization of a well-known theorem of Procesi [P] to the case
of DG algebras.

Theorem 7 ([BR], Theorem 3.1). For any R ∈ DGAk, the algebra map (12) is
degreewise surjective.

Now, let A ∈ Algk be an ordinary algebra, and let R = QA be a cofibrant
replacement of A in DGAk. The trace map (11) descends to a map of complexes

(13) TrV (R)• : C(R) → R̄GL
V ,

where R̄GL
V is the deunitalization of RGL

V . The long homology sequence arising from
the short exact sequence

0 → k → RGL
V → R̄GL

V → 0
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shows that Hn(R̄
GL
V ) ∼= Hn(R

GL
V ) for all n ≥ 1. Then, with the identifications of

Proposition 5 and Theorem 6 and in combination with (10), the map (13) induces

(14) TrV (A)n : HCn(A) → Hn(A, V )GLk(V ) , n ≥ 1 ,

which are the higher trace maps (3) discussed in the Introduction. We remark that
these trace maps may be nontrivial even when A is a commutative algebra (see,
e. g., Section 5.4 below).

2.3. Stabilization. We now explain how to ‘stabilize’ the family of maps (14)
passing to the infinite-dimensional limit dimk V → ∞. We will work with unital
DG algebras A which are augmented over k. We recall that the category of such
DG algebras is naturally equivalent to the category of non-unital DG algebras, with
A corresponding to its augmentation ideal Ā. We identify these two categories and
denote them by DGAk/k. Further, to simplify the notation we take V = kd and

identify EndV = Md(k) , GL(V ) = GLk(d) ; in addition, for V = kd, we will write
AV as Ad. Bordering a matrix in Md(k) by 0’s on the right and on the bottom
gives an embedding Md(k) ↪→ Md+1(k) of non-unital algebras. As a result, for
each B ∈ CDGAk, we get a map of sets

(15) HomDGAk/k
(Ā, Md(B)) → HomDGAk/k

(Ā, Md+1(B))

defining a natural transformation of functors from CDGAk to Sets. Since B’s are
unital and A is augmented, the restriction maps

(16) HomDGAk(A, Md(B))
∼→ HomDGAk/k

(Ā, Md(B)) , ϕ �→ ϕ|Ā
are isomorphisms for all d ∈ N. Combining (15) and (16), we thus have natural
transformations

(17) HomDGAk(A, Md( – )) → HomDGAk(A, Md+1( – )) .

By standard adjunction (7), (17) yield an inverse system of morphisms {μd+1,d :
Ad+1 → Ad} in CDGAk. Taking the limit of this system, we define

A∞ := lim←−
d∈N

Ad .

Next, we recall that the group GL(d) acts naturally on Ad, and it is easy to check
that μd+1,d : Ad+1 → Ad maps the subalgebra AGL

d+1 of GL-invariants in Ad+1 to

the subalgebra AGL
d of GL-invariants in Ad. Defining GL(∞) := lim−→ GL(d) through

the standard inclusions GL(d) ↪→ GL(d+1), we extend the actions of GL(d) on Ad

to an action of GL(∞) on A∞ and let A
GL(∞)
∞ denote the corresponding invariant

subalgebra. Then one can prove (see [T-TT])

(18) AGL(∞)
∞

∼= lim←−
d∈N

A
GL(d)
d .

This isomorphism allows us to equip A
GL(∞)
∞ with a natural topology: namely, we

put first the discrete topology on each A
GL(d)
d and equip

∏
d∈N

A
GL(d)
d with the

product topology; then, identifying A
GL(∞)
∞ with a subspace in

∏
d∈N

A
GL(d)
d via

(18), we put on A
GL(∞)
∞ the induced topology. The corresponding topological DG

algebra will be denoted AGL
∞ .
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Now, for each d ∈ N, we have the commutative diagram

C(A)
Trd+1(A)•



��
��
��
�� Trd(A)•

���
��

��
��

�

AGL
d+1

μd+1,d
�� AGL

d

where C(A) is the cyclic functor restricted to DGAk/k (cf. Section 2.2). Hence, by
the universal property of inverse limits, there is a morphism of complexes Tr∞(A)• :
C(A) → AGL

∞ that factors Trd(A)• for each d ∈ N. We extend this morphism to a
homomorphism of commutative DG algebras:

(19) Tr∞(A)• : Λ[C(A)] → AGL
∞ .

The following lemma is one of the key technical results of [BR]; it should be
compared to Theorem 7 in the finite-dimensional case (d = dimk V ).

Lemma 1 ([BR], Lemma 3.1). The map (19) is topologically surjective: i.e.,
its image is dense in AGL

∞ .

Letting ATr
∞ denote the image of (19), we define the functor

(20) ( – )Tr∞ : DGAk/k → CDGAk , A �→ ATr
∞ .

The algebra maps (19) then give a morphism of functors

(21) Tr∞( – )• : Λ[C( – )] → ( – )Tr∞ .

Now, to state the main result of [BR] we recall that the category of augmented
DG algebras DGAk/k has a natural model structure induced from DGAk. We also recall
the derived Feigin-Tsygan functor LC( – ) : Ho(DGAk/k) → Ho(CDGAk) inducing the
isomorphism of Theorem 6.

Theorem 8 ([BR], Theorem 4.2). (a) The functor (20) has a total left derived
functor L( – )Tr∞ : Ho(DGAk/k) → Ho(CDGAk) .

(b) The morphism (21) induces an isomorphism of functors

Tr∞( – )• : Λ[LC( – )] ∼→ L( – )Tr∞ .

By definition, L( – )Tr∞ is given by L(A)Tr∞ = (QA)Tr∞ , where QA is a cofibrant
resolution of A in DGAk/k . For an ordinary augmented k-algebra A ∈ Algk/k, we
set

DRep∞(A)Tr := (QA)Tr∞ .

By part (a) of Theorem 8, DRep∞(A)Tr is well defined. On the other hand, part
(b) implies

Corollary 1. For any A ∈ Algk/k, Tr∞(A)• induces an isomorphism of
graded commutative algebras

(22) Λ[HC(A)] ∼= H•[DRep∞(A)Tr] .

In fact, one can show that H•[DRep∞(A)Tr] has a natural structure of a graded
Hopf algebra, and the isomorphism of Corollary 1 is actually an isomorphism of
Hopf algebras. This isomorphism is analogous to the famous Loday-Quillen-Tsygan
isomorphism computing the stable homology of matrix Lie algebras gln(A) in terms
of cyclic homology (see [LQ, T]). Heuristically, it implies that the cyclic homology
of an augmented algebra is determined by its representation homology.
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3. NC Poisson structures and DG representation schemes

In this section, we propose a definition of a NC Poisson structure on an associa-
tive DG algebra A ∈ DGAk. Our definition generalizes the notion of a noncommu-
tative Poisson structure in the sense of [CB]. We show that our noncommutative
DG Poisson structures induce (via the natural trace maps) DG Poisson algebra

structures on A
GL(V )
V for all V . Subsequently, in the next section, we will intro-

duce an NC P∞-structure, which is a strong homotopy version of the notion of a
NC Poisson structure. We note that our definition of and results relating to NC
Poisson algebras and NC P∞-algebras may be mimicked to give definitions of, and
corresponding results for, NC n-Poisson algebras and NV n−P∞ algebras for every
n. At the level of homology, our construction gives a higher extension of Crawley-
Boevey’s notion of an H0-Poisson structure on an algebra A. Indeed, suppose that
A has a cofibrant resolution R ∈ DGAk which is equipped with a NC n-Poisson
structure. Then, this last structure on R induces a graded Lie algebra structure
{–, –}� on the (shifted) cyclic homology HC•(A)[n], and we will refer to {–, –}� as
a derived n-Poisson structure on A.

The following result is a direct generalization of Theorem 2 stated in the In-
troduction.

Theorem 9. Let A be an algebra equipped with a derived n-Poisson structure.
Then, there exists a unique graded n-Poisson algebra structure {–, –} on H•(A, V )GL

such that

(TrV )•({α, β}�) = {(TrV )•(α), (TrV )•(β)}
for all α, β ∈ HC•(A).

Theorem 9 is a consequence of the more fundamental Theorem 10 that we will
prove in this section. In fact, we show (see Theorem 10 (i)) that a NC n-Poisson
structure on a DGA R induces DG n-Poisson structures on RGL

V (via natural trace
maps) in a functorial manner. In Theorem 9, the graded n-Poisson structure on
H•(A, V )GL is precisely the one induced on homology by the DG n-Poisson structure
on RGL

V coming from Theorem 10(i).
Further, we give a reasonable definition of the “homotopy category” of NC

Poisson algebras and prove a stronger statement (Theorem 10 (ii)) at the level of
homotopy categories.

3.1. NC Poisson algebras. Fix A ∈ DGAk, and let Der(A)� denote the sub-
complex of the DG Lie algebra Der(A) comprising those derivations whose image
is contained in [A,A] . It is easy to see that Der(A)� is a DG Lie ideal of Der(A),
so that Der(A)� := Der(A)/Der(A)� is a DG Lie algebra.

Now, let V be a representation of Der(A)� , i. e. a DG Lie algebra homomor-
phism � : Der(A)� → EndkV .

3.1.1. Definitions. By Poisson structure on V we will mean a DG Lie algebra
structure on V whose adjoint representation ad : V → EndkV factors through � :
i. e., there is a morphism of DG Lie algebras i : V → Der(A)� such that ad = �◦i .

For any DG algebra A, the natural action of Der(A) on A induces a Lie algebra
action of Der(A)� on A�. A NC Poisson structure on A is then, by definition,
a Poisson structure on the representation A�. It is easy to see that if A is a
commutative DG algebra, a NC Poisson structure on A is exactly the same thing
as a Poisson bracket on A.
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Let A and B be NC Poisson DG algebras, i.e. objects in DGAk equipped with
NC Poisson structures. A morphism f : A → B of NC Poisson DG algebras is
then a morphism f : A → B in DGAk such that f� : A� → B� is a morphism of DG
Lie algebras. We can therefore define the category NCPoissk.

Further, note that if B is a NC Poisson DG algebra and Ω is the de Rham
algebra of the affine line (cf. [BKR], Section B.4), then B ⊗ Ω can be given the
structure of a NC Poisson DG algebra via extension of scalars. Indeed, since [B ⊗
Ω, B ⊗ Ω] = [B,B] ⊗ Ω, we have (B ⊗ Ω)� ∼= B� ⊗ Ω. The DG Lie structure on
B�⊗Ω is simply the one obtained by extending the corresponding structure on B�.
The structure map i : B� ⊗ Ω → Der(B ⊗ Ω)� is simply the composite map

B� ⊗ Ω
i⊗Ω−−−→ Der(B ⊗ Ω)Ω,� → Der(B ⊗ Ω)� ,

where Der(B⊗Ω)Ω,� := DerΩ(B⊗Ω)/DerΩ(B⊗Ω)� and DerΩ(B⊗Ω) denotes the
DG Lie algebra of Ω-linear derivations from B ⊗ Ω into itself, with DerΩ(B ⊗ Ω)�

being the Lie ideal of derivations whose image is contained in B� ⊗ Ω.
We can now introduce the notion of P-homotopy along the lines of [BKR],

Proposition B.2 and Remark B.4.3. To be precise, we call two morphisms f, g : A →
B in NCPoiss P-homotopic if there is a morphism h : A → B⊗Ω such that h(0) = f
and h(1) = g (see Proposition B.2 of [BKR] for the definitions of h(0), h(1)). It is
easy to check that P-homotopy is an equivalence relation on HomNCPoiss(A,B) for
any A and B in NCPoissk. Thus, we can define Ho∗(NCPoiss) to be the category
whose objects are the cofibrant (in DGAk) DG algebras equipped with NC Poisson
structures, with HomHo∗(NCPoiss)(A,B) being the space of P-homotopy classes of
morphisms in HomNCPoiss(A,B).
Notation. In what follows, for a DG algebra A with a NC Poisson structure, the
symbol [–, –] shall be used to denote the corresponding Lie bracket on A�. The
symbol {–, –}� shall be used to denote the induced Lie bracket on H•(A�).

3.2. The main theorem. The following theorem is the first main result of
this paper.

Theorem 10. (a) The functor ( – )GL
V : DGAk → CDGAk enriches to give the

following commutative diagram

(23) NCPoissk
(– )GL

V ��

��

Poissk

��

DGAk
(– )GL

V �� CDGAk

where the vertical arrows are the forgetful functors.
(b) The functor ( – )GL

V : NCPoissk → Poissk descends to a functor L∗( – )GL
V :

Ho∗(NCPoissk) → Ho(Poissk). Further, L( – )GL
V : Ho(DGAk) → Ho(CDGAk) en-

riches to give a commutative diagram

(24) Ho∗(NCPoissk)
L∗(– )GL

V ��

��

Ho(Poissk)

��

Ho(DGAk)
L(– )GL

V �� Ho(CDGAk)
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The next section, Section 3.2.1 shall have certain preliminaries we require for
the proof of Theorem 10. Section 3.2.2 shall contain the proof of Theorem 10.

3.2.1. From DG Lie to DG Poisson algebras. The following proposition is a
(minor) generalization of Theorem 3.3 of [S].

Proposition 11. (i) One has a functor

Lie → Poiss, V �→ Λ(V )

from the category of DG Lie algebras to the category of DG Poisson algebras.
(ii) Further, for any DG Poisson algebra A and a morphism f : V → A of DG Lie

algebras, one has a unique morphism f̃ : Λ(V ) → A of DG Poisson algebras such

that f = f̃ ◦ ι where ι : V → Λ(V ) is the obvious inclusion.

Proof. Clearly, Λ(V ) is a commutative DG algebra. We extend the Lie
bracket on V to a Poisson bracket on Λ(V ) via the rules4

[u, v.w] = [u, v].w + (−1)|u||v|v.[u,w], [u, v] = (−1)|u||v|[v, u] .

That this indeed gives a well defined DG Poisson structure on Λ(V ) is a special
case of Proposition 13 from Section 4 (which in turn is a part of Theorem 3.15 of
[S]). Given a morphism f : V → W of DG Lie algebras, one gets the morphism
Λ(f) : Λ(V ) → Λ(W ) in CDGAk. We verify that F := Λ(f) is a morphism of DG
Poisson algebras as follows.

First, suppose that F ([u, v]) = [F (u), F (v)] and F ([u,w]) = [F (u), F (w)].
Then,

F ([u, v.w]) = F ([u, v].w) + (−1)|u||v|F (v.[u,w])

= F ([u, v]).F (w) + (−1)|F (u)||F (v)|F (v).F ([u,w])

= [F (u), F (v)].F (w) + (−1)|F (u)||F (v)|F (v).[F (u), F (w)]

= [F (u), F (v).F (w)] = [F (u), F (vw)] .

Hence, by induction, it suffices to verify that F ([x, y]) = [F (x), F (y)] on V . Since
F |V = f , the latter is indeed true. This proves (i).

Note that there exists a unique extension f̃ of f to a morphism Λ(V ) → A

in CDGAk. By the above computation, f̃ is a homomorphism DG Poisson algebras.
This proves (ii). �

Two morphisms f, g : V → W of DG Lie algebras are L-homotopic if there exists
a morphism h : V → W ⊗ Ω of DG Lie algebras5 such that h(0) = f, h(1) = g.

Lemma 2. If f is L-homotopic to g, Λ(f) is P-homotopic to Λ(g).

Proof. Indeed, the natural inclusion W ⊗ Ω ↪→ Λ(W )⊗ Ω is a morphism of
DG Lie algebras. Hence, its composition with h is a morphism of DG Lie algebras.
By Proposition 11 (ii), there exists a unique morphism h̃ : Λ(V ) → Λ(W ) ⊗ Ω

of DG Poisson algebras extending h. Since h̃(0)|V = Λ(f)|V , h̃(0) = Λ(f) by

Proposition 11 (ii). Similarly, h̃(1) = Λ(g). This proves the desired proposition. �

4|u| denotes the degree of a homogenous element u in Λ(V ).
5The DG Lie structure on W ⊗ Ω is obtained from that on W by extension of scalars.
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3.2.2. Proof of Theorem 10. It follows from Proposition 11 and Lemma 2
that if f, g : A → B are P-homotopic morphisms of NC Poisson algebras, then,
Λ(f�),Λ(g�) : Λ(A�) → Λ(B�) are P-homotopic morphisms of DG Poisson alge-
bras. The following proposition shows that the DG Poisson structure of Λ(A�)
induces one on AGL

V via TrV (A)•.

Lemma 3. If (TrV )•(β) = 0, then for any α ∈ Λ(A�), (TrV )•([α, β]) = 0.

Proof. Since
[α1α2, β] = ±α1.[α2, β]± [α1, β].α2 ,

and since (TrV )• is a morphism in CDGAk, it suffices to prove the desired proposition
for α ∈ A�. In this case, viewing α as an element of A�[1], consider the element
i(α) ∈ Der(A)�. Choose any ∂α ∈ Der(A) whose image in Der(A)� is i(α). By
Lemma 5 of Section 4 (which may be read independently of the rest of that section),
there is a (graded) derivation ψα of AGL

V such that

(TrV )•(∂α(β)) = ψα((TrV )•(β))

for all β ∈ A�. Hence,

(TrV )•([α, β]) = ψα((TrV )•(β))

for all β ∈ A�. Since (TrV )•([α,−]) as well as ψα((TrV )•(−)) are derivations with
respect to (TrV )•, it follows that

(TrV )•([α, β]) = ψα((TrV )•(β))

for all β ∈ Λ(A�). The right hand side of the above equation indeed vanishes when
(TrV )•(β) = 0. �

By Lemma 3, the antisymmetric pairing on AGL
V given by

{f, g} := (TrV )•([(TrV )
−1
• (f), (TrV )

−1
• (g)])

is well defined. That {−,−} equips AGL
V with the structure of a DG Poisson algebra

follows from Proposition 11 (i) and Theorem 7.
Further, the following argument shows that if f : A → B is a morphism of NC

Posson algebras, then fGL
V : AGL

V → BGL
V is a morphism of DG Poisson algebras.

Indeed, since Λ(f�) is a morphism of DG Poisson algebras, (TrV )• ◦Λ(f�) = fGL
V ◦

(TrV )• and
{(TrV )•(α), (TrV )•(β)} = (TrV )•([α, β])

for all α, β ∈ Λ(A�) (and similarly for B),

{fGL
V ((TrV )•(α)), f

GL
V ((TrV )•(β))} = {(TrV )•(Λ(f�)(α)), (TrV )•(Λ(f�)(β))}

= (TrV )•([Λ(f�)(α),Λ(f�)(β)]) = (TrV )• ◦Λ(f�)([α, β])

= fGL
V ({(TrV )•(α), (TrV )•(β)}).

Theorem 7 then completes the verification that fGL
V : AGL

V → BGL
V is a morphism

of DG Poisson algebras. This completes the proof of Theorem 10 (i). Note that
the same argument also shows that if f, g : A → B are P-homotopic morphisms
of NC Poisson algebras, then fGL

V , gGL
V are P-homotopic morphisms of DG Poisson

algebras: indeed, if h : A → B ⊗ Ω is a P-homotopy between f and g, then hGL
V :

AGL
V → BGL

V ⊗ Ω is a morphism of DG Poisson algebras by (a trivial modification
of) the same argument as above.

Therefore, to complete the proof of Theorem 10 (ii), we only need to verify two
assertions:
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(a) If f, g : A → B are P-homotopic morphisms in NCPoiss, then γ(f) = γ(g) in
Ho(DGAk).
(b) If f, g : C1 → C2 are P-homotopic morphisms in Poiss, then γ(f) = γ(g) in
Ho(Poiss).

We check (a): let pA : QA
∼→ A be a cofibrant resolution of A. Then, γ(f) =

γ(fpA) and γ(g) = γ(gpA) in Ho(DGAk). Since f, g : A → B are polynomially
M-homotopic to each other (see [BKR] Remark B.4.3), so are fpA and gpA.
By [BKR], Proposition B.2, γ(fpA) = γ(gpA) in Ho(DGAk). Thus, γ(f) = γ(g)
in Ho(DGAk). (b) is checked similarly, using the natural analogue of [BKR], Propo-
sition B.2 for Poiss (see [BKR], the end of Remark B.4.3).

3.3. Remark. As mentioned in [BKR], Section 5.6, we expect that the cat-
egory NCPoissk has a natural model structure compatible with the standard (pro-
jective) model structure on DGAk. The notation Ho∗ is to remind the reader that,
since NCPoissk is not yet proven to be a model category, Ho∗(NCPoissk) is not yet
confirmed to be an abstract homotopy category in Quillen’s sense. One way to rem-
edy this problem is to use the construction of a fibre product (homotopy pullback)
of model categories due to Toën (see [To]). First, passing to infinite-dimensional
limit V → V∞ (see [BR]), we can stabilize the family of representation functors
replacing ( – )GL

V in (23) by

(25) ( – )Tr∞ : DGAk → CDGAk .

By [BR], Theorem 4.2, (25) is a left Quillen functor having the total left derived
functor L( – )Tr∞ . Then, by [To], the homotopy pullback of (25) along the forgetful
functor Poissk → CDGAk is a model category DGAk ×h

CDGAk
Poissk , which, in view

of (23), comes together with a functor

NCPoissk → DGAk ×h
CDGAk

Poissk .

It is easy to show that this last functor is homotopy invariant, so it induces a functor

(26) Ho∗(NCPoissk) → Ho(DGAk ×h
CDGAk

Poissk) .

Our expectation is that (26) is an equivalence of categories. Since Toën’s construc-
tion is known to give a correct notion of ‘homotopy fibre product’ (see [Be]), such
an equivalence would mean that our ad hoc definition of NC Poisson structures is
the correct one from homotopical point view. This would also give a precise mean-
ing to the claim that the NC Poisson structures are the weakest structures on A
inducing the usual Poisson structures under the representation functor (since the
fibre product DGAk ×h

CDGAk
Poissk is exactly the category that has this property).

4. Noncommutative P∞-algebras

The definition of an NC Poisson structure can be generalized to a definition of a
NC P∞-structure. In this subsection, we show that a NC P∞-structure on A induces
(in a functorial way) a P∞-structure on AGL

V for all finite dimensional V . Further,
we show that homotopy equivalent NC P∞-structures induce homotopy equivalent
P∞-structures on each AGL

V . The main result in this subsection, i.e, Theorem 12,
is therefore, a stronger version of Theorem 10. One can similarly define the notion
of a NC n-P∞ structure on a DGA. We remark here that Theorem 9 holds word
for word with NC n-Poisson replaced by NC n-P∞. The reader who is interested
only in NC Poisson structures may skip this section and move on the next section.
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4.1. Definitions. A P∞-structure on a representation V of Der(A)� is a L∞-
algebra structure on V whose adjoint representation6 factors through �: i.e, there
is a L∞-morphism i : V → Der(A)� (of L∞-algebras) such that � ◦ i = ad.

A NC P∞-structure on an object A of DGAk is, by definition, a NC P∞- structure
on A� (thought of as a representation of Der(A)� as in Section 3.1.1). Equivalently,
a NC P∞-algebra is a DG algebra A such that A� is equipped with a L∞-structure
{ln : ∧n(A�) → (A�)}n≥1 such that ln has degree n − 2 and for all a1, .., an−1 ∈
A homogenous, ln(ā1, ..., ān−1, –) : A� → A� is induced on A� by a derivation
∂a1,...,an−1

: A → A 7 of degree n− 2 +
∑

i |ai|.
A morphism of NC P∞-algebras is a collection of maps f1, f̄2, .. such that f1 :

A → B is a morphism of DG algebras and {f̄n : ∧n(A�) → B�}n≥1 form an L∞-
morphism 8. We further require that for all a1, .., an−1 ∈ A, f̄n(ā1, ..., ān−1,−) :
A� → B� is induced by a degree

∑
|ai| + n − 1 operator ∂fa1,..,an−1

: A → B

such that the collection {∂faS
}S⊂{1,..,n−1} is a f1-polyderivation of multi-degree

(|a1| + 1, .., |an−1| + 1). Here, for S = {i1 < .. < ip}, {∂faS
}S := ∂fai1

,...,aip
. The

reader is referred to [BKR], Section 5.5 for the definition of polyderivations and
related material.

In addition, note that if B is a NC P∞-algebra and Ω is the de-Rham algebra
of the affine line, then B ⊗ Ω naturally acquires the structure of a NC P∞-algebra
via extension of scalars.

This allows us to define the notion of homotopy along the lines of [BKR],
Proposition B.2 and Remark B.4.3. A homotopy between morphisms f, g : A → B
of P∞-algebras is a morphism h : A → B ⊗ Ω of P∞-algebras such that h(0) =
f, h(1) = g.

We have thus, defined the category NCP∞ of NC P∞ algebras. The full subcat-
egory of NCP∞ algebras whose objects are commutative DGAs equipped with NC
P∞ structure will be called P∞. We note that our definition of P∞ algebra is more
restrictive than the definition of P∞ in the operadic sense (see [CVdB] for exam-
ple). This definition, however, coincides with a definition of Poisson∞ algebras that
has been studied earlier in the literature (see [CF, S] for example).

The category Ho∗(NCP∞) is defined to be the category whose objects are objects
of NCP∞ that are cofibrant in DGAk such that HomHo∗(NCP∞)(A,B) is the space of
homotopy equivalence classes in HomNCP∞(A,B). The category P∞ of P∞ algebras
and its “homotopy category” are analogously defined on the commutative side.

4.2. The main result. The following result is the main result of this subsec-
tion. It strengthens Theorem 10.

Theorem 12. (i) The functor (−)GL
V : DGAk → CDGAk enriches to give the

following commutative diagram of functors (vertical arrows being forgetful functors)

NCGP∞
(−)GL

V ��

��

P∞

��

DGAk
(−)GL

V �� CDGAk

6Recall that is V is a L∞-algebra, one has a (structure) L∞-morphism ad : V → Endk(V ).
7∂a1,...,an−1 is any element of Der(A) such that its image in Der(A)� coincides with i(ā1 ∧

... ∧ ān−1).
8f̄1 : A� → B� is the map induced by f1.
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(ii) Further, the functor (−)GL
V : NCP∞ → P∞ descends to a functor

Ho∗(−)GL
V : Ho∗(NCP∞) → Ho∗(P∞).

The proof of this theorem will be organized along the lines of the proof of
Theorem 10.

4.3. From L∞ to P∞ algebras. The following proposition is (part of) The-
orem 3.15 in [S].

Proposition 13. Let V be a L∞-algebra. Then, Λ(V ) (with the obvious mul-
tiplication) inherits the structure of a P∞-algebra such that the L∞-operations on
Λ(V ) extend those on V via the formula

ln(v1, ., vn−1, v.w) = ln(v1, .., vn−1, v).w + (−1)(
∑

|vi|+n−2)|v|v.ln(v1, ..., vn−1, w).

Recall the definition of a polyderivation from [BKR], Section 5.5. Let {fn} :
V → G be a morphism of L∞-algebras (where G is a P∞-algebra). Equip Λ(V )
with the P∞-structures from Proposition 13. Each fn uniquely extends to a map

fn : ∧n(Λ(V )) → G

of degree n− 1 such that for all v1, .., vn−1 ∈ Λ(V ), the maps {fS(v1, .., vn−1,−) :
Λ(V ) → G}S⊂{1,...,n−1} constitute a polyderivation of multi-degree (|v1|+1, .., |vn−1|+
1) with respect to f1 : Λ(V ) → G 9. Here, for S = {i1 < .. < ik} ⊂ {1, ..., n − 1},
fS(v1, .., vn−1,−) denotes the map fk+1(vi1 , .., vik ,−) : Λ(V ) → G. The following
key proposition is due to T. Schedler (in [S1]).

Proposition 14. The extended maps {fn} constitute the unique P∞-morphism
from Λ(V ) to G extending f : V → G.

We remark that Propositions 13 and 14 together imply that V �→ Λ(V ) is a
functor from the category of L∞-algebras to the category of P∞-algebras. For a
L∞-morphism f := {fn} : V → G, the unique P∞-morphism {fn} from Λ(V ) to G
extending f : V → G shall be denoted by Λ(f). Propositions 13 and 14 together
imply that Λ((...)) is a well defined functor from the category of L∞-algebras to
the category of P∞-algebras. Recall that two L∞-morphisms f, g : V → W are
homotopic if there exists a L∞-morphism h : V → W ⊗Ω such that10 h(0) = f and
h(1) = g. One has the following lemma.

Lemma 4. Suppose that f, g : V → W are homotopic L∞-morphisms. Then,
their extensions Λ(f),Λ(g) : Λ(V ) → Λ(W ) are homotopic P∞-morphisms.

Proof. Let h : V → W ⊗ Ω be a L∞-morphism with h(0) = f and h(1) = g.
The identification Λ(W )⊗Ω with ΛΩ(W ⊗Ω) together with Proposition 14 shows
that h extends to a P∞-morphism Λ(h) : Λ(V [) → Λ(W )⊗Ω such that Λ(h)(0) =
Λ(f) : Λ(V ) → Λ(W ) and Λ(h)(1) = Λ(g) : Λ(V ) → Λ(W ). �

4.4. Proof of Theorem 12.

9f1 : Λ(V ) → G is the obvious extension of the map of complexes f1 : V → G to a morphism
in CDGAk.

10The higher L∞-structure maps of W ⊗ Ω are extended from those of W by Ω-linearity.
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4.4.1. A technical lemma. Our proof requires the following technical lemma.

Lemma 5. Let {φS} be a polyderivation of multi-degree (d1, .., dk) with respect
to φ : A → B. The induced polyderivation {(φV )S} of multi-degree (d1, .., dk)
from [BKR], Lemma 5.5 restricts to a polyderivation {(φV )S} with respect to φV :
AGL

V → BGL
V .

Proof. We need to verify that (φV )S maps AGL
V to BGL

V . For this, note that

(φV )S(a.b) =
∑

T�T ′=S

±(φV )T (a).(φV )T ′(b).

The above equation implies that if (φV )S(a) and (φV )S(b) are in the subalgebra
generated by the image of (TrV )• for all S ⊂ {1, .., k}, then (φV )S(ab) is in the
subalgebra generated by the image of (TrV )• for all S ⊂ {1, .., k}. This desired
statement now follows from Theorem 7. �

4.4.2. The main body of the proof. It follows from Propositions 13, 14 and
Lemma 4 that if f, g : A → B are homotopic morphisms of NC P∞-algebras, Λ(f�)
and Λ(g�) are homotopic morphisms of P∞-algebras 11. Let ln : ∧n(Λ(A�)) →
Λ(A�) denote the structure maps of Λ(A�).

Lemma 6. For any β ∈ Λ(A�) such that (TrV )•(β) = 0,

(TrV )•(ln(α1, ..., αn−1, β)) = 0

for any α1, .., αn−1 ∈ Λ(A�).

Proof. Since

ln(α1.α
′
1, α2, .., αn−1, β) = ±α1.ln(α

′
1, ..., αn−1, β)± α′

1.ln(α1, ..., αn−1, β) ,

since (TrV )• : Λ(A�) → AGL
V is a ring homomorphism, and because the (anti)-

symmetry of ln, an inductive argument reduces the verification the required lemma
to the case when α1, ..., αn−1 ∈ A�. Let ∂α1,...,αn−1

be any derivation of A whose
image in Der(A)� = i(α1 ∧ ... ∧ αn−1). Then, by Lemma 5, there is a (graded)
derivation ψα1,...,αn−1

of AGL
V such that

(TrV )•(∂α1,...,αn−1
(β̃′) = ψα1,...,αn−1

((TrV )•(β
′))

for any β′ ∈ A� and for any lift β̃′ of β to A. Hence,

(TrV )•(ln(α1, ..., αn−1, β
′)) = ψα1,...,αn−1

((TrV )•(β
′))

for any β′ ∈ A�. It follows that

(TrV )•(ln(α1, ..., αn−1, β)) = ψα1,...,αn−1
((TrV )•(β))

for any β ∈ Λ(A�). The right hand side of the above equation is clearly 0 if
(TrV )•(β) = 0. �

11A short explanation is needed here: indeed, f consists of a morphism f1 : A → B of
DG-algebras and higher components f̄2, ..., f̄n such that f̄1, .., f̄n, ... are Taylor components of a

L∞-morphism from A� to B�. The first component of Λ(f�) is Λ((f1)�). The higher components

are constructed as in the discussion before Proposition 14.
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By Lemma 6 and Theorem 7, the operations l̄n : ∧n(AGL
V ) → AGL

V defined by

l̄n(α1, .., αn) = (TrV )•(ln((TrV )
−1
• (α1), ..., (TrV )

−1
• (αn)))

are well defined. Further, Theorem 7 and the fact that the ln impose a P∞ struc-
ture on Λ(A�) together imply that the l̄n impose a P∞-structure on AGL

V . Let
{f1, f̄2, ..., } : A → B be a homomorphism of NC P∞-algebras.

Lemma 7. As in Proposition 14, extend the f̄n to maps fn : ∧n(Λ(A�)) →
Λ(B�). Then, for any β ∈ Λ(A�) such that (TrV )•(β) = 0,

(TrV )•(fn(α1, ..., αn−1, β)) = 0

for all α1, .., αn−1 ∈ Λ(A�).

Proof. For n = 1, the required lemma is clear: indeed, (TrV )• is a natural
transformation between the functors A �→ Λ(A�) and A �→ AGL

V . Put αn := β.
Note that Λ(A�) has a polynomial grading where elements of A� may be viewed as
the elements of polynomial degree 1. Put Jn := {2, 3, ..., n}. For I := {αi1 < ... <
αi|I|} ⊂ Jn let fI(α) := f|I|+1(α, αi1 , .., αi|I|). Since

fn(α1.α
′
1, α2, .., αn) =

∑
I⊂Jn

±fI(α).fJ\I(α′) ,

an induction on n as well as the polynomial degree of α1, together with the (anti)-
symmetry of fn reduces the verification of the required lemma to the case when
α1, .., αn−1 ∈ A�. In this case, let ai be a lift of αi for 1 ≤ i ≤ n − 1. Consider
the polyderivation {∂faS

}S⊂{1,..,n−1} from Section 4.1. By Lemma 5, there is a

polyderivation {ψf
aS

: AGL
V → BGL

V }S⊂{1,..,n−1} satisfying

(TrV )•(∂
f
aS
(b)) = ψf

aS
((TrV )•(b))

for any b ∈ A, S ⊂ {1, ..., n− 1}. Hence,

(TrV )•(f|S|+1(αi1 , .., αi|S| , β
′)) = ψf

aS
((TrV )•(β

′))

for all β′ ∈ A� and S := {i1 < ... < i|S|} ⊂ {1, ..., n− 1}. Since the operators

{(TrV )•(f|S|+1(αi1 , .., αi|S| ,−))}S as well as {ψf
aS
((TrV )•(−))}S constitute poly-

derivations of the same multidegree with respect to (TrV )• ◦ Λ((f1)�), it follows
that

(TrV )•(f|S|+1(αi1 , .., αi|S| , β)) = ψf
aS
((TrV )•(β))

for all β ∈ Λ(A�). Since the right hand side of the above equation vanishes when
(TrV )•(β) = 0, the required lemma follows. �

Lemma 7 and Theorem 7 imply that the maps

∧n(AGL
V ) → BGL

V , (α1, .., αn) �→ (TrV )•(fn((TrV )
−1
• (α1), ..., (TrV )

−1
• (αn)))

are well defined. Theorem 7 together with Proposition 14 further implies that they
constitute a P∞-morphism fGL

V from AGL
V to BGL

V (and that this construction is
preserves compositions of morphisms). This proves Theorem 12 (i). A trivial modi-
fication of the same argument shows that if h : A → B⊗Ω is a P-homotopy between
morphisms f, g : A → B ⊗ Ω of NC P∞-algebras, then the above construction ap-
plied to h gives a morphism hGL

V : AGL
V → BGL

V that is a homotopy between the
morphisms fGL

V and gGL
V of P∞-algebras. This proves Theorem 12 (ii).
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4.5. Remark. Another interesting question would be to relate Ho∗(NCP∞) to
Ho∗(NCPoiss). In this context, one may recall a theorem due to Munkholm ([M]),
which states that Ho(DGAk) is equivalent to the full subcategory of Ho∗(A∞) whose
objects are objects of DGAk. Here, Ho∗(A∞) is the category whose objects are A∞-
algebras and whose morphisms are homotopy classes of A∞-morphisms. Given
this, one may ask whether Ho∗(NCPoiss) is equivalent to the full subcategory of
Ho∗(NCP∞) whose objects are objects of NCPoiss. If the answer to this question is
negative, what is the precise relation between these two categories?

5. NC Poisson algebras from Calabi-Yau algebras

This section exhibits a large family of NC n-Poisson algebras: more gener-
ally, we show that if A is a finite dimensional graded n-cyclic algebra, the cobar
construction applied to the linear dual C := Homk(A, k) of A is equipped with a
(2−n)-Poisson double bracket. This Poisson double bracket induces a noncommu-
tative (2−n)-Poisson structure. Of course, the cobar construction of C is cofibrant
(in fact, free) as a DG algebra. In particular, a finite dimensional 2-cyclic algebra
(for example, the cohomology of a compact smooth 2-manifold) gives rise to a cofi-
brant DG algebra with a noncommutative Poisson structure. We point out that
a n-cyclic algebra is a special case of a n-Calabi-Yau A∞-algebra in the sense of
Kontsevich (see [Cos], Section 7.2).

In this section, we shall often use Sweedler’s notation and write

Δ(α) = α′ ⊗ α′′

for any element α in a coalgebra C with coproduct Δ.

5.1. Double Poisson (DG) algebras. Let A be an associative DG algebra
over a field k. An A-bimodule M is a left A ⊗ Aop-module. On A ⊗ A, there are
two A-bimodule structures: one is the outer A-bimodule, namely

a · (u⊗ v) · b = au⊗ vb;

the other one is the inner A-bimodule, namely

a · (u⊗ v) · b = (−1)
|a||u|+|a||b|+|b||v|

ub⊗ av .

Here, a, b, u, v are arbitrary homogenous elements of A.
Suppose that A is an associative (unital) DG algebra over a field k. A double

bracket of degree n on A is a bilinear map

{{−,−}} : A⊗A → A⊗A

which is a derivation of degree n (for the outer A-bimodule structure on A⊗A) in
its second argument and satisfies

{{a, b}} = −(−1)
(|a|+n)(|b|+n){{b, a}}◦,

where (u⊗ v)◦ = (−1)|u||v|v ⊗ u. For a, b1, ..., bn homogeneous in A, let

{{a, b1 ⊗ . . .⊗ bn}}L := {{a, b1}} ⊗ b2 ⊗ . . .⊗ bn .

Further, for a permutation s ∈ Sn, let

σs(b1 ⊗ . . .⊗ bn) := (−1)tbs−1(1) ⊗ . . .⊗ bs−1(n)
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where

t :=
∑

i<j;s−1(i)>s−1(j)

|as−1(i)||as−1(j)| .

Suppose that {{–, –}} is a double bracket of degree n on A. If furthermore A
satisfies the following double Jacobi identity{{

a, {{b, c}}
}}

L
+ (−1)

(|a|+n)(|b|+|c|)
σ(123)

{{
b, {{c, a}}

}}
L

+ (−1)(|c|+n)(|a|+|b|)σ(132)
{{
c, {{a, b}}

}}
L
= 0 ,

then A is called a double n-Poisson algebra.
Let μ : A⊗A → A denote the multiplication on A. Let {–, –} := μ ◦ {{–, –}} :

A⊗A → A. The following is a direct generalization (to the DG setting) of Lemma
2.4.1 of [VdB].

Lemma 8. {–, –} induces a noncommutative n-Poisson structure on A. In
particular, when n = 1, {–, –} induces a noncommutative Gerstenhaber structure
on A.

Notation. Using Sweedler’s notation, we will often write

{{u, v}} = {{u, v}}′ ⊗ {{u, v}}′′ .

5.1.1. Remark. One thus has the category n−DPoiss of DG double n-Poisson
algebras. We sketch how the analog of Theorem 10 holds for double n-Poisson
algebras. The details in this subsubsection are left to the interested reader. Let A
be a DG n-double Poisson algebra. Let Ω denote the de Rham algebra of the affine
line, as in Section 3. Then, it is verified without difficulty that A⊗Ω has a Ω-linear
DG double n-Poisson structure. Indeed, after identifying (A⊗Ω)⊗Ω (A⊗Ω) with
A⊗A⊗ Ω, the (Ω-linear) double bracket on A⊗ Ω is given by {{–, –}} ⊗ IdΩ.

One may therefore, define the “homotopy category” Ho∗(n − DPoiss) of n −
DPoiss: objects in Ho∗(n − DPoiss) are objects in n − Poiss that are cofibrant
in DGAk. Morphisms in Ho∗(n − DPoiss) are homotopy classes of morphisms in
n− Poiss. Here, f, g : A → B in n− Poiss are homotopic if there exists h : A →
B ⊗ Ω in n − Poiss such that h(0) = f and h(1) = g. Here, when we say that
h : A → B ⊗ Ω is in n− Poiss, we mean that

{{–, –}} ◦ (h⊗Ω h) = (h⊗Ω h) ◦ {{–, –}} .

If A is a double n-Poisson algebra, a direct extension of the proofs of Proposi-
tions 7.5.1 and 7.5.2 of [VdB] shows that there exists a DG n-Poisson structure on
AV (which restricts to the one induced on AGL

V by the corresponding noncommuta-
tive n-Poisson structure on A). One further shows without much difficulty that if
A,B are double n-Poisson algebras and if h : A → B ⊗Ω is a morphism of double
n-Poisson algebras, then hV : AV → BV ⊗ Ω is a morphism of DG n-Poisson
algebras. Thus, the analog of Theorem 10 (with (–)V and L(–)V replacing (–)GL

V

and L(–)GL
V ) holds for double n-Poisson algebras.

5.2. Cyclic graded algebras and double Poisson brackets. In this sub-
section, we will avoid specifying exact signs that are determined by the Koszul
rule. Instead, such signs will be denoted by the symbol ±. This is done in order to
simplify cumbersome formulas, especially in the proof of Theorem 15.
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5.2.1. Let A be a finite dimensional (graded) associative algebra with a sym-
metric inner product of degree n such that

(27) 〈a, bc〉 = ±〈ca, b〉, for any a, b, c ∈ A.

According to Kontsevich ([Ko]) and Getzler-Kapranov ([GK]), such an algebra is
called a n-cyclic associative algebra. In addition, if A is finite dimensional, the dual
space C := Hom(A, k) is a coalgebra equipped with a symmetric bilinear pairing
of degree −n. By the non degeneracy of the inner product on A, Equation (27) is
dual to the following identity:

(28) 〈v′, w〉 · v′′ = ±〈v, w′′〉 · w′, for any v, w ∈ C.

Hence, C acquires the structure of cyclic (−n)-coalgebra. More generally, a DG
coalgebra C equipped with a symmetric bilinear pairing 〈–, –〉 of degree n is called
cyclic if in addition to (28),

(29) 〈du, v〉 ± 〈u, dv〉 = 0

for all u, v ∈ C.
5.2.2. Constructing the (n + 2)-double Poisson bracket. Let C be a n-cyclic

coassociative coalgebra and let Ω(C) denote the cobar construction of C. Define
{{−,−}} : Ω(C)⊗ Ω(C) → Ω(C)⊗ Ω(C) by

(30)

{{v, w}} :=
∑

i=1,··· ,n
j=1,··· ,m

±〈vi, wj〉 · (w1, · · · , wj−1, vi+1, · · · , vn)

⊗ (v1, · · · , vi−1, wj+1, · · · , wm) ,

where v = (v1, v2, · · · , vn) and w = (w1, w2, · · · , wm). The next theorem is the
main result of this section.

Theorem 15. Let C be a n-cyclic coassociative DG coalgebra. The bracket
(30) gives a double (n+ 2)-Poisson structure on the DG algebra Ω(C).

Remark 1. By construction, Ω(C) is a cofibrant DG algebra.

Proof. The proof consists of three steps.
Step 1. First, recall that Ω(C) has a natural differential graded algebra struc-

ture, with multiplication given by the tensor product. We show that {{−,−}} is a
derivation for the second argument. For u = (u1, u2, · · · , up), v = (v1, v2, · · · , vq), w =
(w1, w2, · · · , wr) , we have

{{u, v · w}} = {{(u1, · · · , up), (v1, · · · , vq, w1, · · · , wr)}}

=
∑

i=1,··· ,p
j=1,··· ,q

±〈ui, vj〉 · (v1, · · · , vj−1, ui+1, · · · , up)

⊗ (u1, · · · , ui−1, vj+1, · · · , vq, w1, · · · , wr)

+
∑

i=1,··· ,p
k=1,··· ,r

±〈ui, wk〉 · (v1, · · · , vq, w1, · · · , wk−1, ui+1, · · · , up)

⊗ (u1, · · · , ui−1, wk+1, · · · , wr).

Hence

(31) {{u, v · w}} = {{u, v}}′ ⊗ {{u, v}}′′ · w ± v · {{u,w}}′ ⊗ {{u,w}}′′ .
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DERIVED POISSON STRUCTURES 239

Step 2. Next, we show that {{−,−}} is skew symmetric and satisfies the
double Jacobi identity. The skew symmetricity follows directly from the defini-
tion (30) as the pairing on C[−1] induced by 〈–, –〉 is skew-symmetric. Therefore,
we only need to check the double Jacobi identity. For u = (u1, u2, · · · , up), v =
(v1, v2, · · · , vq), w = (w1, w2, · · · , wr), we have

{{u, v}} =
∑
i,j

±〈ui, vj〉 · (v1, · · · , vj−1, ui+1, · · · , up)

⊗ (u1, · · · , ui−1, vj+1, · · · , vq) ,
{{v, w}} =

∑
j,k

±〈vj , wk〉 · (w1, · · · , wk−1, vj+1, · · · , vq)

⊗ (v1, · · · , vj−1, wk+1, · · · , wr) ,

{{w, u}} =
∑
k,i

±〈wk, ui〉 · (u1, · · · , ui−1, wk+1, · · · , wr)

⊗ (w1, · · · , wk−1, ui+1, · · · , up) .

Therefore

{{
u, {{v, w}}′

}}
⊗ {{v, w}}′′ =∑

i,j,k
1≤l≤k−1

±〈vj , wk〉〈ui, wl〉 · (w1, · · · , wl−1, ui+1, · · · , up)

⊗ (u1, · · · , ui−1, wl+1, · · · , wk−1, vj+1, · · · , vq)(32)

⊗ (v1, · · · , vj−1, wk+1, · · · , wr)+∑
i,j,k

j+1≤m≤q

±〈vj , wk〉〈ui, vm〉 · (w1, · · · , wk−1, vj+1, · · · , vm−1, ui+1, · · · , up)

⊗ (u1, · · · , ui−1, vm+1, · · · , vq)⊗ (v1, · · · , vj−1, wk+1, · · · , wr),(33)

{{w, u}}′′ ⊗
{{
v, {{w, u}}′

}}
=∑

i,j,k
1≤t≤i−1

±〈wk, ui〉〈vj , ut〉 · (w1, · · · , wk−1, ui+1, · · · , up)

⊗ (u1, · · · , ut−1, vj+1, · · · , vq)(34)

⊗ (v1, · · · , vj−1, ut+1, · · · , ui−1, wk+1, · · · , wr)+∑
i,j,k

k+1≤s≤n

±〈wk, ui〉〈vj , ws〉 · (w1, · · · , wk−1, ui+1, · · · , up)

⊗ (u1, · · · , ui−1, wk+1, · · · , ws−1, vj+1, · · · , vq)(35)

⊗ (v1, · · · , vj−1, ws+1, · · · , wn),

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



240 YURI BEREST, XIAOJUN CHEN, FARKHOD ESHMATOV, AND AJAY RAMADOSS

{{
w, {{u, v}}′

}}′′ ⊗ {{u, v}}′′ ⊗
{{
w, {{u, v}}′

}}′
=∑

i,j,k
1≤n≤j−1

±〈ui, vj〉〈wk, vn〉 · (w1, · · · , wk−1, vn+1, · · · , vj−1, ui+1, . . . , up)

⊗ (u1, · · · , ui−1, vj+1, · · · , vq)⊗ (v1, · · · , vn−1, wk+1, · · · , wr)+(36) ∑
i,j,k

j+1≤m≤p

±〈ui, vj〉〈wk, um〉 · (w1, · · · , wk−1, um+1, · · · , up)

⊗ (u1, · · · , ui−1, vj+1, · · · , vq)(37)

⊗ (v1, · · · , vj−1, ui+1, · · · , um−1, wk+1, · · · , wr)

In the above equations, the summand (32) cancels with (35), (33) cancels with (36),
and (34) cancels with (37). So we get{{

u, {{v, w}}′
}}

⊗ {{v, w}}′′ ± {{w, u}}′′ ⊗
{{
v, {{w, u}}′

}}
±
{{
w, {{u, v}}′

}}′′

⊗ {{u, v}}′′ ⊗
{{
w, {{u, v}}′

}}′
= 0,

which proves the double Jacobi identity.
Step 3. Using equation (31), one verifies without difficulty that if ∂{{u, v}} =

{{∂u, v}} ± {{u, ∂v}} and if ∂{{u,w}} = {{∂u,w}} ± {{u, ∂w}}, then ∂{{u, vw}} =
{{∂u, vw}} ± {{u, ∂(vw)}}. By this fact and the skew-symmetry of {{–, –}}, it suf-
fices to verify that ∂{{u, v}} = {{∂u, v}} ± {{u, ∂v}} for all u, v ∈ C. In this case,
∂{{u, v}} = 0. On the other hand, ∂u = du± (u′, u′′) and ∂v = dv± (v′, v′′). Hence,

{{∂u, v}}±{{u, ∂v}} = (〈du, v〉±〈u, dv〉)+(〈u′, v〉u′′±〈u, v′′〉v′±〈v, u′′〉u′±〈v′, u〉v′′) ,

where the first parenthesis in the right hand side vanishes by (29) and the second
by (28). This proves that ∂{{u, v}} = {{∂u, v}} ± {{u, ∂v}} for arbitrary u, v ∈ Ω(C),
completing the proof of the theorem. �

5.2.3. Remark. One say that two morphisms f, g : C1 → C2 of n-cyclic
coalgebras are homotopic if there exists a family φt : C1 → C2 of morphisms of
n-cyclic coalgebras varying polynomially with t as well as degree 1 coderivations st
with respect to φt such that

φ0 = f, φ1 = g and
dφt

dt
= [d, st] .

We further require that for all u, v ∈ C1,

〈st(u), φt(v)〉 ± 〈φt(u), st(v)〉 = 0 .

The above notion of homotopy is dual to the notion of a polynomial M-homotopy
betwee two morphisms in DGAk (see [BKR], Proposition B.2 and subsequent re-
marks). Extending Theorem 15, one can further show that if f, g : C1 → C2

are homotopic as morphisms of n-cyclic coalgebras, Ω(f) is homotopic to Ω(g) as
morphisms of (n+ 2)-double Poisson algebras. We leave the relevant details to the
motivated reader.
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5.3. Cyclic homology of coalgebras. We recall the definition of Hochschild
and cyclic homology of coalgebras. Given a coalgebra C over k consider the fol-
lowing double complex which is obtained by reversing the arrows in the standard
(Tsygan) double complex of an algebra:

C⊗3

b

��

1−T
�� C⊗3

b′

��

N �� C⊗3

b

��

1−T
��

C⊗2

b

��

1−T
�� C⊗2

b′

��

N �� C⊗2

b

��

1−T
��

C

b

��

1−T
�� C

b′

��

N �� C

b

��

1−T
��

0

��

0

��

0

��

This double complex is 2-periodic in horizontal direction, with operators b, b′, T
and N given by

b′(c1, · · · , cn) =

n−1∑
i=1

(−1)i−1(c1, · · · , c′i, c′i+1, · · · , cn) ,

b(c1, · · · , cn) = b′(c1, · · · , cn) +
∑

(−1)n(c′′1 , c2, · · · , cn, c′1) ,

T (c1, · · · , cn) = (−1)n−1(c2, · · · , cn, c1) ,

N =
n−1∑
i=0

T i .

The b-column is called the Hochschild chain complex C•(C,C) of C : it defines
the Hochschild homology HH•(C). The kernel of 1− T from the b-complex to the
b′-complex is called the cyclic complex CC•(C): by definitiion, its homology is the
cyclic homology HC•(C) of C.

Remark 2. If C is a coalgebra, then the dual complex A := Hom(C, k) admits
an algebra structure. If furthermore C is finite dimensional, then the Hochschild
complex C•(C,C) (resp., cyclic complex CC∗(C)) is isomorphic to the Hochschild
cochain complex C•(A, k) (reps., cyclic cochain complex CC•(A)). Here the Hochschild
cochain complex C•(A, k) is the Hochschild cochain complex of A with values in k.
Otherwise if C is infinite dimensional, then the Hochschild complex C•(C,C) (reps.
cyclic complex CC•(C)) is a sub complex of the Hochschild cochain complex C•(A, k)
(reps. cyclic cochain complex CC•(A)).

We collect some facts about the cyclic complex from Quillen [Q2, §1.3]. Let A
be an associative algebra. The commutator subspace of A is [A,A], which is the
image of m − mσ : A ⊗ A → A, where m is the product and σ is the switching
operator, and the commutator quotient space is

A� := A/[A,A] = Coker{m−mσ : A⊗A → A}.
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Dually, suppose C is a coassociative coalgebra, the cocommutator sub space of C
is

C� := Ker{Δ− σΔ : C → C ⊗ C}.

Recall that the bar construction B(A) of A (resp. cobar construction Ω(C) of C)
is a differential graded (DG) coalgebra (resp. DG algebra). The following lemma
is [Q2, Lemma 1.2].

Lemma 9. The space B�
n(A) is the kernel of (1− T ) acting on A⊗n.

Dually, the space (Ω�(C))n is the cokernel of (1 − T ) acting on C⊗n. And
therefore, via the isomorphisms

CC•(A) = Coker(1− T )
∼=→ Ker(1− T ), CC•(C) = Ker(1− T )

∼=→ Coker(1− T ),

one obtains the following lemma.

Lemma 10. As complexes of k-vector spaces,

Ω(C)� ∼= CC•(C) .

All explicit examples of derived NC Poisson structures in this paper arise by
applying Theorem 15 and Lemma 8 to a cofibrant resolution of an honest algebra
of A that is of the form Ω(C) for some finite dimensional cyclic DG coalgebra C.
This makes the following corollary of this paper relevant.

Corollary 2. Let C be a (DG) coalgebra such that Ω(C)
∼� A in DGAk for

some A ∈ Algk. Then,

HC•(A) ∼= HC•(C) .

Now, suppose that A is a finite dimensional graded k-algebra. By definition,
HCi(A) ∼= HCi(A)

∗. It is concentrated in homological degree −i. By Theorem 15,
Lemma 8, Lemma 10 and the proof of Theorem 10 (i),

Corollary 3. For any n-cyclic (finite dimensional) graded algebra A, HC•(A)[2−
n] has the structure of a graded Lie algebra. Moreover, for any finite dimensional
k-vector space V ,

(TrV )• : Λ(HC•(A)) → H•(Ω(A
∗), V )GL

is a morphism of graded (2− n)-Poisson algebras.

For example, when n = 2 and A is 2-cyclic, then Ω(A∗) is a double Poisson
algebra by Theorem 15. Lemma 8 implies that Ω(A∗) acquires a noncommutative
Poisson structure from its double Poisson structure. Lemma 10 implies that HC•(A)
has a graded Lie algebra structure and Theorem 10 (i) implies that

(TrV )• : Λ(HC•(A)) → H•(Ω(A
∗), V )GL

is a morphism of graded Poisson algebras. There is no shortage of cyclic 2-algebras:
the cohomology H•(M,C) of any compact smooth 2-manifold M is such an algebra.
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5.4. Derived Poisson structures on k[x, y]. The construction in the pre-
vious subsection is interesting when C := k.a ⊕ k.b ⊕ k.s with |a| = |b| = 1 and
|s| = 2 with Δ(a) = Δ(b) = 0 and Δ(s) = a ⊗ b − b ⊗ a. In this case, there is a
natural isomorphism

Ω(C)
∼=→ R , s �→ t, a �→ x, b �→ y ,

where R := k〈x, y, t〉 , |x| = |y| = 0, |t| = 1 with differential given by dt := [x, y].
Note that R is a almost free resolution of A := k[x, y] in DGAk.

One can check that there is exactly one cyclic structure of degree −2 on C (up
to multiplication by scalars) with ω(a, a) = ω(b, b) = ω(–, s) = 0 and ω(a, b) = 1.
Similarly, there is exactly one cyclic structure of degree −3 on C (up to multipli-
cation by scalars) with ω̃(a, s) = ω̃(b, s) = 1. By Theorem 15,

Lemma 11. The cyclic structure ω (resp., ω̃) on C induces a NC Poisson (resp.,
NC (−1)-Poisson) structure on R.

Since R is an almost free resolution of A := k[x, y] (see [BKR], Example 4.1),
taking homology yields a graded Lie bracket of degree 0 on HC•(A) induced by
the cyclic structure ω on C:

(38) { – , – }� : HC•(A)×HC•(A) → HC•(A) ,

which is thus an example of a derived Poisson structure on A.
This structure has a natural geometric interpretation. If we restrict (38) to

HC0(A) = Ā, we get the usual Poisson bracket on polynomials associated to the
symplectic form dx ∧ dy. The Lie algebra (Ā, { – , – }�) is thus isomorphic to the
Lie algebra of (polynomial) symplectic vector fields on k2. Now, if we identify
HC1(A) = Ω1(A)/dA as in [BKR], Example 4.1, then, for any f̄ ∈ Ā and ᾱ ∈
Ω1(A)/dA,

{f̄ , ᾱ}� = Lθf (α) ,

where Lθf is the Lie derivative on 1-forms taken along the Hamiltonian vector field
θf . For example, if f = xp and α = yqdx, then ᾱ corresponds to the class of the
1-cycle qyq−1t in R� (see [BKR], Example 4.1). Note that

{xp, yq−1t}� =

q−1∑
i=1

pxp−1yq−1−ityi−1 .

Again, by [BKR], Example 4.1, the image of the R.H.S of the above equation is
identified with the class of the 1-form xp−1yq−1dx in HC1(A). Thus,

{xp, yqdx}� = pqxp−1yq−1dx .

On the other hand, θf = pxp−1 ∂
∂y , and hence,

Lθf (α) = pqxp−1yq−1dx .

In addition, the restriction of (38) to HC1(A) is zero (for degree reasons). Thus, the
graded Lie algebra HC•(A) is isomorphic to the semidirect product Ā�(Ω1A/dA) ,
where Ā is equipped with the standard Poisson bracket and Ω1(A)/dA is a Lie mod-
ule over Ā with action induced by the Lie derivative on Ω1(A). The Lie bracket (38)
extends to the graded symmetric algebra Λ[HC(A)] making it a Poisson algebra.
Theorem 10 implies that H•(A, V )GL has a (unique) graded Poisson structure such
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that the trace map (TrV )• : Λ[HC(A)] → H•(A, V )GL is a morphism of Poisson
algebras.

Similarly, taking homology yields a (graded) Lie bracket {–, –}�,ω̃ on HC•(A)[−1]
induced by the cyclic structure ω̃ on C. Of course, for degree reasons the restriction
of {–, –}�,ω̃ to HC0(A) is trivial. However, for f ∈ A and α ∈ HC1(A) ∼= Ω1(A)/dA,
the geometric interpretation of {f, α}�,ω̃ remains mysterious.

We expect that the DG resolutions of algebras that are n-Calabi-Yau in the
sense of Ginzburg [G1] (see also [Ke]) have analogous noncommutative (2 − n)-
Poisson structures. In particular, Ginzburg 2-Calabi-Yau algebras are expected to
have derived NC Poisson structures.

5.5. Remarks on string topology. Let M be a smooth compact oriented
manifold. Denote by LM the free loop space of M . In [ChS], M. Chas and

D. Sullivan have shown that the S1-equivariant homology HS1

• (LM) of LM has
a natural Lie algebra structure. Their construction uses (in an essential way) the
transversal intersection product of two chains in a manifold. Since the intersection
product is only defined for transversal chains, it is difficult to realize the Lie algebra

HS1

• (LM) algebraically. This is the subject of string topology, which has become
a very active area of research in recent years.

By a well-known theorem of K.-T. Chen [C] and J. D. S. Jones [J], if M is
simply connected, there is a quasi-isomorphism of complexes

CC•(A(M))
�−→ C•

S1(LM) ,

where A(M) is any DG algebra model (de Rham, singular, PL forms etc.) for
the cochain complex of M . Similarly, using the methods of [C] and [J], one can
construct a quasi-isomorphism

CS1

• (LM)
�−→ CC•(C(M)) ,

where C(M) is any DG coalgebra model for the chain complex of M . On the other
hand, Lambrechts and Stanley [LS] have recently shown that for M simply con-
nected, there is a finite-dimensional DG coalgebra C(M) with a cyclically invariant
nondegenerate pairing, that is quasi-isomorphic to the singular chain complex of
M . Further, the nondegenerate pairing on C(M) gives the intersection product
pairing at the homology level. Combining these results with our Corollary 3, we
thus obtain a Lie algebra structure on the cyclic homology of C(M) that realizes
the Lie algebra of Chas and Sullivan (cf. [CEG]).

Besides Sullivan and his school, Blumberg, Cohen and Teleman are carrying out
a project that aims to systematically lift the interesting structures on LM to the
path space PM of M (see [BCT]). More precisely, they associate to M a category
where the objects are the points of M and the space of morphisms between two
objects is a (for example, singular) chain complex of the space of paths connecting
them. Our present paper has essentially the same starting point as [BCT]: we

have shown that the Lie algebra of string topology on HS1

• (LM) arises from the
NC Poisson structure of the path space on M . More precisely, the cyclic homology
of Ω(C), which is exactly the cyclic homology of the above described category, is

isomorphic to HC•(C) (see Corollary 2), and hence is isomorphic to HS1

• (LM).
This clarifies the relation between the above mentioned theorem of Jones and a
well-known theorem of Goodwillie (see [Go]).
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Ann. Sci. Éc. Norm. Supér. 41(4) (2008), 495–509. MR2489632 (2009k:55022)
[LBW] L. Le Bruyn and G. van de Weyer, Formal structures and representation spaces, J. Algebra

247(2) (2002), 616–635. MR1877866 (2002m:16028)
[L] J.-L. Loday, Cyclic Homology, Grundl. Math. Wiss. 301, 2nd Edition, Springer-Verlag, Berlin,

1998. MR1600246 (98h:16014)
[LQ] J-L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices,

Comment. Math. Helvetici 59 (1984), 565–591. MR780077 (86i:17003)
[M] H. J. Munkholm, DGA algebras as a Quillen model category. Relations to shm maps, J. Pure

Appl. Algebra 13 (1978), 221–232. MR509162 (80m:55018)
[P] C. Procesi, The invariant theory of n × n matrices, Adv. Math. 19 (1976), 306–381.

MR0419491 (54:7512)
[Q1] D. Quillen, Homotopical Algebra, Lecture Notes in Math. 43, Springer-Verlag, Berlin, 1967.

MR0223432 (36:6480)
[Q2] D. Quillen, Algebra cochains and cyclic cohomology, Inst. Hautes Etudes Sci. Publ. Math.

68 (1989), 139–174. MR1001452 (90j:18008)
[S] T. Schedler, Poisson algebras and Yang-Baxter equations. in Advances in Quantum Computa-

tion, Contemp. Math. 482, Amer. Math. Soc., Providence, RI, 2009, pp. 91–106. MR2568415
(2011c:17042)

[S1] T. Schedler, personal communication.
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Renormalization by any means necessary

Arnab Kar and S. G. Rajeev

Renormalization

The most accurate physical theory we know today, the standard model of ele-
mentary particle physics, is based on quantum field theory. It describes all known
forces and particles except gravity: electricity, magnetism, light, nuclear forces,
neutrinos etc. Apart from two deep mysteries (dark matter and dark energy) it fits
all known experimental facts. Quantum Field Theory [A] is the quantum theory of
relativistic systems. Such a system can create any number of particle-antiparticle
pairs, limited only by the amount of energy available. Therefore it must allow for
an unbounded number of particles: it must have an infinite number of degrees of
freedom.

The quantum theory of systems with a finite number of particles (atoms or
molecules) was put on a sound mathematical basis beginning with von Neumann
and later by the pioneering work of Kato. These mathematical theorems did not
contribute much to the physical understanding of atomic theory. By the time
Kato proved the self-adjointness of the atomic hamiltonian, quantum chemists had
already understood how atoms and molecules form. They could calculate bond
energies with an accuracy only limited by the computing power available then.

Quantum Field Theory is a different matter entirely. Because of the infinite
number of degrees of freedom and the short distance singularities of the Green’s
functions, every calculation in a realistic quantum field theory is at best done
with divergences. The mass of the electron has an infinite correction due to the
emission and re-absorption of photons. Its magnetic moment, the energy levels of
hydrogen etc. are all corrected this way. Following an idea of Dirac, in the 1940s
Bethe,Tomonaga, Schwinger, Feynman and Dyson devised an elaborate scheme
-renormalization- to remove these divergences and deduce physically correct an-
swers from Quantum Electrodynamics. Although the manipulations are unpleasant,
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and the details daunting, what emerged was a physical theory of unprecedented ac-
curacy and beauty. The magnetic moment of the electron has been calculated to
an accuracy of 15 decimal places, in agreement with experiments.

There still remained the puzzle to explain the strong and weak forces, which
involved the constituents of the atomic nucleus. A theory of weak interactions
due to Fermi was refined by Sudarshan and Marshak. But it had divergences that
could not be removed by renormalization. Glashow, Salam and Weinberg found a
quantum field theory that incorporates the earlier ideas and is renormalizable.

There are very few quantum field theories that are renormalizable in four space-
time dimensions. They are

• The Yang-Mills theory, characterized by a compact Lie group; it describes
particles that are of spin one. Particles of spin zero and one can be coupled
to it through a unitary representation.

• The Yukawa theory of spin half particles interacting with a spin zero
particle.

• The Higgs model of Spin zero particles whose interaction is described by
a polynomial of degree no greater than four.

Amazingly, this very limited set of ingredients are enough to explain all forces
and particles of nature (except gravity). Moreover, all the renormalizable theories
do occur with some choices of groups and representations.

There is a much greater variety of non-renormalizable theories: for which the
scheme to remove divergences will fail at some order in perturbation theory. A naive
quantization of General Relativity is such an example. The quantum version of the
wave map (nonlinear sigma model) which describes certain low energy phenomena
as well (pi mesons) cannot be a fundamental theory because it is not renormalizable.
Such theories are still useful as approximations (“effective field theories”).

Thus renormalizability is a very strict condition on a quantum field theory that
very few of them satisfy. For reasons we do not know yet, nature chooses precisely
these.

The Analysis of Renormalization

Many physicists believe that renormalizable quantum field theories are merely
a stepping stone on the road to some more fundamental theory which is finite: in
the same way that the Fermi theory of weak interactions was an effective theory
for the standard model. Perhaps such a “theory of everything” would be a string
theory, which could even explain gravity. Indeed string theories do seem to be free
of the troublesome divergences. But any such extrapolation involves pushing what
we know by many orders of magnitude in energy.

It is possible that far from being a nuisance, the divergences are clues to a new
formulation of QFT. Finding a correct mathematical description of quantum field
theory would put the currently known physical theories on a solid foundation. In an
earlier era, calculus was beset by infinities and infinitesimals as well. The resolution
was not to look for a theory of mechanics independent of calculus. Instead, modern
real analysis reformulated the notions of continuity and differentiability, avoiding
the direct use of infinitesimals. This did not just lead to new mathematics. Differ-
ences between an integrable and a chaotic system became evident. The solution is
real analytic in the former and not in the other. Without analysis, physicists of the
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nineteenth century would not have understood why most physical systems could
not be solved analytically, although a solution seemed possible in principle.

Thus, a careful mathematical study of the divergences of quantum field the-
ory, and developing a rigorous theory of renormalization is a central challenge. A
movement in this direction (“Constructive Quantum Field Theory”) led by Glimm
and Jaffe seems to have lost some of its momentum in the last few years. Rigorous
mathematical training is rare among physicists, and command of physics even rarer
among mathematicians. String theory has lured many people away from a deeper
study of renormalization. Some new ideas were injected by A. Connes and disciples,
but the emphasis on non-commutative geometry does not seem to have a basis in
current physical reality.

Renormalization is a problem in analysis. The heuristic methods of QFT are
similar to the way Euler did calculus. What needs to be developed is the equivalent
of the more rigorous analysis of Weierstrass, Cauchy, Lebesgue, Banach etc. and
its application back to physics as done by Poincare’, Kolmogorov, Arnold, Moser
etc.

Before understanding a deep physical theory like Yang-Mills theory rigorously,
we should look at some simpler examples to get a general idea of the subject. One
such example is the Kondo problem, which has served as a test-bed for ideas in
renormalization for many decades. Wilson solved this problem by a combination
of numerical and analytical methods in the 1970s. We will re-examine it in some
approximations to discover its analytical context. But let us begin with an even
more elementary example, a “toy model”.

Renormalization in Quantum Mechanics

Is there a way to understand the basic idea of renormalization within quantum
mechanics? We will present such an example, well-known among physicists[B]. A
typical quantum system has a Hamiltonian

H = Δ+ V

The laplacian Δ describes the kinetic energy while V is a function that describes
potential energy: it describes the interactions. Physical observables of quantum
mechanics are represented by self-adjoint operators on L2. To begin with, Δ is
defined only on twice differentiable functions. It can be extended to a domain D ⊂
L2 : but this extension is not unique. Thus even without a potential, some physical
interactions could be hidden within this extension. Physicists tend to describe such
interactions still in terms of potentials, which then would be singular (e.g., delta
function). Singularities that can be removed correspond to certain domains of self-
adjointness. Thus the von Neumann theory of such extensions can be thought of an
early version of the rigorous mathematical theory of renormalization that we seek.

But there is more to it than that. Of all the infinite number of self-adjoint
extensions possible, renormalization theory picks out just a one or two parameter
family. So there is still something to be understood in isolating the subset of
extensions chosen by renormalization.

One Dimensional Delta Function. Consider a particle moving in one di-
mension under the influence of a delta function potential:

H = − d2

dx2
− “Jδ(x)”
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We put the quotes to emphasize that the precise meaning of Jδ(x) is yet to be
prescribed. For convenience, assume periodicity: H acts on wave-functions that are
periodic with period 2π. In terms of Fourier components the eigenvalue equation
becomes

k2ψk − J
∑
m∈Z

ψm = Eψk

The solution is easy:

ψk =
Jψ•

k2 − E
, ψ• =

∑
m∈Z

ψm

Eliminating the constant ψ•, we get an equation for the spectrum

1 = J
∑
m∈Z

1

m2 − E
.

The sum is convergent and can be evaluated by elementary complex analysis:

1

J
=

−π cotπ
√
E√

E

Given one eigenvalue (e.g., the smallest or “ground state energy”) we can fix J
and then all the others are determined. This example requires no renormalization.

Two Dimensional Delta Function. Suppose we repeat the analysis above
on a two dimensional torus. The range of summation will now be Z2. The series∑

m∈Z2
1

|m|2−E diverges logarithmically.

The idea of renormalization translated to this situation is

• Put a cut-off in the magnitude of the Fourier index (momentum): |m| < Λ.
• Ask how should J (“the coupling constant”) depend on Λ in order that
the lowest energy is some given value −μ2.

• Then show that if we eliminate J this way, all the remaining eigenvalues
remain finite as Λ → ∞.

• We don’t care about J.We care about eigenvalues, which describe energies
and eigenfunctions which determine probabilities.

In more detail,

J−1(Λ) =
∑

|m|<Λ

1

m2 + μ2
.

We can rewrite this as∑
|m|<Λ

1

m2 + μ2
−

∑
|m|<Λ

1

m2 − E
= 0

Although each series is divergent, the combined series has a limit as Λ → ∞ :

χ(z) =
∑

m∈Z×Z

{
1

m2 + μ2
− 1

m2 − z

}
χ(z) is an analytic function whose zeroes are the eigenvalues. They are all

determined in terms of the lowest eigenvalue. The divergent quantity J(Λ) has
disappeared from the final answer. This is an example of renormalization.

If you are familiar with Euler’s work you will see that such tricks are quite
old. The developments of modern analysis justified Euler’s heuristic arguments.
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This gives us hope that the much more complicated renormalizations of realistic
quantum field theories can be understood by a proper development of analysis.

The Resolvent Formula. We can reformulate the above example (and many
others like it) in more satisfactory mathematical terms using the resolvent (“Green’s
function” to physicists.)

Let Ĥ0 be an operator on L2(R) self-adjoint in some domain D. In most inter-

esting cases Ĥ0 is a second order ordinary differential operator (e.g., Laplacian).We
will see how to modify the domain and get an operator with a different spectrum,
but without changing the effect on differentiable wave-functions. Physically, this
amounts to changing the boundary conditions on the wave equation, which can also
be thought of as singular potentials.

The resolvent of Ĥ0 is defined to be, for λ not in the spectrum,

R̂0 =
1

λ− Ĥ0

It satisfies the equation

− d

dλ
R̂0(λ) = R̂2

0(λ).

Conversely, any operator-valued analytic function satisfying this condition is
of the form (λ − Ĥ)−1; i.e., it is the resolvent of some operator. Given one such
solution, we will construct another, as follows.

Let P̂ be a linear map L2(R) → R . For example, it could be the evaluation at

the origin: P̂ψ = ψ(0).
Since

[Ĥ0 − λ]R̂0(λ) = −1

R0(x, y|λ) satisfies the same differential equation as the eigenfunctions of Ĥ0

except at x = y where it has a discontinuous derivative. For λ �= λn, R̂0 is a
compact operator; the integral kernel is often square summable in each variable.

Proposition 0.1. For μ not in the spectrum of Ĥ0, the kernel

R(y, x|λ) = R0(y, x|λ) +R0(y, 0|λ)
1

χ(λ)− χ(μ)
R0(0, x|λ)

also satisfies the resolvent equation d
dλR(y, x|λ) = −

∫
R(y, z|λ)R(z, x|λ)dz provided

that
d

dλ
χ(λ) = − d

dλ
R0(0, 0|λ).

Proof. Denote the evaluation at the origin by P̂ . Then

R̂ = R̂0 + R̂0P̂
1

χ(λ)− χ(μ)
P̂ R̂0

By straightforward calculation

R̂2 = R̂2
0 + R̂2

0P̂
1

χ(λ)− χ(μ)
P̂ R̂0 + R̂0P̂

1

χ(λ)− χ(μ)
P̂ R̂2

0

+ R̂0P̂
1

χ(λ)− χ(μ)
P̂ R̂2

0P̂
1

χ(λ)− χ(μ)
P̂ R̂0
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while

− d

dλ
R̂ = R̂2

0 + R̂2
0P̂

1

χ(λ)− χ(μ)
P̂ R̂0 + R̂0P̂

1

χ(λ)− χ(μ)
P̂ R̂2

0

+ R̂0P̂

[
− d

dλ

1

χ(λ)− χ(μ)

]
P̂ R̂0

so that

d

dλ
χ = P̂ R̂2

0P̂

= − d

dλ
P̂ R̂0P̂

as needed. �

Thus R̂ is the resolvent of some operator

R̂(λ) =
1

λ− Ĥ

with the same form as Ĥ0 on smooth functions, but with a different domain of
self-adjointness in L2(R).

Its spectrum is given by the equation

χ(λ) = χ(μ)

In particular, μ itself is an eigenvalue, which determines the rest of the spectrum
λn(μ) from the above equation. The orthonormal eigenfunctions of H are

ψn(x) =
R0(x, 0|λn(μ))√

χ′(λn(μ))

In the example of the last subsection,

R0(x, y|λ) =
∑

m∈Z2

eim·(x−y)

λ− |m|2

AlthoughR0(0, 0|λ) =
∑

m∈Z2
1

λ−|m|2 is divergent, its derivative− d
dλR0(0, 0|λ) =∑

m∈Z2
1

[λ−|m|2]2 converges. Hence χ(λ)− χ(μ) =
∑

m∈Z2

{
1

[λ−|m|2] −
1

[μ−|m|2]

}
is

convergent. χ(μ) is simply the constant of integration in solving the equation
d
dλχ(λ) = − d

dλR0(0, 0|λ).

The Kondo Problem

The simplest experimentally accessible case of renormalization is the Kondo
problem. Electrons in a metal move more or less like free particles, occasionally
scattered by the ions which oscillate around their equilibrium positions by ther-
mal fluctuations. As temperature decreases, the ions move less and the resistance
should decrease. It does, except that at some low temperature (T ∼ 10K) the re-
sistance starts to increase again, rising to a finite value as T → 0. This “resistance
minimum” was an important puzzle in the theory of metals in the 1950s.

Kondo gave an explanation to this phenomenon. Metals can have magnetic im-
purities (e.g., Iron atoms embedded within a Copper lattice) with ordered magnetic
moments at low temperatures. These little magnets can scatter electrons too. At
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high temperatures, the direction of the atomic magnetic moments vary randomly,
so their effect averages out to zero. At low temperatures, they get ordered, so there
is a new way that electrons can lose their energy at low temperatures: by scattering
by magnetic impurities. This is why the resistance increases at small temperatures.

The size of an atomic impurity is very small compared to the wavelength of the
electron: it is much like a δ−function interaction. Kondo calculated the magnetic
contribution to resistance and found it to be proportional to log T−1. The good
news is that it explains why resistance grows at low temperatures. The bad news
is that it predicts infinite resistance at zero temperature. The Kondo problem is
how to avoid this divergence.

Wilson’s solution [C] of the Kondo problem in the 1970s was a major break-
through: the first illustration of the power of his “renormalization group” (in fact
only semi-group) method. His methods were a mix of numerical and analytical
arguments. Much can be gained by clarifying and simplifying his arguments. We
will reformulate this problem in terms of a Lie algebra, which allows for a solu-
tion based on representation theory of the infinite dimensional unitary group. The
divergences arise if we do not take into account the infinite dimensionality of the
group properly.

Only a brief summary is presented below. A much more self contained de-
scription can be found in this paper[E]. We will postpone to a later publication a
re-examination of Wilson’s reduction of the problem to a one dimensional quantum
field theory. We will take as the hamiltonian of the Kondo problem

H =
∑
k

ωkΦ
k
k − JΦ•

dΦ
d
• ≡ H0 − JH1

where

ΦK
L =

1

N
a†KσaLσ, Φ•

d =
∑
k

Φk
d, Φd

• =
∑
k

Φk
d

The creation -annihilation operators of electrons are defined by the anti-commutation
relations

[a†Kσ, aLσ′ ]+ = δKL δσσ′ , [a†Kσ, a†Lσ′
]+ = 0 = [aKσ, aLσ′ ]+

Here, σ is a discrete label taking values 1, · · · , N . It describes the spin of the
electron. The physical value of N is two (a spin half particle can have two spin
states); but it is useful to consider general values. Indeed, the limit N → ∞ is
simpler and surprisingly, can be a good approximation. The variable K describes
the remaining degrees of freedom of the electron. Wilson showed that all of them
except two types can be ignored:

(1) K takes some special value (we denote it by a dot •) for an impurity
electron that is at rest

(2) K = −Λ, · · · ,−1, 1, · · ·Λ for the conduction band electrons. These num-
bers are proportional to the radial momentum measured w.r.t. the po-
sition of the impurity. Λ is a cut-off, which will eventually be sent to
infinity.

When we sum over only the values−Λ, · · · ,−1, 1, · · ·Λ (excluding the impurity)
we will denote the index by a lower case letter k.

Thus, the hamiltonian of the Kondo problem consists of the kinetic energy of
the conduction band electrons plus an interaction with the impurity. ωk are the
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energies of the conduction band e.g., ωk = Ω[k − 1
2 ] near Fermi surface for some

constant Ω.
The impurity having zero size means that all the radial momenta couple with

the same strength J . (The Fourier transform of the delta function is a constant.)
The hamiltonian can be written entirely in terms of the bilinears Φ. They satisfy
the commutation relation[

ΦK
L ,Φ

M
N

]
=

1

N

[
δML ΦK

N − δKNΦM
L

]
.

This is the statement that they form a representation of the Lie algebra U(2N +1)
or A2N ⊕ R in Cartan’s notation. In the limit of large N , these tend to a classical
theory. That is, the commutation relations get replaced Poisson brackets.

−i{ΦK
L ,Φ

M
N } = δML ΦK

N − δKNΦM
L

In other words, for any function of F (Φ)

−i{F (Φ),Φ} =

[
∂F

∂Φ
,Φ

]
where the r.h.s. is the matrix commutator. In particular for the hamiltonian

−idΦ
dt

= [h(Φ),Φ], h(Φ) =
∂H

∂Φ

hmn (Φ) = ωmδ
m
n , hdm = −g∗(Φ), hmd = −g(Φ).

with

g(Φ) = J(Λ)
Λ∑

n=−Λ

Φn
d .

All the divergences go away if we keep g fixed as Λ → ∞.Diagonalization of
h(Φ) is elementary: just solve

(ωk − ν)Uk − gUd = 0, −g∗U• = νUd

The energies are roots of the characteristic function

X(ν) = ν −
∑
k

|g|2
ν − ωk

= ν

[
1 +

Λ∑
k=1

2|g|2
ω2
k − ν2

]
.

If we hold g fixed as the cutoff is removed, this sum is convergent. (ωk ∼ k).
The most difficult part of any Quantum Field Theory is knowing its ground

state. In the large N limit it is given by the static solution of least energy. The
static solution satisfies [h(Ψ),Ψ] = 0, so that Ψ = U diag(ν)U† and by filling the
negative energy states

nα =

⎧⎪⎨⎪⎩
1, να < 0

n0, να = 0

0, να > 0

Here n0 is the number of electrons divided by N modulo 1. To keep g fixed in

the UV limit, we must have limΛ→∞ J(Λ)
∑Λ

k=1
1
ωk

= 1 : asymptotic freedom. g
sets the scale of energy: it is traded for J. It makes sense to pass to new variables
φ = Φ−Ψ that measure departure from this ground state. They satisfy the Poisson
brackets

−i
{
φα
β , φ

γ
δ

}
= δγβφ

α
δ − δαδ φ

γ
β + (nα − nγ) δ

α
δ δ

γ
β
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This is the central extension of the unitary Lie algebra, defined for example, in
the book by Pressley-Segal[D]. If only a finite number of the φα

β are non-zero, we
can supplement this with an element describing time evolution

−i
{
h, φα

β

}
= [να − νβ]φ

α
β .

All the effects of the impurity-electron interaction are contained in the shift of
the energies from ωk to να and in the occupation numbers nα.

Now we have commutation relations rather than Poisson brackets:[
φ̂α
β , φ̂

γ
δ

]
=

1

N

(
δγβ φ̂

α
δ − δαδ φ̂

γ
β + [nα − nγ ] δ

α
δ δ

γ
β

)
The representation of interest is

φ̂α
β =

1

N
: a†ασaβσ : .

where the normal ordering is with respect to the Dirac vacuum of the energies
eα:

a†α | 0〉 = 0, να < 0, aα | 0〉 = 0, να > 0.

The hamiltonian just describes quasi-particles with these energies:

Ĥ =
1

N

∑
α

να : a†ασaασ :

In real metals there are UV finite interactions which we ignored: a Fermi liquid.
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Berezin-Toeplitz quantization
and star products

for compact Kähler manifolds

Martin Schlichenmaier

Abstract. For compact quantizable Kähler manifolds certain naturally de-
fined star products and their constructions are reviewed. The presentation
centers around the Berezin-Toeplitz quantization scheme which is explained.
As star products the Berezin-Toeplitz, Berezin, and star product of geometric

quantization are treated in detail. It is shown that all three are equivalent. A
prominent role is played by the Berezin transform and its asymptotic expan-
sion. A few ideas on two general constructions of star products of separation of
variables type by Karabegov and by Bordemann–Waldmann respectively are
given. Some of the results presented is work of the author partly joint with
Martin Bordemann, Eckhard Meinrenken and Alexander Karabegov. At the
end some works which make use of graphs in the construction and calculation
of these star products are sketched.

1. Introduction

Without any doubts the concepts of quantization is of fundamental importance
in modern physics. These concepts are equally influential in mathematics. The
problems appearing in the physical treatments give a whole variety of questions to
be solved by mathematicians. Even more, quantization challenges mathematicians
to develop corresponding mathematical concepts with necessary rigor. Not only
that they are inspiring in the sense that we mathematician provide solutions, but
these developments will help to advance our mathematical disciplines. It is not
the place here to try to give some precise definition what is quantization. I only
mention that one mathematical aspect of quantization is to pass from the classical
“commutative” world to the quantum “non-commutative” world. There are many
possible aspects of this passage. One way is to replace the algebra of classical
physical observables (functions depending locally on “position” and “momenta”),
i.e. the commutative algebra of functions on the phase-space manifold, by a non-
commutative algebra of operators acting on a certain Hilbert space. Another way
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258 MARTIN SCHLICHENMAIER

is to “deform” the pointwise product in the algebra of functions into some non-
commutative product �. The first method is called operator quantization, the
second deformation quantization and the product � is called a star product. In
both cases by some limiting process the classical situation should be recovered. I
did not touch the question whether it is possible at all to obtain such objects if one
poses certain desirable conditions. For example, the desired properties for the star
product (to be explained in the article further down) does not allow to deform the
product inside of the function algebra for all functions. One is forced to pass to the
algebra of formal power series over the functions and deform there. The resulting
object will be a formal deformation quantization.

A special case of the operator method is geometric quantization. One chooses
a complex hermitian (pre)quantum line bundle on the phase space manifold. The
operators act on the space of global sections of the bundle or on suitable subspaces.
In the that we can endow our phase-space manifold with the structure of a Kähler
manifold (and only this case we are considering here) we have a more rigid situation.
Our quantum line bundle should carry a holomorphic structure, if the bundle exists
at all. The passage to the classical limit will be obtained by considering higher and
higher tensor powers of the quantum line bundle. The sections of the bundle are
the candidates of the quantum states. But they depend on too many independent
variables. In the Kähler setting there is the naturally defined subspace of holomor-
phic sections. These sections are constant in anti-holomorphic directions. They
will be the quantum states. This selection is sometimes called Kähler polarization.

In this review we will mainly deal with another type of operators on the space
of holomorphic sections of the bundle. These will be the Toeplitz operators. They
are naturally defined for Kähler manifolds. The assignment defines the Berezin-
Toeplitz (BT) quantization scheme. Berezin himself considered it for certain special
manifold [11], [15].

Being a quantum line bundle means that the curvature of the holomorphic
hermitian line bundle is essentially equal to the Kähler form. See Section 2 for the
precise formulation. A Kähler manifold is called quantizable if it admits a quantum
line bundle. We will explain below that this is really a condition which not always
can be fulfilled.

The author in joint work with Martin Bordemann and Eckhard Meinrenken [18]
showed that at least in the compact quantizable Kähler case the BT-quantization
has the correct semi-classical limit behavior, hence it is a quantization, see The-
orem 3.3. In the compact Kähler case the operator of geometric quantization is
asymptotically related to the Toeplitz operator, see (3.11). The details are pre-
sented in Section 3.

The special feature of the Berezin-Toeplitz quantization approach is that it
does not only provide an operator quantization but also an intimately related star
product, the Berezin-Toeplitz star product �BT . It is obtained by “asymptotic
expansion” of the product of the two Toeplitz operators associated to the two
functions to be �-multiplied, see (4.4). After recalling the definition of a star product
in Section 4.1, the results about existence and the properties of �BT are given in
Section 4.2. These are results of the author partly in joint work with Bordemann,
Meinrenken, and Karabegov. The star product is a star product of separation of
variables type (in the sense of Karabegov) or equivalently of Wick type (in the

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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sense of Bordemann and Waldmann). We recall Karabegov’s construction of star
products of this type. In particular, we discuss his formal Berezin transform.

In Section 5 we introduce the disc bundle associated to the quantum line bundle
and introduce the global Toeplitz operators. The individual Toeplitz operators for
each tensor power of the line bundle correspond to its modes. The symbol calculus
of generalized Toeplitz operators due to Boutet de Monvel and Guillemin [21] is
used to prove some parts of the above mentioned results. In Section 5.3 as an
illustration we explain how �BT is constructed.

Other important techniques which we use in this context are Berezin-Rawnsley’s
coherent states, co- and contra-variant symbols [24] [25] [26] [27]. Starting from
a function on M , assigning to it its Toeplitz operator and then calculating the co-
variant symbol of the operator will yield another function. The corresponding map
on the space of function is called Berezin transform I, see Section 7. The map will
depend on the chosen tensor power m of the line bundle. Theorem 7.2, obtained
jointly with Karabegov, shows that it has a complete asymptotic expansion. One
of the ingredients of the proof is the off-diagonal expansion of the Bergman kernel
in the neighborhood of the diagonal [57].

With the help of the Berezin transform I the Berezin star product can be
defined

f �B g := I(I−1(f) �BT I−1(g)).

In Karabegov’s terminology both star products are dual and opposite to each other.
In Section 8.3 a summary of the naturally defined star products are given.

These are �BT , �B, �GQ (the star product of geometric quantization), �BW (the
star product of Bordemann and Waldmann constructed in a manner à la Fedosov,
see Section 9.1). The star products �BT , �BW are of separation of variables type,
�B also but with the role of holomorphic and antiholomorphic variables switched,
�GQ is neither nor. The first three star products are equivalent.

How the knowledge of the asymptotic expansion of the Berezin transform will
allow to calculate the coefficients of the Berezin star product and recursively of the
Berezin-Toeplitz star product is explained in Section 8.4.

In the Section 9 we consider the Bordemann-Waldmann star product [19] and
make some remarks how graphs are of help in expressing the star product in a
convenient form. The work of Reshetikhin and Takhtajan [77], Gammelgaard [48],
and Huo Xu [92], [93] are sketched.

In an excursion we describe Kontsevich’s construction [59] of a star product
for arbitrary Poisson structures on Rn.

The closing Section 11 gives some applications of the Berezin-Toeplitz quanti-
zation scheme.

This review is based on a talk which I gave in the frame of the Thematic
Program on Quantization, Spring 2011, at the University of Notre Dame, USA.
Some of the material was added on the basis of the questions and the discussions
of the audience. I am grateful to the organizers Sam Evens, Michael Gekhtman,
Brian Hall, and Xiaobo Liu, and to the audience. All of them made this activity
such a pleasant and successful event. In its present version the review supplements
and updates [85],[86]. Other properties, like the properties of the coherent state
embedding, more about Berezin symbols, traces and examples can be found there.
In particular, [85] contains a more complete list of related works of other authors.
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2. The geometric setup

In the following let (M,ω) be a Kähler manifold. This means M is a complex
manifold (of complex dimension n) and ω, the Kähler form, is a non-degenerate
closed positive (1, 1)-form. In the interpretation of physics M will be the phase-
space manifold. (But besides the jargon we will use nothing from physics here.)
Further down we will assume that M is compact.

Denote by C∞(M) the algebra of complex-valued (arbitrary often) differen-
tiable functions with associative product given by point-wise multiplication. After
forgetting the complex structure of M , our form ω will become a symplectic form
and we introduce on C∞(M) a Lie algebra structure, the Poisson bracket {., .}, in
the following way. First we assign to every f ∈ C∞(M) its Hamiltonian vector field
Xf , and then to every pair of functions f and g the Poisson bracket {., .} via

(2.1) ω(Xf , ·) = df(·), { f, g } := ω(Xf , Xg) .

In this way C∞(M) becomes a Poisson algebra, i.e. we have the compatibility

(2.2) {h, f · g} = {h, f} · g + f · {h, g}, f, g, h ∈ C∞(M).

The next step in the geometric set-up is the choice of a quantum line bundle. In
the Kähler case a quantum line bundle for (M,ω) is a triple (L, h,∇), where L is a
holomorphic line bundle, h a Hermitian metric on L, and∇ a connection compatible
with the metric h and the complex structure, such that the (pre)quantum condition

(2.3)
curvL,∇(X,Y ) := ∇X∇Y −∇Y ∇X −∇[X,Y ] = − iω(X,Y ),

in other words curvL,∇ = − iω

is fulfilled. By the compatibility requirement ∇ is uniquely fixed. With respect
to a local holomorphic frame of the bundle the metric h will be represented by a

function ĥ. Then the curvature with respect to the compatible connection is given

by ∂∂ log ĥ. Hence, the quantum condition reads as

(2.4) i ∂∂ log ĥ = ω .

If there exists such a quantum line bundle for (M,ω) then M is called quantizable.
Sometimes the pair manifold and quantum line bundle is called quantized Kähler
manifold.

Remark 2.1. Not all Kähler manifolds are quantizable. In the compact Kähler
case from (2.3) it follows that the curvature is a positive form, hence L is a positive
line bundle. By the Kodaira embedding theorem [83] there exists a positive tensor
power L⊗m0 which has enough global holomorphic sections to embed the complex
manifoldM via these sections into projective space PN (C) of suitable dimension N .
By Chow’s theorem [83] it is a smooth projective variety. The line bundle L⊗m0

which gives an embedding is called very ample. This implies for example, that only
those higher dimensional complex tori are quantizable which admit “enough theta
functions”, i.e. which are abelian varieties.

A warning is in order, let φ : M �→ PN (C) be the above mentioned embedding
as complex manifolds. This embedding is in general not a Kähler embedding, i.e.
φ∗(ωFS) �= ω, where ωFS is the standard Fubini-Study Kähler form for PN (C).
Hence, we cannot restrict our attention only on Kähler submanifolds of projective
space.
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For compact Kähler manifolds we will always assume that the quantum bundle
L itself is already very ample. This is not a restriction as L⊗m0 will be a quantum
line bundle for the rescaled Kähler form m0ω for the same complex manifold M .

Next, we consider all positive tensor powers of the quantum line bundle:
(Lm, h(m),∇(m)), here Lm := L⊗m and h(m) and ∇(m) are naturally extended.
We introduce a product on the space of sections. First we take the Liouville form
Ω = 1

n!ω
∧n as volume form on M and then set for the product and the norm on

the space Γ∞(M,Lm) of global C∞-sections (if they are finite)

(2.5) 〈ϕ, ψ〉 :=
∫
M

h(m)(ϕ, ψ) Ω , ||ϕ|| :=
√
〈ϕ, ϕ〉 .

Let L2(M,Lm) be the L2-completed space of bounded sections with respect to this
norm. Furthermore, let Γb

hol(M,Lm) be the space of global holomorphic sections of
Lm which are bounded. It can be identified with a closed subspace of L2(M,Lm).
Denote by

(2.6) Π(m) : L2(M,Lm) → Γb
hol(M,Lm)

the orthogonal projection.
If the manifold M is compact “being bounded” is of course no restriction.

Furthermore, Γhol(M,Lm) = Γb
hol(M,Lm) and this space is finite-dimensional. Its

dimension N(m) := dimΓhol(M,Lm) will be given by the Hirzebruch-Riemann-
Roch Theorem [83]. Our projection will be

(2.7) Π(m) : L2(M,Lm) → Γhol(M,Lm) .

If we fix an orthonormal basis s
(m)
l , l = 1, . . . , N(m) of Γhol(M,Lm) then1

(2.8) Π(m)(ψ) =

N(m)∑
l=1

〈s(m)
l , ψ〉 · s(m)

l .

3. Berezin-Toeplitz operator quantization

Let us start with the compact Kähler manifold case. I will make some remarks
at the end of this section on the general setting. In the interpretation of physics, our
manifold M is a phase-space. Classical observables are (real-valued) functions on
the phase space. Their values are the physical values to be found by experiments.
The classical observables commute under pointwise multiplication. One of the
aspects of quantization is to replace the classical observable by something which
is non-commutative. One approach is to replace the functions by operators on a
certain Hilbert space (and the physical values to be measured should correspond
to eigenvalues of them). In the Berezin-Toeplitz (BT) operator quantization this is
done as follows.

Definition 3.1. For a function f ∈ C∞(M) the associated Toeplitz operator

T
(m)
f (of level m) is defined as

(3.1) T
(m)
f := Π(m) (f ·) : Γhol(M,Lm) → Γhol(M,Lm) .

1In my convention the scalar product is anti-linear in the first argument.
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In words: One takes a holomorphic section s and multiplies it with the differentiable
function f . The resulting section f · s will only be differentiable. To obtain a
holomorphic section, one has to project it back on the subspace of holomorphic
sections.

With respect to the explicit representation (2.8) we obtain

(3.2) T
(m)
f (s) :=

N(m)∑
l=1

〈s(m)
l , f s〉 s(m)

l .

After expressing the scalar product (2.5) we get a representation of T
(m)
f as an

integral

(3.3) T
(m)
f (s)(x) =

∫
M

f(y)

⎛⎝N(m)∑
l=1

h(m)(s
(m)
l , s)(y) s

(m)
l (x)

⎞⎠ Ω(y).

The space Γhol(M,Lm) is the quantum space (of level m). The linear map

(3.4) T (m) : C∞(M) → End
(
Γhol(M,Lm)

)
, f → T

(m)
f = Π(m)(f ·) ,m ∈ N0

is the Toeplitz or Berezin-Toeplitz quantization map (of level m). It will neither
be a Lie algebra homomorphism nor an associative algebra homomorphism as in
general

T
(m)
f T (m)

g = Π(m) (f ·) Π(m) (g·) Π(m) �= Π(m) (fg·) Π = T
(m)
fg .

ForM a compact Kähler manifold it was already mentioned that the space Γhol(M,Lm)
is finite-dimensional. On a fixed level m the BT quantization is a map from the
infinite dimensional commutative algebra of functions to a noncommutative finite-
dimensional (matrix) algebra. A lot of classical information will get lost. To recover
this information one has to consider not just a single level m but all levels together
as done in the

Definition 3.2. The Berezin-Toeplitz (BT) quantization is the map

(3.5) C∞(M) →
∏

m∈N0

End(Γhol(M,L(m))), f → (T
(m)
f )m∈N0

.

In this way a family of finite-dimensional (matrix) algebras and a family of
maps are obtained, which in the classical limit should “converges” to the algebra
C∞(M). That this is indeed the case and what “convergency” means will be made
precise in the following.

Set for f ∈ C∞(M) by |f |∞ the sup-norm of f on M and by

(3.6) ||T (m)
f || := sup

s∈Γhol(M,Lm)
s �=0

||T (m)
f s||
||s||

the operator norm with respect to the norm (2.5) on Γhol(M,Lm).
That the BT quantization is indeed a quantization in the sense that it has the

correct semi-classical limit, or that it is a strict quantization in the sense of Rieffel,
is the content of the following theorem from 1994.
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Theorem 3.3. [Bordemann, Meinrenken, Schlichenmaier] [18]
(a) For every f ∈ C∞(M) there exists a C > 0 such that

(3.7) |f |∞ − C

m
≤ ||T (m)

f || ≤ |f |∞ .

In particular, limm→∞ ||T (m)
f || = |f |∞.

(b) For every f, g ∈ C∞(M)

(3.8) ||m i [T
(m)
f , T (m)

g ]− T
(m)
{f,g}|| = O(

1

m
) .

(c) For every f, g ∈ C∞(M)

(3.9) ||T (m)
f T (m)

g − T
(m)
f ·g || = O(

1

m
) .

The original proof uses the machinery of generalized Toeplitz structures and oper-
ators as developed by Boutet de Monvel and Guillemin [21]. We will give a sketch
of some parts of the proof in Section 5 and Section 7.3. In the meantime there
also exists other proofs on the basis of Toeplitz kernels, Bergman kernels, Berezin
transform etc. Each of them give very useful additional insights.

We will need in the following from [18]

Proposition 3.4. On every level m the Toeplitz map

C∞(M) → End(Γhol(M,L(m))), f → T
(m)
f ,

is surjective.

Let us mention that for real-valued f the Toeplitz operator T
(m)
f will be self-

adjoint. Hence, they have real-valued eigenvalues.

Remark 3.5. (Geometric Quantization.) Kostant and Souriau introduced the
operators of geometric quantization in this geometric setting. In a first step the
prequantum operator associated to the bundle Lm (and acting on its sections) for

the function f ∈ C∞(M) is defined as P
(m)
f := ∇(m)

X
(m)
f

+ i f · id. Here X
(m)
f is

the Hamiltonian vector field of f with respect to the Kähler form ω(m) = m · ω
and ∇(m)

X
(m)
f

is the covariant derivative. In the context of geometric quantization

one has to choose a polarization. This corresponds to the fact that the “quantum
states”, i.e. the sections of the quantum line bundle, should only depend on “half
of the variables” of the phase-space manifold M . In general, such a polarization
will not be unique. But in our complex situation there is a canonical one by
taking the subspace of holomorphic sections. This polarization is called Kähler
polarization. This means that we only take those sections which are constant in
anti-holomorphic directions. The operator of geometric quantization with Kähler
polarization is defined as

(3.10) Q
(m)
f := Π(m)P

(m)
f .

By the surjectivity of the Toeplitz map there exists a function fm, depending on

the level m, such that Q
(m)
f = T

(m)
fm

. The Tuynman lemma [89] gives

(3.11) Q
(m)
f = i · T (m)

f− 1
2mΔf

,
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where Δ is the Laplacian with respect to the Kähler metric given by ω. It should
be noted that for (3.11) the compactness of M is essential.

As a consequence, which will be used later, the operators Q
(m)
f and the T

(m)
f

have the same asymptotic behavior for m → ∞.

Remark 3.6. (The non-compact situation.) If our Kähler manifold is not
necessarily compact then in a first step we consider as quantum space the space
of bounded holomorphic sections Γb

hol(M,Lm). Next we have to restrict the space
of quantizable functions to a subspace of C∞(M) such that the quantization map
(3.5) (now restricted) will be well-defined. One possible choice is the subalgebra
of functions with compact support. After these restrictions the Berezin-Toeplitz
operators are defined as above. In the case of M compact, everything reduces to
the already given objects. Unfortunately, there is no general result like Theorem 3.3
valid for arbitrary quantizable Kähler manifolds (e.g. for non-compact ones). There
are corresponding results for special important examples. But they are more or less
shown by case by case studies of the type of examples using tools exactly adapted
to this situation. See [85] for references in this respect.

Remark 3.7. (Auxiliary vector bundle.) We return to the compact manifold
case. It is also possible to generalize the situation by considering an additional
auxiliary hermitian holomorphic line bundle E. The sequence of quantum spaces is
now the space of holomorphic sections of the bundles E ⊗Lm. For the case that E
is a line bundle this was done, e.g. by Hawkins [51], for the general case by Ma and
Marinescu, see [64] for the details. See also Charles [32]. By the hermitian struc-
ture of E we have a scalar product and a corresponding projection operator from
the space of all sections to the space of holomorphic sections. The Toeplitz operator

T
(m)
f is defined for f ∈ C∞(M,End(E)). The situation considered in this review

is that E equals the trivial line bundle. But similar results can be obtained in the
more general set-up. This is also true with respect to the star product discussed
in Section 42. Of special importance, beside the trivial bundle case, is the case
when the auxiliary vector bundle is a square root L0 of the canonical line bundle
KM , i.e. L⊗2

0 = KM (if the square root exists). Recall that KM =
∧n

ΩM , where
n = dimCM and ΩM is the rang n vector bundle of holomorphic 1-differentials.
The corresponding quantization is called quantization with metaplectic corrections.
It turns out that with the metaplectic correction the quantization behaves better
under natural constructions. An example is the Quantization Commutes with Re-
duction problem in the case that we have a well-defined action of a group G on
the compact (quantizable) Kähler manifold with G-equivariant quantum line bun-
dle. Under suitable conditions on the action we have a linear isomorphy of the
G-invariant subspace of the quantum spaces H0(M,Lm)G with the quantum spaces
H0(M//G, (L//G)m). This was shown by Guillemin and Sternberg [49]. But this
isomorphy is not unitary. If one uses the quantum spaces with respect to the meta-
plectic correction then at least it is asymptotically (i.e. m → ∞) unitary. This was
shown independently3 and with slightly different aspects by Ma and Zhang [66]
(partly based on work of Zhang [96]) and by Hall and Kirwin [50]. See also [63].

2For E not a line bundle the Berezin-Toeplitz star product is a star product in
C∞(X,End(E))[[ν]]. This might be considered as a quantization with additional internal de-
grees of freedom, see [64, Remark 2.27].

3I am grateful to Xiaonan Ma for pointing this out to me.
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For interesting details about these approaches see also the article of Kirwin [58]
explaining some of the relations. For the general singular situation, see Li [60].

Another case when the quantization with metaplectic correction is more func-
torial is if one considers families of Kähler manifolds as they show up e.g. in the
context of deforming complex structures on a given symplectic manifold. See work
by Charles [33] and Andersen, Gammelgaard and Lauridsen [6].

4. Deformation quantization – star products

4.1. General definitions. There is another approach to quantization. One
deforms the commutative algebra of functions “into non-commutative directions
given by the Poisson bracket”. It turns out that this can only be done on the
formal level. One obtains a deformation quantization, also called star product.
This notion was around quite a long time. See e.g. Berezin [13],[15], Moyal [69],
Weyl [91], etc. Finally, the notion was formalized in [9]. See [36] for some historical
remarks.

For a given Poisson algebra (C∞(M), ·, { , }) of smooth functions on a manifold
M , a star product for M is an associative product � on A := C∞(M)[[ν]], the space
of formal power series with coefficients from C∞(M), such that for f, g ∈ C∞(M)

(1) f � g = f · g mod ν,
(2) (f � g − g � f) /ν = −i{f, g} mod ν.

The star product of two functions f and g can be expressed as

(4.1) f � g =
∞∑
k=0

νkCk(f, g), Ck(f, g) ∈ C∞(M),

and is extended C[[ν]]-bilinearly. It is called differential (or local) if the Ck( , )
are bidifferential operators with respect to their entries. If nothing else is said one
requires 1 � f = f � 1 = f , which is also called “null on constants”.

Remark 4.1. (Existence) Given a Poisson bracket, is there always a star prod-
uct? In the usual setting of deformation theory there always exists a trivial de-
formation. This is not the case here, as the trivial deformation of C∞(M) to A
extending the point-wise product trivially to the power series, is not allowed as it
does not fulfill the second condition for the commutator of being a star product
(at least not if the Poisson bracket is non-trivial). In fact the existence problem is
highly non-trivial. In the symplectic case different existence proofs, from different
perspectives, were given by DeWilde-Lecomte [34], Omori-Maeda-Yoshioka [71],
and Fedosov [44]. The general Poisson case was settled by Kontsevich [59]. For
more historical information see the review [36].

Two star products � and �′ for the same Poisson structure are called equivalent
if and only if there exists a formal series of linear operators

B =
∞∑
i=0

Biν
i, Bi : C

∞(M) → C∞(M),

with B0 = id such that B(f) �′ B(g) = B(f � g).
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To every equivalence class of a differential star product its Deligne-Fedosov
class can be assigned. It is a formal de Rham class of the form

(4.2) cl(�) ∈ 1

i
(
1

ν
[ω] + H2

dR(M,C)[[ν]]).

This assignment gives a 1:1 correspondence between equivalence classes of star
products and such formal forms.

In the Kähler case we might look for star products adapted to the complex
structure. Karabegov [52] introduced the notion of star products with separation
of variables type for differential star products. The star product is of this type if
in Ck(., .) for k ≥ 1 the first argument is only differentiated in holomorphic and
the second argument in anti-holomorphic directions. Bordemann and Waldmann
in their construction [19] used the name star product of Wick type.4 All such star
products � are uniquely given (not only up to equivalence) by their Karabegov form
kf(�) which is a formal closed (1, 1) form. We will return to it in Section 4.3

4.2. The Berezin-Toeplitz deformation quantization.

Theorem 4.2. [18],[78],[80],[81],[57] There exists a unique differential star
product

(4.3) f �BT g =
∑

νkCk(f, g)

such that

(4.4) T
(m)
f T (m)

g ∼
∞∑
k=0

(
1

m

)k

T
(m)
Ck(f,g)

.

This star product is of separation of variables type with classifying Deligne-Fedosov
class cl and Karabegov form kf

(4.5) cl(�BT ) =
1

i
(
1

ν
[ω]− δ

2
), kf(�BT ) =

−1

ν
ω + ωcan.

First, the asymptotic expansion in (4.4) has to be understood in a strong operator
norm sense. For f, g ∈ C∞(M) and for everyN ∈ N we have with suitable constants
KN (f, g) for all m

(4.6) ||T (m)
f T (m)

g −
∑

0≤j<N

(
1

m

)j

T
(m)
Cj(f,g)

|| ≤ KN (f, g)

(
1

m

)N

.

Second, the used forms, resp. classes are defined as follows. Let KM be the
canonical line bundle of M , i.e. the nth exterior power of the holomorphic bundle
of 1-differentials. The canonical class δ is the first Chern class of this line bundle,
i.e. δ := c1(KM ). If we take in KM the fiber metric coming from the Liouville form
Ω then this defines a unique connection and further a unique curvature (1, 1)-form
ωcan. In our sign conventions we have δ = [ωcan]. The Karabegov form will be
introduced in Section 4.3.

4In Karabegov’s original approach the role of holomorphic and antiholomorphic variables are
switched, i.e. in the approach of Bordemann-Waldmann they are of anti-Wick type. Unfortunately
we cannot simply retreat to one these conventions, as we really have to deal in the following with
naturally defined star products and relations between them, which are of separation of variables
type of both conventions.
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Remark 4.3. Using Theorem 3.3 and the Tuynman relation (3.11) one can
show that there exists a star product �GQ given by asymptotic expansion of the
product of geometric quantization operators. The star product �GQ is equivalent

to �BT , via the equivalence B(f) := (id − νΔ
2 )f . In particular, it has the same

Deligne-Fedosov class. But it is not of separation of variables type, see [81].

4.3. Star product of separation of variables type. In [52, 53] Karabegov
not only gave the notion of separation of variables type, but also a proof of exis-
tence of such formal star products for any Kähler manifold, whether compact, non-
compact, quantizable, or non-quantizable. Moreover, he classified them completely
as individual star product not only up to equivalence.

In this set-up it is quite useful to consider more generally pseudo-Kähler man-
ifolds (M,ω−1), i.e. complex manifolds with a non-degenerate closed (1, 1)-form
ω−1 not necessarily positive. (In this context it is convenient to denote by ω−1 the
ω we use at other places of the article.)

A formal form

(4.7) ω̂ = (1/ν)ω−1 + ω0 + νω1 + . . .

is called a formal deformation of the form (1/ν)ω−1 if the forms ωr, r ≥ 0, are closed
but not necessarily nondegenerate (1,1)-forms on M . Karabegov showed that to
every such ω̂ there exists a star product �. Moreover he showed that all deformation
quantizations with separation of variables on the pseudo-Kähler manifold (M,ω−1)
are bijectively parameterized by the formal deformations of the form (1/ν)ω−1. By
definition the Karabegov form kf(�) := ω̂, i.e. it is taken to be the ω̂ defining �.

Let us indicate the principal idea of the construction. First, assume that we
have such a star product (A := C∞(M)[[ν]], �). Then for f, g ∈ A the operators
of left and right multiplication Lf , Rg are given by Lfg = f � g = Rgf . The asso-
ciativity of the star-product � is equivalent to the fact that Lf commutes with Rg

for all f, g ∈ A. If a star product is differential then Lf , Rg are formal differential
operators. Now Karabegov constructs his star product associated to the deforma-
tion ω̂ in the following way. First he chooses on every contractible coordinate chart
U ⊂ M (with holomorphic coordinates {zk}) its formal potential

(4.8) Φ̂ = (1/ν)Φ−1 +Φ0 + νΦ1 + . . . , ω̂ = i∂∂̄Φ̂.

Then the construction is done in such a way that the left (right) multiplication
operators L∂Φ̂/∂zk

(R∂Φ̂/∂z̄l
) on U are realized as formal differential operators

(4.9) L∂Φ̂/∂zk
= ∂Φ̂/∂zk + ∂/∂zk, and R∂Φ̂/∂z̄l

= ∂Φ̂/∂z̄l + ∂/∂z̄l.

The set L(U) of all left multiplication operators on U is completely described as the
set of all formal differential operators commuting with the point-wise multiplication
operators by antiholomorphic coordinates Rz̄l = z̄l and the operators R∂Φ̂/∂z̄l

.

From the knowledge of L(U) the star product on U can be reconstructed. This
follows from the simple fact that Lg(1) = g and Lf (Lg)(1) = f � g. The operator
corresponding to the left multiplication with the (formal) function g can recursively
(in the ν-degree) be calculated from the fact that it commutes with the operators
R∂Φ̂/∂z̄l

. The local star-products agree on the intersections of the charts and define

the global star-product � on M . See the original work of Karabegov [52] for these
statements.
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We have to mention that this original construction of Karabegov will yield a
star product of separation of variables type but with the role of holomorphic and
antiholomorphic variables switched. This says for any open subset U ⊂ M and
any holomorphic function a and antiholomorphic function b on U the operators La

and Rb are the operators of point-wise multiplication by a and b respectively, i.e.,
La = a and Rb = b.

The construction of Karabegov is on one side very universal without any re-
striction on the (pseudo) Kähler manifold. But it does not establish any connection
to an operator representation. The existence of such an operator representation is
related in a vague sense to the quantization condition. The BT deformation quanti-
zation has such a relation and singles out a unique star product. Modulo switching
the role of holomorphic and anti-holomorphic variable �BT corresponds to a unique
Karabegov form. This form is given in (4.5). The identification is done in Sec-
tion 8.1 further down. That the form starts with (−1/ν)ω is due to the fact that
the role of the variables have to be switched to end up in Karabegov’s classification.

4.4. Karabegov’s formal Berezin transform. Given a pseudo-Kähler man-
ifold (M,ω−1). In the frame of his construction and classification Karabegov as-
signed to each star products � with the separation of variables property the formal
Berezin transform I�. It is as the unique formal differential operator on M such
that for any open subset U ⊂ M , antiholomorphic functions a and holomorphic
functions b on U the relation

(4.10) a � b = I(b · a) = I(b � a),

holds true. The last equality is automatic and is due to the fact, that by the
separation of variables property b � a is the point-wise product b · a. He shows

(4.11) I =

∞∑
i=0

Ii ν
i, Ii : C

∞(M) → C∞(M), I0 = id, I1 = Δ.

Let us summarize. Karabegov’s classification gives for a fixed pseudo-Kähler man-
ifold a 1:1 correspondence between
(1) the set of star products with separation of variables type in Karabegov conven-
tion and
(2) the set of formal deformations (4.7) of ω−1.
Moreover, the formal Berezin transform I� determines the � uniquely.

We will introduce further down a Berezin transform in the set-up of the BT
quantization. In [57] it is shown that its asymptotic expansion gives a formal
Berezin transform in the sense of Karabegov, associated to a star product related
to �BT explained as follows.

4.5. Dual and opposite star products. Given for the pseudo-Kähler man-
ifold (M,ω−1) a star product � of separation of variables type (in Karabegov con-
vention) Karabegov defined with the help of I = I� the following associated star
products. First the dual star-product �̃ on M is defined for f, g ∈ A by the formula

(4.12) f �̃ g = I−1(I(g) � I(f)).

It is a star-product with separation of variables but now on the pseudo-Kähler
manifold (M,−ω−1). Denote by ω̃ = −(1/ν)ω−1 + ω̃0 + νω̃1 + . . . the formal form
parameterizing the star-product �̃. By definition ω̃ = kf(�̃). Its formal Berezin
transform equals I−1, and thus the dual to �̃ is again � .
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Given a star product, the opposite star product is obtained by switching the
arguments. Of course the sign of the Poisson bracket is changed. Now we take the
opposite of the dual star-product, �′ = �̃op, given by

(4.13) f �′ g = g �̃ f = I−1(I(f) � I(g)).

It defines a deformation quantization with separation of variables on M , but with
the roles of holomorphic and antiholomorphic variables swapped - in contrast to �.
But now the pseudo-Kähler manifold will be (M,ω−1). Indeed the formal Berezin
transform I establishes an equivalence of the deformation quantizations (A, �) and
(A, �′).

How is the relation to the Berezin-Toeplitz star product �BT of Theorem 4.2?
There exists a certain formal deformation ω̂ of the form (1/ν)ω which yields a star
product � in the Karabegov sense [57]. The opposite of its dual will be equal to
the Berezin-Toeplitz star product, i.e.

(4.14) �BT = �̃op = �′ .

The classifying Karabegov form kf(�̃) will be the form (4.5). Here we fix the con-
vention that we take for determining the Karabegov form of the BT star product the
Karabegov form of the opposite one to adjust to Karabegov’s original convention,
i.e.

(4.15) kf(�BT ) := kf(�opBT ) = kf(�̃).

As �̃ is a star product for the pseudo-Kähler manifold (M,−ω) the kf(�BT ) starts
with (−1/ν)ω.

The formula (4.13) gives an equivalence between � and �BT via I . Hence,
we have for the Deligne-Fedosov class cl(�) = cl(�BT ), see the formula (4.5). We
will identify ω̂ = kf(�) in Section 8.1.

5. Global Toeplitz operators

In this section we will indicate some parts of the proofs of Theorem 4.2 and
Theorem 3.3. For this goal we consider the bundles Lm over the compact Kähler
manifold M as associated line bundles of one unique S1-bundle over M . The
Toeplitz operator will appear as “modes” of a global Toeplitz operator. Moreover,
we will need the same set-up to discuss coherent states, Berezin symbols, and the
Berezin transform in the next sections.

5.1. The disc bundle. Recall that our quantum line bundle L was assumed
to be already very ample. We pass to its dual line bundle (U, k) := (L∗, h−1) with
dual metric k. In the example of the projective space, the quantum line bundle is
the hyperplane section bundle and its dual is the tautological line bundle. Inside
the total space U , we consider the circle bundle

Q := {λ ∈ U | k(λ, λ) = 1},
and denote by τ : Q → M (or τ : U → M) the projections to the base manifold M .

The bundle Q is a contact manifold, i.e. there is a 1-form ν such that
μ = 1

2π τ
∗Ω ∧ ν is a volume form on Q. Moreover,

(5.1)

∫
Q

(τ∗f)μ =

∫
M

f Ω, ∀f ∈ C∞(M).
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Denote by L2(Q,μ) the corresponding L2-space on Q. Let H be the space of
(differentiable) functions on Q which can be extended to holomorphic functions on
the disc bundle (i.e. to the “interior” of the circle bundle), and H(m) the subspace
of H consisting of m-homogeneous functions on Q. Here m-homogeneous means
ψ(cλ) = cmψ(λ). For further reference let us introduce the following (orthogonal)
projectors: the Szegö projector

(5.2) Π : L2(Q,μ) → H,
and its components the Bergman projectors

(5.3) Π̂(m) : L2(Q,μ) → H(m).

The bundle Q is a S1−bundle, and the Lm are associated line bundles. The
sections of Lm = U−m are identified with those functions ψ on Q which are homo-
geneous of degree m. This identification is given on the level of the L2 spaces by
the map

(5.4) γm : L2(M,Lm) → L2(Q,μ), s �→ ψs where

(5.5) ψs(α) = α⊗m(s(τ (α))).

Restricted to the holomorphic sections we obtain the unitary isomorphism

(5.6) γm : Γhol(M,Lm) ∼= H(m).

5.2. Toeplitz structure. Boutet de Monvel and Guillemin introduced the
notion of a Toeplitz structure (Π,Σ) and associated generalized Toeplitz operators
[21]. If we specialize this to our situation then Π is the Szegö projector (5.2) and
Σ is the submanifold

(5.7) Σ := { tν(λ) | λ ∈ Q, t > 0 } ⊂ T ∗Q \ 0
of the tangent bundle of Q defined with the help of the 1-form ν. It turns out that
Σ is a symplectic submanifold, a symplectic cone.

A (generalized) Toeplitz operator of order k is an operator A : H → H of the
form A = Π ·R ·Π where R is a pseudo-differential operator (ΨDO) of order k on
Q. The Toeplitz operators constitute a ring. The symbol of A is the restriction of
the principal symbol of R (which lives on T ∗Q) to Σ. Note that R is not fixed by A,
but Boutet de Monvel and Guillemin showed that the symbols are well-defined and
that they obey the same rules as the symbols of ΨDOs. In particular, the following
relations are valid:

(5.8) σ(A1A2) = σ(A1)σ(A2), σ([A1, A2]) = i {σ(A1), σ(A2)}Σ.
Here {., .}Σ is the restriction of the canonical Poisson structure of T ∗Q to Σ coming
from the canonical symplectic form on T ∗Q. Furthermore, a Toeplitz operator of
order k with vanishing symbol is a Toeplitz operator of order k − 1.

We will need the following two generalized Toeplitz operators:

(1) The generator of the circle action gives the operator Dϕ =
1

i

∂

∂ϕ
, where ϕ

is the angular variable. It is an operator of order 1 with symbol t. It operates on
H(m) as multiplication by m.

(2) For f ∈ C∞(M) let Mf be the operator on L2(Q,μ) corresponding to
multiplication with τ∗f . We set

(5.9) Tf = Π ·Mf ·Π : H → H .
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As Mf is constant along the fibers of τ , the operator Tf commutes with the circle
action. Hence we can decompose

(5.10) Tf =
∞∏

m=0

T
(m)
f ,

where T
(m)
f denotes the restriction of Tf to H(m). After the identification of H(m)

with Γhol(M,Lm) we see that these T
(m)
f are exactly the Toeplitz operators T

(m)
f

introduced in Section 3. We call Tf the global Toeplitz operator and the T
(m)
f the

local Toeplitz operators. The operator Tf is of order 0. Let us denote by τΣ : Σ ⊆
T ∗Q → Q → M the composition then we obtain for its symbol σ(Tf ) = τ∗Σ(f).

5.3. The construction of the BT star product. To give a sketch of the
proof of Theorem 4.2 we will need the statements of Theorem 3.3. The part (a) of
this theorem we will show with the help of the asymptotic expansion of the Berezin
transform in Section 7.3. The other parts will be sketched here, too. Full proofs of
Theorem 4.2 can be found in [81], [80]. Full proofs of Theorem 3.3 in [18].

Let the notation be as in the last subsection. In particular, let Tf be the

Toeplitz operator, Dϕ the operator of rotation, and T
(m)
f , resp. (m·) their projec-

tions on the eigenspaces H(m) ∼= Γhol(M,Lm).

(a) The definition of the Cj(f, g) ∈ C∞(M)
The construction is done inductively in such a way that

(5.11) AN = DN
ϕ TfTg −

N−1∑
j=0

DN−j
ϕ TCj(f,g)

is always a Toeplitz operator of order zero. The operator AN is S1-invariant, i.e.
Dϕ · AN = AN ·Dϕ. As it is of order zero his symbol is a function on Q. By the
S1-invariance the symbol is even given by (the pull-back of) a function on M . We
take this function as next element CN (f, g) in the star product. By construction,
the operator AN − TCN (f,g) is of order −1 and AN+1 = Dϕ(AN − TCN (f,g)) is of
order 0 and exactly of the form given in (5.11).

The induction starts with

A0 = TfTg, and(5.12)

σ(A0) = σ(Tf )σ(Tg) = τ∗Σ(f) · τ∗Σ(g) = τ∗Σ(f · g) .(5.13)

Hence, C0(f, g) = f · g as required.
It remains to show statement (4.6) about the asymptotics. As an operator of
order zero on a compact manifold AN is bounded (ΨDOs of order 0 on compact
manifolds are bounded). By the S1-invariance we can write A =

∏∞
m=0A

(m) where

A(m) is the restriction of A on the orthogonal subspace H(m). For the norms we
get ||A(m)|| ≤ ||A||. If we calculate the restrictions we obtain

(5.14) ||mNT
(m)
f T (m)

g −
N−1∑
j=0

mN−jT
(m)
Cj(f,g)

|| = ||A(m)
N || ≤ ||AN || .

After dividing by mN Equation (4.6) follows. Bilinearity is clear. For N = 1 we
obtain (3.9) and Theorem 3.3, Part (c).
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(b) The Poisson structure
First we sketch the proof for (3.8). For a fixed t > 0

(5.15) Σt := {t · ν(λ) | λ ∈ Q} ⊆ Σ.

It turns out that ωΣ|Σt
= −tτ∗Σω . The commutator [Tf , Tg] is a Toeplitz operator

of order −1. From the above we obtain with (5.8) for the symbol of the commutator

(5.16) σ([Tf , Tg])(tν(λ)) = i {τ∗Σf, τ∗Σg}Σ(tν(λ)) = − i t−1{f, g}M (τ (λ)) .

We consider the Toeplitz operator

(5.17) A := D2
ϕ [Tf , Tg] + iDϕ T{f,g} .

Formally this is an operator of order 1. Using σ(T{f,g}) = τ∗Σ{f, g} and σ(Dϕ) = t
we see that its principal symbol vanishes. Hence it is an operator of order 0. Arguing
as above we consider its components A(m) and get ||A(m)|| ≤ ||A||. Moreover,

(5.18) A(m) = A|H(m) = m2[T
(m)
f , T (m)

g ] + imT
(m)
{f,g}.

Taking the norm bound and dividing it by m we get part (b) of Theorem 3.3. Using
(5.6) the norms involved indeed coincide.

For the star product we have to show that C1(f, g)−C1(g, f) = − i {f, g}. We
write explicitly (5.14) for N = 2 and the pair of functions (f, g):

(5.19) ||m2T
(m)
f T (m)

g −m2T
(m)
f ·g −mT

(m)
C1(f,g)

|| ≤ K .

A corresponding expression is obtained for the pair (g, f). If we subtract both
operators inside of the norm we obtain (with a suitable K ′)

(5.20) ||m2(T
(m)
f T (m)

g − T (m)
g T

(m)
f )−m(T

(m)
C1(f,g)

− T
(m)
C1(g,f)

)|| ≤ K ′ .

Dividing by m and multiplying with i we obtain

(5.21) ||m i [T
(m)
f , T (m)

g ]− T
(m)

i
(
C1(f,g)−C1(g,f)

)|| = O(
1

m
) .

Using the asymptotics given by Theorem 3.3(b) for the commutator we get

(5.22) ||T (m)

{f,g}− i
(
C1(f,g)−C1(g,f)

)|| = O(
1

m
) .

Taking the limit for m → ∞ and using Theorem 3.3(a) we get

(5.23) ||{f, g} − i (C1

(
f, g)− C1(g, f)

)
||∞ = 0 .

Hence indeed, {f, g} = i (C1(f, g) − C1(g, f)). For the associativity and further
results, see [81].

Within this approach the calculation of the coefficient functions Ck(f, g) is
recursively and not really constructive. In Section 8.4 we will show another way
how to calculate the coefficients. It is based on the asymptotic expansion of the
Berezin transform, which itself is obtained via the off-diagonal expansion of the
Bergman kernel.

In fact the Toeplitz operators again can be expressed via kernel functions also
related to the Bergman kernel. In this way certain extensions of the presented
results are possible. See in particular work by Ma and Marinescu for compact
symplectic manifolds and orbifolds. One might consult the review [64] for results
and further references.
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For another approach (still symbol oriented) to Berezin Toeplitz operator and
star product quantization see Charles [31], [30].

6. Coherent states and symbols

Berezin constructed for an important but limited classes of Kähler manifolds
a star product. The construction was based on his covariant symbols given for do-
mains in Cn. In the following we will present their definition for arbitrary compact
quantizable Kähler manifolds.

6.1. Coherent states. We look again at the relation (5.5)

ψs(α) = α⊗m(s(τ (α))),

but now from the point of view of the linear evaluation functional. This means, we
fix α ∈ U \ 0 and vary the sections s.

The coherent vector (of level m) associated to the point α ∈ U \0 is the element

e
(m)
α of Γhol(M,Lm) with

(6.1) 〈e(m)
α , s〉 = ψs(α) = α⊗m(s(τ (α)))

for all s ∈ Γhol(M,Lm). A direct verification shows e
(m)
cα = c̄m · e(m)

α for c ∈ C∗ :=

C \ {0}. Moreover, as the bundle is very ample we get e
(m)
α �= 0.

This allows the following definition.

Definition 6.1. The coherent state (of level m) associated to x ∈ M is the
projective class

(6.2) e(m)
x := [e(m)

α ] ∈ P(Γhol(M,Lm)), α ∈ τ−1(x), α �= 0.

The coherent state embedding is the antiholomorphic embedding

(6.3) M → P(Γhol(M,Lm)) ∼= PN (C), x �→ [e
(m)
τ−1(x)].

See [10] for some geometric properties of the coherent state embedding.

Remark 6.2. A coordinate independent version of Berezin’s original definition
and extensions to line bundles were given by Rawnsley [76]. It plays an important
role in the work of Cahen, Gutt, and Rawnsley on the quantization of Kähler
manifolds [24, 25, 26, 27], via Berezin’s covariant symbols. In these works the
coherent vectors are parameterized by the elements of L \ 0. The definition here
uses the points of the total space of the dual bundle U . It has the advantage that
one can consider all tensor powers of L together on an equal footing.

6.2. Covariant Berezin symbol.

Definition 6.3. For an operator A ∈ End(Γhol(M,L(m))) its covariant Berezin
symbol σ(m)(A) (of level m) is defined as the function

(6.4) σ(m)(A) : M → C, x �→ σ(m)(A)(x) :=
〈e(m)

α , Ae
(m)
α 〉

〈e(m)
α , e

(m)
α 〉

, α ∈ τ−1(x) \ {0}.

Using the coherent projectors (with the convenient bra-ket notation)

(6.5) P (m)
x =

|e(m)
α 〉〈e(m)

α |
〈e(m)

α , e
(m)
α 〉

, α ∈ τ−1(x)
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it can be rewritten as σ(m)(A) = Tr(AP
(m)
x ). In abuse of notation α ∈ τ−1(x)

should always mean α �= 0.

6.3. Contravariant Symbols. We need Rawnsley’s epsilon function ε(m)

[76] to introduce contravariant symbols in the general Kähler manifold setting.
It is defined as

(6.6) ε(m) : M → C∞(M), x �→ ε(m)(x) :=
h(m)(e

(m)
α , e

(m)
α )(x)

〈e(m)
α , e

(m)
α 〉

, α ∈ τ−1(x).

As ε(m) > 0 we can introduce the modified measure Ω
(m)
ε (x) := ε(m)(x)Ω(x) on

the space of functions on M . If M is a homogeneous manifold under a transitive
group action and everything is invariant, ε(m) will be constant. This was the case
considered by Berezin.

Definition 6.4. Given an operator A ∈ End(Γhol(M,L(m))) then a con-
travariant Berezin symbol σ̌(m)(A) ∈ C∞(M) of A is defined by the representation
of the operator A as an integral

(6.7) A =

∫
M

σ̌(m)(A)(x)P (m)
x Ω(m)

ε (x),

if such a representation exists.

We quote from [85, Prop. 6.8] that the Toeplitz operator T
(m)
f admits such a

representation with σ̌(m)(T
(m)
f ) = f . This says, the function f itself is a contravari-

ant symbol of the Toeplitz operator T
(m)
f . Note that the contravariant symbol is

not uniquely fixed by the operator. As an immediate consequence from the sur-
jectivity of the Toeplitz map it follows that every operator A has a contravariant
symbol, i.e. every operator A has a representation (6.7). For this we have to keep
in mind, that our Kähler manifolds are compact.

Now we introduce on End(Γhol(M,L(m))) the Hilbert-Schmidt norm 〈A,C〉HS =
Tr(A∗ · C). In [79] (see also [86]), we showed that

(6.8) 〈A, T (m)
f 〉

HS
= 〈σ(m)(A), f〉(m)

ε .

This says that the Toeplitz map f → T
(m)
f and the covariant symbol map A →

σ(m)(A) are adjoint. By the adjointness property from the surjectivity of the
Toeplitz map the following follows.

Proposition 6.5. The covariant symbol map is injective.

Other results following from the adjointness are

(6.9) tr(T
(m)
f ) =

∫
M

f Ω(m)
ε =

∫
M

σ(m)(T
(m)
f ) Ω(m)

ε .

(6.10) dimΓhol(M,Lm) =

∫
M

Ω(m)
ε =

∫
M

ε(m)(x) Ω.

In particular, in the special case that ε(m)(x) = const then

(6.11) ε(m) =
dimΓhol(M,Lm)

volΩ(M)
.
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6.4. The original Berezin star product. Under very restrictive conditions
on the manifold it is possible to construct the Berezin star product with the help of
the covariant symbol map. This was done by Berezin himself [13],[14] and later by
Cahen, Gutt, and Rawnsley [24][25][26][27] for more examples. We will indicate
this in the following.

Denote by A(m) ≤ C∞(M), the subspace of functions which appear as level
m covariant symbols of operators. By Proposition 6.5 for the two symbols σ(m)(A)
and σ(m)(B) the operators A and B are uniquely fixed. Hence, it is possible to
define the deformed product by

(6.12) σ(m)(A) �(m) σ
(m)(B) := σ(m)(A ·B).

Now �(m) defines on A(m) an associative and noncommutative product.
It is even possible to give an expression for the resulting symbol. For this we

introduce the two-point function

(6.13) ψ(m)(x, y) =
〈e(m)

α , e
(m)
β 〉〈e(m)

β , e
(m)
α 〉

〈e(m)
α , e

(m)
α 〉〈e(m)

β , e
(m)
β 〉

with α = τ−1(x) and β = τ−1(y). This function is well-defined on M × M .
Furthermore, we have the two-point symbol

(6.14) σ(m)(A)(x, y) =
〈e(m)

α , Ae
(m)
β 〉

〈e(m)
α , e

(m)
β 〉

.

It is the analytic extension of the real-analytic covariant symbol. It is well-defined
on an open dense subset of M ×M containing the diagonal. Then

(6.15) σ(m)(A) �(m) σ
(m)(B)(x) = σ(m)(A ·B)(x) =

〈e(m)
α , A ·B e

(m)
α 〉

〈e(m)
α , e

(m)
α 〉

=
1

〈e(m)
α , e

(m)
α 〉

∫
M

〈e(m)
α , Ae

(m)
β 〉〈e(m)

β , Be(m)
α 〉 Ω

(m)
ε (y)

〈e(m)
β , e

(m)
β 〉

=

∫
M

σ(m)(A)(x, y) · σ(m)(B)(y, x) · ψ(m)(x, y) · Ω(m)
ε (y) .

The crucial problem is how to relate different levels m to define for all possible
symbols a unique product not depending on m. In certain special situations like
those studied by Berezin, and Cahen, Gutt and Rawnsley the subspaces are nested
into each other and the union A =

⋃
m∈N

A(m) is a dense subalgebra of C∞(M).
This is the case if the manifold is a homogeneous manifold and the epsilon function
ε(m) is a constant. A detailed analysis shows that in this case a star product is
given.

For related results see also work of Moreno and Ortega-Navarro [68], [67]. In
particular, also the work of Englǐs [42, 41, 40, 39]. Reshetikhin and Takhtajan [77]
gave a construction of a (formal) star product using formal integrals (and associated
Feynman graphs) in the spirit of the Berezin’s covariant symbol construction, see
Section 9.2

In Section 8.2 using the Berezin transform and its properties discussed in the
next section (at least in the case of quantizable compact Kähler manifolds) we will
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introduce a star product dual to the by Theorem 4.2 existing �BT . It will generalizes
the above star product.

7. The Berezin transform and Bergman kernels

7.1. Definition and asymptotic expansion of the Berezin transform.

Definition 7.1. The map

(7.1) I(m) : C∞(M) → C∞(M), f �→ I(m)(f) := σ(m)(T
(m)
f ),

obtained by starting with a function f ∈ C∞(M), taking its Toeplitz operator

T
(m)
f , and then calculating the covariant symbol is called the Berezin transform (of

level m).

To distinguish it from the formal Berezin transforms introduced by Karabegov
for any of his star products sometimes we will call the above the geometric Berezin
transform. Note that it is uniquely fixed by the geometric setup of the quantized
Kähler manifold.

From the point of view of Berezin’s approach the operator T
(m)
f has as a con-

travariant symbol f . Hence I(m) gives a correspondence between contravariant
symbols and covariant symbols of operators. The Berezin transform was intro-
duced and studied by Berezin [14] for certain classical symmetric domains in Cn.
These results where extended by Unterberger and Upmeier [90], see also Englǐs
[40, 41, 42] and Englǐs and Peetre [43]. Obviously, the Berezin transform makes
perfect sense in the compact Kähler case which we consider here.

Theorem 7.2. [57] Given x ∈ M then the Berezin transform I(m)(f) has a
complete asymptotic expansion in powers of 1/m as m → ∞

(7.2) I(m)(f)(x) ∼
∞∑
i=0

Ii(f)(x)
1

mi
,

where Ii : C∞(M) → C∞(M) are linear maps given by differential operators,
uniformly defined for all x ∈ M . Furthermore, I0(f) = f, I1(f) = Δf.

Here Δ is the Laplacian with respect to the metric given by the Kähler form ω.
By complete asymptotic expansion the following is understood. Given f ∈ C∞(M),
x ∈ M and an N ∈ N then there exists a positive constant A such that∣∣∣∣∣I(m)(f)(x)−

N−1∑
i=0

Ii(f)(x)
1

mi

∣∣∣∣∣
∞

≤ A

mN
.

The proof of this theorem is quite involved. An important intermediate step of
independent interest is the off-diagonal asymptotic expansion of the Bergman kernel
function in the neighborhood of the diagonal, see [57]. We will discuss this in the
next subsection.

7.2. Bergman kernel. Recall from Section 5 the definition of the Szegö pro-
jectors Π : L2(Q,μ) → H and its components Π̂(m) : L2(Q,μ) → H(m), the
Bergman projectors. The Bergman projectors have smooth integral kernels, the
Bergman kernels Bm(α, β) defined on Q×Q, i.e.

(7.3) Π̂(m)(ψ)(α) =

∫
Q

Bm(α, β)ψ(β)μ(β).
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The Bergman kernels can be expressed with the help of the coherent vectors.

Proposition 7.3.

(7.4) Bm(α, β) = ψ
e
(m)
β

(α) = ψ
e
(m)
α

(β) = 〈e(m)
α , e

(m)
β 〉.

For the proofs of this and the following propositions see [57], or [82].
Let x, y ∈ M and choose α, β ∈ Q with τ (α) = x and τ (β) = y then the

functions

(7.5) um(x) := Bm(α, α) = 〈e(m)
α , e(m)

α 〉,

(7.6) vm(x, y) := Bm(α, β) · Bm(β, α) = 〈e(m)
α , e

(m)
β 〉 · 〈e(m)

β , e(m)
α 〉

are well-defined on M and on M ×M respectively. The following proposition gives
an integral representation of the Berezin transform.

Proposition 7.4.

(7.7)

(
I(m)(f)

)
(x) =

1

Bm(α, α)

∫
Q

Bm(α, β)Bm(β, α)τ∗f(β)μ(β)

=
1

um(x)

∫
M

vm(x, y)f(y)Ω(y) .

Typically, asymptotic expansions can be obtained using stationary phase inte-
grals. But for such an asymptotic expansion of the integral representation of the
Berezin transform we will not only need an asymptotic expansion of the Bergman
kernel along the diagonal (which is well-known) but in a neighborhood of it. This
is one of the key results obtained in [57]. It is based on works of Boutet de Monvel
and Sjöstrand [23] on the Szegö kernel and in generalization of a result of Zelditch
[95] on the Bergman kernel on the diagonal. The integral representation is used
then to prove the existence of the asymptotic expansion of the Berezin transform.
See [82] for a sketch of the proof.

Having such an asymptotic expansion it still remains to identify its terms. As
it was explained in Section 4.3, Karabegov assigns to every formal deformation
quantizations with the “separation of variables” property a formal Berezin trans-
form I. In [57] it is shown that there is an explicitely specified star product �
(see Theorem 5.9 in [57]) with associated formal Berezin transform such that if
we replace 1

m by the formal variable ν in the asymptotic expansion of the Berezin

transform I(m)f(x) we obtain I(f)(x). This will finally prove Theorem 7.2. We
will exhibit the star product � in Section 8.1.

Of course, for certain restricted but important non-compact cases the Berezin
transform was already introduced and calculated by Berezin. It was a basic tool in
his approach to quantization [12]. For other types of non-compact manifolds similar
results on the asymptotic expansion of the Berezin transform are also known. See
the extensive work of Englǐs, e.g. [40].

Remark 7.5. More recently, direct approaches to the asymptotic expansion
of the Bergman kernel (outside the diagonal) were given, some of them yielding
low order coefficients of the expansion. As examples, let me mention Berman,
Berndtsson, and Sjöstrand, [16], Ma and Marinescu [63], Dai. Lui, and Ma [35].
See also Englǐs [39].
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7.3. Proof of norm property of Toeplitz operators. In [79] I conjectured
(7.2) (which we later proved in joint work with Karabegov) and showed how such
an asymptotic expansion supplies a different proof of Theorem 3.3, Part (a). For
completeness I reproduce the proof here.

Proposition 7.6.

(7.8) |I(m)(f)|∞ = |σ(m)(T
(m)
f )|∞ ≤ ||T (m)

f || ≤ |f |∞ .

Proof. Using Cauchy-Schwarz inequality we calculate (x = τ (α))
(7.9)

|σ(m)(T
(m)
f )(x)|2 =

|〈e(m)
α , T

(m)
f e

(m)
α 〉|2

〈e(m)
α , e

(m)
α 〉

2 ≤
〈T (m)

f e
(m)
α , T

(m)
f e

(m)
α 〉

〈e(m)
α , e

(m)
α 〉

≤ ||T (m)
f ||2 .

Here the last inequality follows from the definition of the operator norm. This shows
the first inequality in (7.8). For the second inequality introduce the multiplication

operator M
(m)
f on Γ∞(M,Lm). Then ||T (m)

f || = ||Π(m)M
(m)
f Π(m)|| ≤ ||M (m)

f ||
and for ϕ ∈ Γ∞(M,Lm), ϕ �= 0

(7.10)
||M (m)

f ϕ||
2

||ϕ||2 =

∫
M
h(m)(fϕ, fϕ)Ω∫

M
h(m)(ϕ, ϕ)Ω

=

∫
M
f(z)f(z)h(m)(ϕ, ϕ)Ω∫

M
h(m)(ϕ, ϕ)Ω

≤ |f |2∞ .

Hence,

(7.11) ||T (m)
f || ≤ ||M (m)

f || = sup
ϕ�=0

||M (m)
f ϕ||
||ϕ|| ≤ |f |∞.

�

Proof. (Theorem 3.3 Part (a).) Choose as xe ∈ M a point with |f(xe)| =
|f |∞. From the fact that the Berezin transform has as leading term the identity
it follows that |(I(m)f)(xe) − f(xe)| ≤ C/m with a suitable constant C. Hence,∣∣|f(xe)| − |(I(m)f)(xe)|

∣∣ ≤ C/m and

(7.12) |f |∞ − C

m
= |f(xe)| −

C

m
≤ |(I(m)f)(xe)| ≤ |I(m)f |∞ .

Putting (7.8) and (7.12) together we obtain

(7.13) |f |∞ − C

m
≤ ||T (m)

f || ≤ |f |∞ .

�

8. Berezin transform and star products

8.1. Identification of the BT star product. In [57] there was another
object introduced, the twisted product

(8.1) R(m)(f, g) := σ(m)(T
(m)
f · T (m)

g ) .

Also for it the existence of a complete asymptotic expansion was shown. It was
identified with a twisted formal product. This allowed relating the BT star prod-
uct with a special star product within the classification of Karabegov. From this
the properties of Theorem 4.2 of locality, separation of variables type, and the
calculation to the classifying forms and classes for the BT star product follows.
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As already announced in Section 4.3, the BT star product �BT is the opposite
of the dual star product of a certain star product �. To identify � we will give its
classifying Karabegov form ω̂ . As already mentioned above, Zelditch [95] proved
that the function um (7.5) has a complete asymptotic expansion in powers of 1/m.
In detail he showed

(8.2) um(x) ∼ mn
∞∑
k=0

1

mk
bk(x), b0 = 1.

If we replace in the expansion 1/m by the formal variable ν we obtain a formal
function s defined by

(8.3) es(x) =

∞∑
k=0

νk bk(x).

Now take as formal potential (4.8)

Φ̂ =
1

ν
Φ−1 + s,

where Φ−1 is the local Kähler potential of the Kähler form ω = ω−1. Then ω̂ =

i ∂∂̄Φ̂. It might also be written in the form

(8.4) ω̂ =
1

ν
ω + F(i ∂∂̄ logBm(α, α)).

Here we denote the replacement of 1/m by the formal variable ν by the symbol F.

8.2. The Berezin star products for arbitrary Kähler manifolds. We
will introduce for general quantizable compact Kähler manifolds the Berezin star
product. We extract from the asymptotic expansion of the Berezin transform (7.2)
the formal expression

(8.5) I =

∞∑
i=0

Ii ν
i, Ii : C

∞(M) → C∞(M),

as a formal Berezin transform, and set

(8.6) f �B g := I(I−1(f) �BT I−1(g)).

As I0 = id this �B is a star product for our Kähler manifold, which we call the
Berezin star product. Obviously, the formal map I gives the equivalence transfor-
mation to �BT . Hence, the Deligne-Fedosov classes will be the same. It will be of
separation of variables type but with the role of the variables switched. We showed
in [57] that I = I� with star product given by the form (8.4). We can rewrite (8.6)
as

(8.7) f �BT g := I−1(I(f) �B I(g)).

and get exactly the relation (4.13). Hence, � = �B and both star products �B and
�BT are dual and opposite to each other.

When the definition with the covariant symbol works (explained in Section 6.4)
�B will coincide with the star product defined there.
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8.3. Summary of naturally defined star products for compact Kähler
manifolds. By the presented techniques we obtained for quantizable compact
Kähler manifolds three different naturally defined star products �BT , �GQ, and
�B. All three are equivalent and have classifying Deligne-Fedosov class

(8.8) cl(�BT ) = cl(�B) = cl(�GQ) =
1

i
(
1

ν
[ω]− δ

2
).

But all three are distinct. In fact �BT is of separation of variables type (Wick-type),
�B is of separation of variables type with the role of the variables switched (anti-
Wick-type), and �GQ neither. For their Karabegov forms we obtain (see [57],[85])

(8.9) kf(�BT ) =
−1

ν
ω + ωcan. kf(�B) =

1

ν
ω + F(i ∂∂ log um).

The function um was introduced above as the Bergman kernel evaluated along the
diagonal in Q×Q.

Remark 8.1. Based on Fedosov’s method Bordemann and Waldmann [19]
constructed also a unique star product �BW which is of Wick type, see Section 9.1.
The opposite star product has Karabegov form kf(�oppBW ) = −(1/ν)ω and it has

Deligne-Fedosov class cl(�BW ) = 1
i (

1
ν [ω] +

δ
2 ) [54]. It will be equivalent to �BT if

the canonical class is trivial.
More precisely, in [54] Karabegov considered the “anti-Wick” variant of the

Bordemann-Waldmann construction. This yields a star product with separation
of variables in the convention of Karabegov. It has Karabegov form (1/ν)ω and
the same Deligne-Fedosov class as (8.8). Hence, it is equvialent to �BT . Recently,
in [55], [56] Karabegov gave a more direct construction of the star product with
Karabegov form (1/ν)ω. Karabegov calls this star product standard star product.

8.4. Application: Calculation of the coefficients of the star products.
The proof of Theorem 4.2 gives a recursive definition of the coefficients Ck(f, g).
Unfortunately, it is not very constructive. For their calculation the Berezin trans-
form will also be of help. Theorem 7.2 shows for quantizable compact Kähler
manifolds the existence of the asymptotic expansion of the Berezin transform (7.2).
We get the formal Berezin transform I = F(I(m)), see (8.5), which is the formal
Berezin transform of the star product �B

I =

∞∑
i=0

Ii ν
i, Ii : C

∞(M) → C∞(M).

We will show that if we know I explicitely we obtain explicitly �B by giving the
coefficients CB

k (f, g) of �B. For this the knowledge of the coefficients CBT
k (f, g) for

�BT will not be needed. All we need is the existence of �BT to define �B. The
operators Ii can be expressed (at least in principle) by the asymptotic expansion
of expressions formulated in terms of the Bergman kernel.

As I is the formal Berezin transform in the sense of Karabegov assigned to �B
we get for local functions f, g , f anti-holomorphic, g holomorphic

(8.10) f � g = I(g · f) = I(g � f).

Expanding the formal series for �B (4.1) and for I (8.5) we get for the coefficients

(8.11) CB
k (f, g) = Ik(g · f).
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Let us take local complex coordinates. As �B is a differential star product, the
CB

k are bidifferential operators. As �B is of separation of variables type, in CB
k the

first argument is is only differentiated with respect to anti-holomorphic coordinates,
the second with respect to holomorphic coordinates. Moreover, it was shown by
Karabegov that the Ck are bidifferential operators of order (0, k) in the first argu-
ment and order (k, 0) in the second argument and that Ik is a differential operator
of type (k, k).

As f is anti-holomorphic, in Ik it will only see the anti-holomorphic derivatives.
The corresponding is true for the holomorphic g. By locality it is enough to consider
the local functions zi and zi and we get that CB

k can be obtained by “polarizing”
Ik.

In detail, if we write Ik as summation over multi-indices (i) and (j) we get

(8.12) Ik =
∑
(i),(j)

ak(i),(j)
∂(i)+(j)

∂z(i)∂z(j)
, ak(i),(j) ∈ C∞(M)

and obtain for the coefficient in the star product �B

(8.13) CB
k (f, g) =

∑
(i),(j)

ak(i),(j)
∂(j)f

∂z(j)

∂(i)g

∂z(i)
,

where the summation is limited by the order condition. Hence, knowing the com-
ponents Ik of the formal Berezin transform I gives us CB

k .
From I we can recursively calculate the coefficients of the inverse I−1 as I starts

with id. From f �BT g = I−1(I(f)�B I(g)), which is the Relation (8.6) inverted, we
can calculate (at least recursively) the coefficients CBT

k . In practice, the recursive
calculations turned out to become quite involved.

The chain of arguments presented above was based on the existence of the
Berezin transform and its asymptotic expansion for every quantizable compact
Kähler manifold. The asymptotic expansion of the Berezin transform itself is again
based on the asymptotic off-diagonal expansion of the Bergman kernel. Indeed, the
Toeplitz operator can also be expressed via the Bergman kernel. Based on this it is
clear that the same procedure will work for those non-compact manifolds for which
we have at least the same (suitably adapted) objects and corresponding results.

Remark 8.2. In the purely formal star product setting studied by Karabegov
[52] the set of star products of separation of variables type, the set of formal Berezin
transforms, and the set of formal Karabegov forms are in 1:1 correspondence. Given
I� the star product � can be recovered via the correspondence (8.12) with (8.13).
What generalizes �BT in this more general setting is the dual and opposite of �.

Example 8.3. As a simple but nevertheless instructive case let us consider
k = 1. Recall that n is the complex dimension of M . Starting from our Kähler
form ω expressed in local holomorphic coordinates zi as ω = i

∑n
i,j=1 gijdzi ∧ dzj

the Laplace-Beltrami operator is given by

(8.14) Δ =
∑
i,j

gij
∂2

∂zi∂zj
,
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here (gij) is as usual the inverse matrix to (gij).
5 The Poisson bracket is given (up

to ε which is a factor of signs, complex units, and factors of 1/2 due to preferred
conventions) by

(8.15) {f, g} = ε ·
∑
i,j

gij
(
∂f

∂zi

∂g

∂zj
− ∂f

∂zj

∂g

∂zi

)
From I1 = Δ we deduce immediately with (8.14)

(8.16) CB
1 (f, g) =

∑
i,j

gij
∂f

∂zi

∂g

∂zj
.

The inverse of I starts with id−Δν + ..... If we isolate using (8.7) from

(8.17) (id−Δν)(((id+Δν)f) �B ((id+Δν)g))

the terms of order one in ν we get

(8.18) CBT
1 (f, g) = CB

1 (f, g) + (Δf)g + f(Δg)−Δ(fg) = −
∑
i,j

gij
∂f

∂zi

∂g

∂zj
.

This is of course not a surprise. We could have it deduced also directly. Our star
products are of separation of variables type and the C1 have to have a form like
(8.16) (or (8.18)) with coefficients aij which a priori could be different from gij

and −gij respectively. From C1(f, g)−C1(g, f) = − i {f, g} it follows that they are
equal.

Calculating the higher orders can become quite tedious. First of course the
Berezin transform is only known in closed form for certain homogeneous spaces. For
general (compact) manifolds by Proposition 7.4 its asymptotic expansion can be
expressed in terms of asymptotic expansions of the Bergman kernel. The Bergman
kernel can be expressed locally with respect to adapted coordinates via data as-
sociated to the Kähler metric. Hence the coefficients CB

k and CBT
k can be also

expressed in these data. In case that the Berezin transform exists it was an impor-
tant achievement of Mirek Englǐs to exploit this in detail also in the noncompact
case, under the condition that the Berezin transform exists [39], [42]. He calculated
small order terms in the star products.

Later, Marinescu and Ma used also Bergman kernel techniques in a different
way even in the case of compact symplectic manifolds and orbifolds and allowing
an auxiliary vector bundles. In their approach they introduced Toeplitz kernels and
calculated small order terms for the Berezin-Toeplitz star product [65]. A Berezin
transform does not show up. See [64] for a review of their techniques, results and
further reference to related literature. See also results of Charles [30], [31], [32],
[33].

9. Other constructions of star products – Graphs

9.1. Bordemann and Waldmann. [19] Fedosov’s proof of the existence of
a star product for every symplectic manifold was geometric in its very nature [44].

He considers a certain infinite-dimensional bundle Ŵ → M of formal series of
symmetric and antisymmetric forms on the tangent bundle of M . For this bundle

5From the context it should be clear that g and gij are unrelated objects.
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he defines the fiber-wise Weyl product. Denote by Ŵ the sheaf of smooth sections
of this bundle, with ◦ as induced product.

Starting from a symplectic torsion free connection he constructs recursively
what is called the Fedosov derivation D for the sheaf of sections. It is flat, in the
sense that D2 = 0. The kernel of D is a ◦-subalgebra. Let W be the elements of
Ŵ for which the values have antisymmetric degree zero. The natural projection to
the symmetric degree zero part gives a linear isomorphism from the ◦-subalgebra
σ : WD = kerD ∩W → C∞(M)[[ν]]. The algebra structure of WD gives the star
product we were looking for, i.e. f � g := σ(τ (f) ◦ τ (g)) with τ the inverse of σ
which recursively can by calculated.

In case that M is an arbitrary Kähler manifold, Bordemann and Waldmann
[19] were able to modify the set-up by taking the fiber-wise Wick product. By
a modified Fedosov connection a star product �BW is obtained which is of Wick
type, i.e. Ck(., .) for k ≥ 1 has only holomorphic derivatives in the first argument
and anti-holomorphic arguments in the second argument. Equivalently, it is of
separation of variables type. As already remarked earlier, its Karabegov form
is −(1/ν)ω and it has Deligne-Fedosov class cl(�BW ) = 1

i (
1
ν [ω] +

δ
2 ). It will be

equivalent to the BT star product if the canonical class is trivial.
Later Neumaier [70] was able to show that each star product of separation of

variables type (i.e. the star products opposite to the Karabegov star product from
Section 4.3) can be obtained by the Bordemann-Waldmann construction by adding
a formal closed (1, 1) form as parameter in the construction.

9.2. Reshetikhin and Takhtajan. [77] In the following subsections we will
indicate certain relations between the question of existence and/or the calculation
of coefficients of star products and their description by graphs. One of the prob-
lems in the context of star products is that the questions reduce often to rather
intricate combinatorics of derivatives of the involved functions and other “internal”
geometrical data coming from the manifold, like Poisson form, Kähler form, etc.
One has to keep track of multiple derivations of many products and sums involving
tensors related to the Poisson structure, metric, etc. and the functions f and g. In
this respect graphs are usually a very helpful tool to control the combinatorics and
to find “closed expressions” in terms of graphs.

Berezin in his approach to define a star product for complex domains in Cn used
analytic integrals depending on a real parameter �. Compare this to (6.15) where
due to compactness we have a discrete parameter 1/m. In these integrals scalar
products of coherent states show up. Similar to Proposition 7.3 they are identical
to the Bergman kernel. Under the condition that the Kähler form is real-analytic
its Kähler potential Φ admits an analytic continuation Φ(z, w) on Cn ×Cn. 6 The
Bergman kernel can be rewritten with a suitable complementary factor e�(z, w) as

(9.1) B�(z, w) = eΦ(v,w)e�(z, w).

Moreover, one considers Calabi’s diastatic function

(9.2) Φ(z, z, w, w) = Φ(z, w) + Φ(w, z)− Φ(z, z)− Φ(w,w).

6In this subsection for the formalism of analytic continuation, it is convenient to write f(z, z)
for a function f on M to indicate its dependence on holomorphic and anti-holomorphic directions.
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The corresponding integral rewrites as

(9.3) (f �� g)(z, z) =

∫
Cn

f(z, w)g(w, z)
e�(z, w)e�(w, z)

e�(z, z)
e(Φ(z,z,w,w)/� Ω�,

where Ω� is the � normalized Liouville form. To show that the integral gives
indeed a star product Berezin needs the crucial assumption e�(z, w) is constant.
The desired results are obtained via the Laplace method.

Reshetikhin and Takhtajan consider now such type of integrals (still ignoring
the e�(z, w)) as formal integrals and make a formal Laplace expansion to obtain a
“star” product, which we denote for the moment by •. The coefficients of the ex-
pansion for f •g can be expressed with the help of partition functions of a restricted
set G of locally oriented graphs (Feynman diagrams) fulfilling some additional con-
ditions and equipped with additional data. In particular, each Γ ∈ G contains two
special vertices, a vertex R with only incoming edges and and a vertex L with only
outgoing edges. Furthermore, the other vertices are divided into two sets, the solid
and the hollow vertices. The “star” product for Cn as formal power series in ν can
be written as

(9.4) f • g =
∑
Γ∈G

νχ(Γ)

|Aut(Γ)|DΓ(f, g).

Here Aut(Γ) is the subgroup of automorphism of the graph Γ respecting the special
structure, χ(Γ) is the number of edges of Γ minus the number of “solid” vertices.
The crucial part is DΓ(f, g) the partition function of the graph Γ equipped with cer-
tain additional data. It encodes the information from the formal expansion of the
integral associated to this graph. The special vertex L is responsible for differentiat-
ing f with respect to anti-holomorphic coordinates and R for differentiating g with
respect to holomorphic coordinates. It is sketched that the product • is “functorial”
with respect to holomorphic changes of coordinates and that it defines a formal de-
formation quantization for any arbitrary complex manifold M with Kähler form ω.
But as in general 1 • f �= f �= f • 1, i.e. it is not null on constants. Essentially this
is due to the fact, that the complementary factors e�(z, w) (9.1) were not taken
into account. But the obtained algebra contains a unit element eν(z, z) which is
invertible. This unit is used to twist •
(9.5) (f � g)(z, z) = e−1

ν (z, z)((f · eν) • (g · eν))
to obtain a star product � which is null on constants. As the notation already
indicates, the unit eν(z, z) is related to the formal Bergman kernel evaluated along
the diagonal.

9.3. Gammelgaard. [48] His starting point is the formal deformation ω̂ of
the pseudo-Kähler form ω = ω−1 given by (4.7). Let � be the unique star product
of separation of variables type (in the convention of Karabegov) associated to ω̂
which exists globally. Gammelgaard gives a local expression of this star product by

(9.6) f � g =
∑
Γ∈A2

νW (Γ)

|Aut(Γ)|DΓ(f, g).

This looks similar to (9.4) but of the set of graphs to be considered are different.
Also the partition functions will be different. Local means that he chooses for every
point a contractible neighborhood such that ω̂ has a formal potential (4.8). The
set A2 is the set of isomorphy classes of directed acyclic graphs (parallel edges are
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allowed) which have exactly one vertex which is a sink (i.e. has only incoming
edges) and one vertex which is a source (i.e. has only outgoing edges). These two
vertices are called external vertices, the other internal. As usual we denote by E the
set of edges and by V the set of vertices of the graph Γ. The graphs are weighted
by assigning to every internal vertex v an integer w(v) ≥ −1. Each internal vertex
has at least one incoming and one outgoing edge. If w(v) = −1 then at least 3
edges are connected with v. The total weight W (Γ) of the graph Γ is defined as
the sum W (Γ) := |E| +

∑
v internal w(v). Isomorphism are required to respect the

structure. Also in this sense |Aut(Γ)| has to be understood.
To each such graph a certain bidifferential operator is assigned. It involves

the geometric data and the functions f and g. The function f corresponds to
the external vertex which is a source and g to the sink. The internal vertices of
weight k involve −Φk from (4.8). Incoming edges correspond to taking derivatives
with respect to holomorphic coordinates, outgoing with respect to anti-holomorphic
coordinates. Hence f is only differentiated with respect to anti-holomorphic and g
with respect to holomorphic. The partition function is now obtained by contracting
the tensors with the help of the Kähler metric.

In the main part of the paper [48] Gammelgaard shows that this definition is
indeed associative and defines locally a star product with the (global) Karabegov
form ω̂ he started with. Hence it is the local restriction of �.

The formula is particularly nice if there are not so many higher order terms
in ω̂. For example for ω̂ = (1/ν)ω−1, i.e. the “standard star product” only those
graphs contribute for which all vertices have weight −1. For the Berezin star
product we will have in general higher degree contributions, see (8.9). But the
opposite of the Berezin-Toeplitz star product has Karabegov form −(1/ν)ω+ωcan,
hence only graphs which have only vertices of weight −1 or 0 will contribute. As
Gammelgaard remarks this allows to give explicit formulas for the coefficients of
the BT star product. Recall that for the opposite star product only the role of f
and g is switched.

As an example let me derive the “trivial coefficients”. The only graph of weight
zero is the one consisting on the two external vertices and no edge. Hence C0(f, g) =
f · g as required. The only graph of weight one consists of the two external vertices
and a directed edge between them. Hence, we obtain for every ω̂ = (1/ν)ω−1 + ...
the expression (8.16), and for the Berezin-Toeplitz star product (8.18) (note that
we have to take the pseudo-Kähler form −ω−1 and switch the role of f and g).
Internal vertices will only show up for weights ≥ 2.

9.4. Huo Xu. [92],[93] His starting point is the Berezin transform. Let us
assume it exists, which at least is true in the case of compact quantizable Kähler
manifolds. As explained in Section 8.4 via the formula (8.13) the coefficients of
the Berezin star product are given. Based on Englǐs’s work [39] Huo Xu found a
very nice way to deal with the Bergman kernel [92] in terms of certain graphs. In
[93] he applies the result to the Berezin transform and Berezin star product. His
formula for the product is

(9.7) f �B g =
∑
Γ∈G

det(A(Γ−)− Id)

|Aut′(Γ)| ν|E|−|V |DΓ(f, g) =
∞∑
k=0

CB
k (f, g)νk.

Here G is a certain subset of pointed directed graphs (i.e. in technical terms it is
the set of strongly connected pointed stable graphs – loops and cycles are allowed)
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consisting of the vertices V ∪ v (with v the distinguished vertex) and edges E.
After erasing the vertex v the graph Γ− is obtained. Now A(Γ−) is its adjacency
matrix. |Aut′(Γ)| is the number of automorphisms of the pointed graph fixing the
distinguished vector. The only object which is a function is again the partition
function DΓ(f, g) of the graph defined like follows. Each such graph Γ encodes
a “Weyl invariant” given in terms of partial derivatives and contractions of the
metric. This defines the partition function, whereas the distinguished vertex is
replaced by “f” and “g”. All incoming edges are associated to f and correspond
to ∂

∂zi
derivatives and all outgoing are associated to g and correspond to ∂

∂zi
. For

the precise formulations of his results I refer to his work.
For small orders he classifies the graphs and calculates for k up to three the

CB
k (f, g) and CBT

k (f, g) in terms of the metric data. But again the reformulation
to explicit formulas tend to become quite involved with increasing k.

The approaches via graphs presented in Sections 9.2.,9.3, and 9.4 for sure are
in some sense related as they center around the same objects. But the set of
graphs considered are completely different. Further investigation is necessary to
understand this relation. See in this direction the very recent preprint of Xu [94].

10. Excursion: The Kontsevich construction

Kontsevich showed in [59] the existence of a star product for every Poisson
manifold (M, {., .}). In fact he proves the more general formality conjecture which
implies the existence. It is not my intention even to give a sketch of this here.
Furthermore, in the Kähler case we are in the symplectic case and there are other
existence and classification proofs obtained much earlier. Nevertheless, as we are
dealing with graphs and star product in the previous section, it is very interesting
to sketch his explicit formula for the star product in terms of Feynman diagrams.

He considers star products for open sets in Rd with arbitrary Poisson structure
given by the Poisson bivector α = (αij). In local coordinates {xi} the Poisson
bracket is given as

(10.1) {f, g}(x) =
d∑

i,j=1

αij(x)∂if∂jg, ∂i :=
∂

∂xi
.

The star product is defined by

(10.2) f � g = f · g +
∞∑

n=1

(
i ν

2

)n ∑
Γ∈Gn

wΓDΓ(f, g).

Here Gn is a certain subset of graphs of order n, and the partition function DΓ

is a bidifferential operator involving the Poisson bivector α (of homogeneity n).
The graph Γ encodes which derivatives have to be taken in DΓ and wΓ is a weight
function.

More precisely, Gn consists of oriented graphs with n + 2 vertices, labeled by
1, 2, . . . , n, L,R, such that at each numbered vertex [i], i = 1, . . . , n exactly two
edges e1i = (i, v1(i)) and e2i = (i, v2(i)) start and end at two different other vertices
(including L and R) but not at [i] itself. Each such graphs has 2n edges. Denote
by EΓ the set of edges. The number of graphs in Gn is (n(n+ 1))2 for n ≥ 1 and

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



BEREZIN-TOEPLITZ QUANTIZATION 287

1 for n = 0. The bidifferential operator is defined by

DΓ(f, g) :=
∑

I:EΓ→{1,2,...,d}

⎛⎜⎜⎝ n∏
k=1

⎛⎜⎜⎝ ∏
e∈EΓ

e=(∗,k)

∂I(e)

⎞⎟⎟⎠αI(e1k)I(e
2
k)

⎞⎟⎟⎠×

×

⎛⎜⎜⎝ ∏
e∈EΓ

e=(∗,L)

∂I(e)

⎞⎟⎟⎠ f ·

⎛⎜⎜⎝ ∏
e∈EΓ

e=(∗,R)

∂I(e)

⎞⎟⎟⎠ g.

(10.3)

The summation can be considered as assigning to the 2n edges independent indices
1 ≤ i1, i2, . . . , i2n ≤ d as labels.

Example 10.1. Let Γ be the graph with vertices (1, 2, L,R) and edges

e11 = (1, 2), e21 = (1, L), e12 = (2, L), e22 = (2, R).

Then

DΓ(f, g) =

d∑
i1,i2,i3,i4=1

(αi1i2)(∂i1α
i3i4)(∂i2∂i3f)(∂i4g).

The weights w(Γ) are calculated by considering the upper half-plane H := {z ∈
C | Im(z) > 0} with the Poincare metric. Let Cn(H) := {u ∈ Hn | ui �= uj , for i �=
j} be the configuration space of n ordered distinct points on H. For any two points
z and w on H we denote by φ(z, w) the (counterclock-wise) angle between the
geodesic connecting z and i∞ (which is a straight line) and the geodesic between z
and w. Let dφ(z, w) = ∂

∂zφ(z, w)dz +
∂
∂wφ(z, w)dw be the differential. The weight

is then defined as

(10.4) wΓ =
1

(2π)2nn!

∫
Cn(H)

∧n
i=1dφ(ui, uv1(i)) ∧ dφ(ui, uv2(i)),

with the convention that for L and R the values at the boundary (of H) uL = 0
and uR = 1 are taken.

Remark 10.2. In [29] Cattaneo and Felder gave a field-theoretical interpre-
tation of the formula (10.2). They introduce a sigma model defined on the unit
disc D (conformally equivalent to the upper half-plane) with values in the Pois-
son manifold M as target space. The model contains two bosonic fields: (1) X,
which is function on the disc, and (2) η, which is a differential 1-form on D taking
values in the pullback under X of the cotangent bundle of M , i.e. a section of
X∗(T ∗M)⊗ T ∗D.

In local coordinates X is given by d functions Xi(u) and η by d differential
1-forms ηi(u) =

∑
μ ηi,μ(u)du

μ. The boundary condition for η is that for u ∈ ∂D,

ηi(u) vanishes on vectors tangent to ∂D. The action is defined as

(10.5) S[X, η] =

∫
D

∑
i

ηi(u) ∧ dXi(u) +
1

2

∑
i,j

αij(X(u))ηi(u) ∧ ηj(u).

If 0, 1,∞ are any three cyclically ordered points on the boundary of the disc, the
star product can be given (at least formally) as the semi-classical expansion of the
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path-integral

(10.6) f � g (x) =

∫
X(∞)=x

f(X(1))g(X(0)) exp(
i

�
S[X, η])dXdη .

To make sense of the expansion and to perform the quantization a gauge action
has to be divided out. After this the same formula as by Kontsevich is obtained,
except that in the sum over the graphs also graphs with loops (also called tadpoles)
appear. The corresponding integrals which supply the weights associated to the
graphs with loops are not absolutely convergent. These graphs are removed by a
certain technique called finite renormalization. In this way Cattaneo and Felder
give a very elucidating (partly heuristic) approach to Kontsevich formula for the
star product.

How the Kontsevich construction is related to the other graph construction
presented in Section 9 is unclear at the moment.

11. Some applications of the Berezin-Toeplitz operators

In this closing section we will give some references indicating some applica-
tions of the Berezin-Toeplitz quantization scheme. The interested reader is invited
to check the quoted literature for full details, and more references. This list of
applications and references is rather incomplete.

11.1. Pull-back of the Fubini-Study metric, extremal metrics, bal-
anced embeddings. Let (M,ω) be a Kähler manifold with very ample quantum
line bundle L. After choosing an orthonormal basis of the space Γhol(M,Lm) we can
use them to construct an embedding φ(m) : M → PN(m) of M into projective space
of dimension N(m), see Remark 2.1. On PN(m) we have as standard Kähler form
the Fubini-Study form ωFS (and its associated metric). The pull-back (φ(m))∗ωFS

will define a Kähler form on M . It will not depend on the orthogonal basis chosen
for the embedding. In general it will not coincide with a scalar multiple of the
Kähler form ω we started with (see [10] for a thorough discussion of the situation).

It was shown by Zelditch [95], by generalizing a result of Tian [88] and Catlin
[28], that (Φ(m))∗ωFS admits a complete asymptotic expansion in powers of 1

m as
m→ ∞.

In fact it is related to the asymptotic expansion of the Bergman kernel (7.5)
along the diagonal. The pullback calculates as [95, Prop.9]

(11.1)
(
φ(m)

)∗
ωFS = mω + i ∂∂̄ log um(x) .

In our context of star products it is interesting to note that if in (11.1) we replace
1/m by ν we obtain the Karabegov form of the star product �B (8.9)

(11.2) ω̂ = F(
(
φ(m)

)∗
ωFS).

The asymptotic expansion of (φ(m))∗ωFS is called Tian-Yau-Zelditch expan-
sion. Donaldson [37], [38] took it as the starting point to study the existence and
uniqueness of constant scalar curvature Kähler metrics ω on compact manifolds.
If they exists at all he approximates them by using so-called balanced metrics on
sequences of powers of the line bundle L obtained by balanced embeddings. Bal-
anced embeddings are embeddings fulfilling certain additional properties introduced
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by Luo [62]. They are related to stability of the embedded manifolds in the sense
of classifications in algebraic geometry.

It should be remarked that the “balanced condition” is equivalent to the fact
that Rawnsley’s [76] epsilon function (6.6) is constant. See also [85, Prop.6.6].
This function was introduced in 1975 by Rawnsley in the context of quantization
of Kähler manifolds and further developed by Cahen, Gutt, and Rawnsley [24].
In particular it will be constant if the quantization is “projectively induced”, i.e.
coming from the projective space of the coherent state embedding (6.3). See Sec-
tion 6.4 for consequences about the possibility of Berezin’s original construction of
a star product.

Let me give beside the already mentioned a few more names related to the
existence and uniqueness of constant scalar curvature Kähler metrics: Lu [61],
Arezzo and Loi [8], Fine [45]. For sure much more should be mentioned, but space
limitation do not allow.

11.2. Topological quantum field theory and mapping class groups.
In the context of Topological Quantum Field Theory (TQFT) the moduli space M
of gauge equivalence classes of flat SU(n) connections (possibly with monodromy
around a fixed point) over a compact Riemann surface Σ plays an important role.
This moduli space carries a symplectic structure ω and a complex line bundle
L. After choosing a complex structure on Σ this moduli space will be endowed
with a complex structure, ω will become a Kähler form and L get a holomorphic
structure. Moreover L will be a quantum line bundle in the sense discussed in
this review. Hence, we can employ the Berezin-Toeplitz quantization procedure
to it. The quantum space of level m will be as above the (finite-dimensional)
space of holomorphic sections of the bundle Lm over M . If we vary the complex
structure on Σ the differentiable (symplectic) data will stay the same, but the
complex geometric data will vary. In particular, our family of quantum spaces will
define a vector bundle over the Teichmüller space (which is the space of complex
structures on Σ). This bundle is called the Verlinde bundle of level m. There is
a canonical projectively flat connection for this bundle, the Axelrod-de la Pietra-
Witten/Hitchin connection.

Via the projection to the subspace of holomorphic section, the Toeplitz opera-
tors will depend on the complex structure. For a fixed differentiable function f on
the moduli space of connections the Toeplitz operators will define a section of the
endomorphism bundle of the Verlinde bundle.

The mapping class group acts on the geometric situation. In particular, it acts
on the space of projectively covariant constant sections of the Verlinde bundle. This
yields a representation of the mapping class group. By general results about the
order of the elements in the mapping class group it cannot act faithfully. But it was
a conjecture of Tuarev, that at least it acts asymptotically faithful. This says that
given a non-trivial element of the mapping class group there is a level m such that
the element has a non-trivial action on the space of projectively covariant constant
sections of the Verlinde bundle of level m.

This conjecture was shown by J. Andersen in a beautiful proof using Berezin-
Toeplitz techniques. For an exact formulation of the statement see [2], resp. the
overview by Andersen and Blaavand [4], and [84].

With similar techniques Andersen could show that the mapping class groups
Γg for genus g ≥ 2 do not have Property (T) [3]. Roughly speaking Property (T)
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means that the trivial representation is isolated (with respect to a certain topology)
in the space of all unitary representations.

There are quite a number of other interesting results shown and techniques de-
veloped by Andersen using Berezin-Toeplitz quantization operators and star prod-
ucts, e.g. in the context of Abelian Chern-Simons Theory [1], modular functors
(joint with K. Ueno) [7], and formal Hitchin connections [5].

11.3. Spectral theory – quantum chaos. The large tensor power behaviour
of the sections of the quantum bundle and of the Toeplitz operators are of interest.

Shiffman and Zelditch considered in [87] the limit distribution of zeros of such
sections. The results are related to models in quantum chaos. See also other
publications of the same authors.

As mentioned in Section 3, the Toeplitz operators associated to real-valued
functions are self-adjoint. Hence, they have a real spectrum. With respect to this
the following result on the trace is of importance

(11.3) Tr(m) (T
(m)
f ) = mn

(
1

vol(Pn(C))

∫
M

f Ω+O(m−1)

)
.

Here n = dimCM and Tr(m) denotes the trace on End(Γhol(M,Lm)). See [18],
resp. [81] for a detailed proof.

On the spectral analysis of Toeplitz operators see e.g. articles by Paoletti
[72], [73], [74]. For relation to index theory see e.g. work of Boutet de Monvel,
Leichtnam, Tang, and Weinstein [22], and Bismut, Ma, and Zhang [17].

11.4. Automorphic forms. Another field where the set-up developed in this
review shows up in a natural way is the theory of automorphic forms. For example,
letBn = SU(n, 1)/S(U(n)×U(1)) be the open unit ball and Γ a discrete, cocompact
subgroup of SU(n, 1) then the quotient X = Γ/Bn is a compact complex manifold.
Moreover, the invariant Kähler form on Bn will descends to a Kähler form ω on
the quotient. The canonical line bundle (i.e. the bundle of holomorphic n-forms)
is a quantum line bundle for (X,ω).

By definition the sections of the tensor powers of this line bundle correspond to
functions on Bn which are equivariant under the action of Γ with a certain factor of
automorphy. In other words they are automorphic forms. The power of the factor
of automorphy is related to the tensor power of the bundle. An important problem
is to construct sections, resp. automorphic forms. For example, Poincaré series are
obtained by an averaging procedure and give naturally such sections. But it is not
clear that they are not identically zero. T. Foth [46] worked in the frame-work
of Berezin-Toeplitz operators to show that at least for higher tensor powers there
are non-vanishing Poincaré series. In this process she used techniques proposed
by Borthwick, Paul, and Uribe [20] and assigns to Legendrian tori sections of the
bundles. By asymptotic expansion the non-vanishing follows. See also [47].
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Commutation of geometric quantization and algebraic
reduction

Jȩdrzej Śniatycki

Abstract. We discuss conditions under which geometric quantization of a
symplectic manifold (P, ω) in terms of a polarization F commutes with alge-
braic reduction of a Hamiltonian action of a connected Lie group G. If F is a
Kähler polarization of (P, ω), we show that geometric quantization commutes
with algebraic reduction provided the zero level of the momentum map con-
tains a Lagrangian submanifold of (P, ω). If G and P are compact, and the
action is free, we recover the results of Guillemin and Sternberg.

We consider also an example of an improper action of G that preserves a
real polarization. We show that, in this example, quantization of algebraic re-
duction gives a space naturally isomorphic to the space of generalized invariant
vectors..

1. Introduction

Commutation of quantization and reduction was first established by Guillemin
and Sternberg in the context of geometric quantization of a Hamiltonian action of
a compact Lie group G on a compact symplectic manifold (P, ω) endowed with a
Kähler polarization F [5]. They showed that the space of invariant vectors of the
quantization representation of G has the same dimension as the space obtained by
quantization of the Marsden-Weinstein reduction of the zero level of the momentum
map J : P → g for the action, provided the action of G on J−1(0) is free. They
extended this result to all quantizable coadjoint orbits of G in terms of the shifting
trick established in [6].

Let HF denote the Hilbert space of the quantization representation of G in the
Kähler polarization F used by Guillemin and Sternberg. Since P is compact, HF

is finite dimensional. The compactness of G implies that all irreducible unitary
representations α of G are finite dimensional, and can be obtained by geometric
quantization of corresponding quantizable coadjoint orbits Oα [9]. Let Hα denote
the representation space of the irreducible unitary representation α. We have a
direct sum decomposition

(1.1) HF =
⊕

α
mαHα,

where mα is the multiplicity of the representation α in the quantization repre-
sentation. The results of Guillemin and Sternberg can be summarized by saying
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that the multiplicity mα of the representation α in the quantization representation
is determined by geometric quantization of the Marsden-Weinstein reduction at
J−1(Oα). Sjamaar has generalized the results of Guillemin and Sternberg to the
case of non-free action of G on J−1(0) [12].

The aim of this paper is to describe commutation of quantization and algebraic
reduction. The advantage of algebraic reduction is that it does not require freeness
or properness of the action of G on (P, ω). Algebraic reduction was first introduced

for the zero level of the momentum map by Śniatycki and Wenstein [18]. The
generalization to non-zero coadjoint orbits is due to Kimura [8] and Wilbour [20].
The shifting trick for algebraic reduction was proved by Arms [1].

This presentation is based on an ArXive preprint [14] and papers [3], [15], [16].
An extended analysis of commutation of quantization and reduction for singular
momentum maps will be given in [17].

2. Review of geometric quantization

In this section, we give a brief review of geometric quantization in order to
establish the notation. In particular, we use a sign convention that might differ
from the convention used in other papers in this volume.1

We consider a symplectic manifold (P, ω). For each f ∈ C∞(P ), the Hamilton-
ian vector field Xf is given by

(2.1) Xf ω = −df ,
where is the left interior product of a form and a vector field (contraction on the
left). The Poisson bracket of functions f1 and f2 in C∞(P ) is given by

(2.2) {f1, f2} = Xf2(f1).

The Poisson bracket (2.2) is bilinear, antisymmetric, acts as a derivation

(2.3) {f1, f2f3} = f2{f1, f3}+ f3{f1, f2},
and satisfies the Jacobi identity

(2.4) {{f1, f2}, f3}+ {{f2, f3}, f1}+ {{f3, f1}, f2} = 0.

The map of the Poisson algebra of smooth functions on P to the Lie algebra of
vector fields on P, associating to each function f its Hamiltonian vector field Xf ,
is a Lie algebra anti-homomorphism. In other words,

(2.5) X{f1,f2} = −[Xf1 , Xf2 ]

for all f1, f2 ∈ C∞(P ).
Let

(2.6) Φ : G× P → P : (g, p) �−→ Φg(p) ≡ gp

be a Hamiltonian action of a connected Lie group G on (P, ω) with an Ad∗G-
equivariant momentum map J : P → g∗. For each ξ ∈ g, the action on P of
the 1-parameter subgroup exp tξ of G is given by translations along integral curves
of the Hamiltonian vector field of Jξ, where Jξ(p) = 〈J(p) | ξ〉 for every p ∈ P . For
every ζ, ξ ∈ g,

(2.7) {Jζ , Jξ} = J[ζ,ξ].

1The sign convention used here follows the tradition etablished in classical mechanics and
theoretical physics; see [19], [13], [21].
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Hence, the map ξ �−→ Jξ is a Lie algebra homomorphism of g into C∞(P ).
According to Dirac, quantization assigns to each element f of a Poisson subal-

gebra C∞
F (P ) of C∞(P ), which will be specified later, a selfadjoint operator Qf on

a Hilbert space HF in such a way that

(2.8) [Qf1 ,Qf2 ] = −i�Q{f1,f2}

for every f1, f2 ∈ C∞
F (P ) [4]. If Jξ ∈ C∞

F (P ) for every ξ ∈ g, then the map
ξ �→ i

�
QJξ

is a representation of g on HF . We are interested in the situation when
this representation integrates to a unitary representation U of G on HF . The role
of geometric quantization is to describe the subalgebra C∞

F (P ) and the Hilbert
space HF in geometric terms.

A polarization F of a symplectic manifold is an involutive Lagrangian subbun-
dle of TCP = TP ⊗ C. We denote by F the complex conjugate of F and set

D = F ∩ F ∩ TP , and E = (F + F ) ∩ TP .

We assume here that D and E are involutive distributions on P ; the spaces P/D
and P/E of integral manifolds ofD and E, respectively, are quotient manifolds of P ;
and that the canonical projection P/D → P/E is a locally trivial fibration. Under
these assumptions, the distribution F is locally spanned by Hamiltonian vector
fields of smooth complex-valued functions on P . We refer to these properties of the
polarization F by saying that F is strongly admissible.

Of special interest are two extremal cases described below.

Kähler Polarization: A polarization F is Kähler if F ⊕ F = TCP , and
iω(w, w̄) > 0 for all non-zero w ∈ F . These assumptions imply that there
is a complex structure J on P such that F is the space of antiholomorphic
directions. Moreover, P is a Kähler manifold such that −ω is the Kähler
form on P .

Complete Real Polarization: A polarization F is real if F = DC = D ⊗
C, whereD is an involutive Lagrangian distribution on P . The assumption
that the space P/D of integral manifolds of D is a quotient manifold of P
implies that leaves of D are affine manifolds. We assume here that leaves
of D are simply connected complete affine manifolds. This implies that
leaves of D are isomorphic to Rn, where n = 1

2 dimP .

Let C∞(P )0F be the space of smooth complex valued functions on P that are
constant along F ; that is,

C∞(P )0F = {f ∈ C∞(P )⊗ C | uf = 0 for all u ∈ F}.
Since F is a Lagrangian distribution on TCP , it follows that the Poisson bracket of
every pair of functions f1, f2 ∈ C∞(P )0F vanishes identically. Hence, C∞(P )0F is an
abelian Poisson subalgebra of C∞(P ). It is a classical analogue of Dirac’s complete
set of commuting observables; see Sec. 14 of reference [4].

We denote by C∞
F (P ) the space of functions on P whose Hamiltonian vector

fields preserve F . In other words, f ∈ C∞
F (P ) if for every h ∈ C∞(P )0F , the Poisson

bracket {f, h} ∈ C∞(P )0F . If f1, f2 ∈ C∞
F (P ) and h ∈ C∞(P )0F then the Jacobi

identity implies that

{{f1, f2}, h} = −{f2, {f1, h}}+ {f1, {f2, h}} ∈ C∞(P )0F .

Hence, C∞
F (P ) is a Poisson subalgebra of C∞(P ). The Dirac quantization condition

(2.8) applies to the Poisson algebra C∞
F (P ).
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In order to construct the Hilbert space HF of geometric quantization, consider
first a complex line bundle λ : L → P with a connection ∇ and a connection
invariant Hermitian form 〈· | ·〉, such that

(2.9) (∇X∇X′ −∇X′∇X −∇[X,X′])σ =
i

�
ω(X,X ′)σ

for every pair X,X ′ of smooth vector fields on P and for each section σ of L, where
� is Planck’s constant divided by 2π. Such a line bundle exists if and only if the
de Rham cohomology class [(2π�)−1ω] is in H2(Z). Let S∞

0 (L) denote the space of
compactly supported smooth sections σ of L. It admits a Hermitian scalar product

(2.10) (σ1 | σ2) =
∫
P

〈σ1 | σ2〉ωn,

where n = 1
2 dimP . We denote by H the completion of S∞

0 (L) with respect to
the scalar product (2.10). For each f ∈ C∞(P ), there exists a densely defined
symmetric operator P f on H such that

(2.11) P fσ = (i�∇Xf
+ f)σ

for every σ ∈ H. If the Hamiltonian vector field Xf is complete, then P f is self-
adjoint. For each f1, f2 ∈ C∞(P ) and σ ∈ S∞(L)

(2.12) [P f1 ,P f2 ] = −i�P {f1,f2}.

The map f �→ P f given by equation (2.11) is called the prequantization of
(P, ω). The restriction of the prequantization map to the Poisson algebra {Jξ |
ξ ∈ g} gives rise to a representation ξ �→ i

�
P Jξ

of the Lie algebra g of G by
skew adjoint operators. We assume that this representation of G integrates to
a unitary representation U of G on H, called the prequantization representation
corresponding to the complex line bundle L.

Prequantization satisfies most conditions of the Dirac program. However, the
interpretation of (σ | σ)(p) as the probability density of localizing the state σ
at a point p ∈ P fails to satisfy the Heisenberg Uncertainty Principle. Moreover,
prequantization representations of quantizable coadjoint orbits fail to be irreducible.

Let F be a polarization of (P, ω). We denote by S∞
F (L) the space of smooth

sections of L that are covariantly constant along F . In other words,

S∞
F (L) = {σ ∈ S∞(L) | ∇uσ = 0 ∀ u ∈ F}.

For each f ∈ C∞
F (P ), the prequantization operator P f maps SF (L) to itself. We

denote by Qf the linear operator on SF (L) obtained by restricting the prequanti-
zation operator P f to domain SF (L) and codomain SF (L). Thus,

(2.13) Qfσ = (i�∇Xf
+ f)σ

for every f ∈ C∞
F (P ) and σ ∈ SF (L).

In general, sections in SF (L) need not be square integrable over P . Hence,
passing to SF (L), we may have lost the scalar product structure. In order to
obtain a Hermitian scalar product in SF (L), we often need an additional structure;
for example, a metaplectic structure. In the case of a Kähler polarization F , the
line bundle L is holomorphic and SF (L) is the space of holomorphic sections of L.
In this case, there exist non-zero square integrable holomorphic sections of L, and
the representation space of geometric quantization is

(2.14) HF = H ∩ SF (L).

Licensed to Univ of Rochester.  Prepared on Tue Jun  6 15:27:22 EDT 2017for download from IP 128.151.32.169.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



COMMUTATION OF GEOMETRIC QUANTIZATION AND ALGEBRAIC REDUCTION 299

For a complete real polarization F = DC on P , mentioned above, we may consider
sections in SF (L) as sections of a complex line bundle over P/D, and introduce a
scalar product in SF (L) by choosing a volume form on P/D.

3. Algebraic reduction

The action Φ of G on (P, ω) given in (2.6) has an Ad∗G-equivariant momentum
map J : P → g∗. For μ ∈ g∗, the isotropy group of μ is

Gμ = {g ∈ G | Ad∗gμ = μ}.
We denote by Jμ the ideal in C∞(P ), generated by components of J −μ : P → g∗.
Thus,

Jμ = {
k∑

i=1

〈J − μ | ξi〉fi | ξ1, ..., ξk ∈ g and f1, ..., fk ∈ C∞(P )},

where (ξ1, ..., ξk) is a basis in g. Let C∞(P )/Jμ be the quotient of C∞(P ) by Jμ.
For each f ∈ C∞(P ), the class of f in C∞(P )/Jμ is denoted by [f ]μ. Since J is
Ad∗-equivariant, it follows that for every g ∈ Gμ,

Φ∗
g

(
k∑

i=1

〈J − μ | ξi〉fi

)
=

k∑
i=1

Φ∗
g (〈J | ξi〉 − 〈μ | ξi〉)Φ∗

gfi

=
k∑

i=1

(〈Φ∗
gJ | ξi〉Φ∗

gfi − 〈μ | ξi〉)Φ∗
gfi

=
k∑

i=1

(〈J | Adgξi〉Φ∗
gfi − 〈μ | Adgξi〉)Φ∗

gfi

=

k∑
i=1

〈J − μ | Adgξi〉Φ∗
gfi.

Hence, Jμ is Gμ-invariant. This implies that the action Φ of G on P induces an
action

Φ̃μ : Gμ × (C∞(P )/Jμ) → C∞(P )/Jμ : (g, [f ]μ) �→ Φ̃μ
g [f ]μ = [Φ∗

g−1f ]μ

of Gμ on C∞(P )/Jμ. We denote by (C∞(P )/Jμ)
Gμ the set of Gμ-invariant ele-

ments of C∞(P )/Jμ; that is,

(C∞(P )/Jμ)
Gμ = {[f ]μ ∈ C∞(P )/Jμ) | [Φ∗

g−1f ]μ = [f ]μ ∀ g ∈ Gμ}.
It follows from the definition that

(3.1) [f ]μ ∈ (C∞(P )/Jμ)
Gμ ⇐⇒ Φ∗

g−1f − f ∈ Jμ ∀ g ∈ Gμ.

In particular,

[f ]μ ∈ (C∞(P )/Jμ)
Gμ =⇒ XJξ

(f) ∈ Jμ ∀ ξ ∈ gμ,

where gμ is the Lie algebra of Gμ. If Gμ is connected, then the reverse implication
holds.

The Poisson algebra structure on C∞(P ) induces a Poisson algebra structure
on (C∞(P )/Jμ)

Gμ , with Poisson bracket {[f1]μ, [f2]μ}, such that

(3.2) {[f1]μ, [f2]μ} = [{f1, f2}]μ.
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We refer to (C∞(P )/Jμ)
Gμ as the Poisson algebra of algebraic reduction of the

action Φ on (P, ω) at μ ∈ g. Note that (C∞(P )/Jμ)
Gμ encodes not only information

about the level set J−1(μ), but also some information about its inclusion in (P, ω).
If Φ is free and proper, then algebraic reduction is equivalent to the Marsden-
Weinstein reduction [11]. If Φ is proper but not free, then algebraic reduction
need not be equivalent to the singular reduction [2]. Unlike the Marsden-Weinstein
reduction and the singular reduction, the algebraic reduction does not require the
assumption that the action of G is proper.

The “shifting trick” of Guillemin and Sternberg, proved in [6] , establishes
equivalence of the Marsden-Weinstein reduction at μ ∈ g∗ and the Marsden-Weinstein
reduction at 0 ∈ g∗ of the action of G on the symplectic manifold (P̃ , ω̃) constructed
as follows. Suppose that the action of G on (P, ω) is free and proper. Let Oμ be
the co-adjoint orbit through μ, and Ωμ be the Kirillov-Kostant-Souriau form of Oμ.
The product

P̃ = P ×Oμ,

carries a symplectic form

(3.3) ω̃ = pr∗1ω ⊕ (−pr∗2Ωμ),

where pr1 : P̃ → P and pr2 : P̃ → Oμ are projections on the first and the second

factor, respectively. The action of G on P̃ , given by

Φ̃ : G× P̃ → P̃ : (g, (p, λ)) �→ Φ̃g(p, λ) = (Φg(p), Ad
∗
gλ),

corresponds to an Ad∗-equivariant momentum map

J̃ = pr∗1J − pr∗2I,

where I : Oμ → g∗ is the inclusion map. This result was extended by Arms to [1]
to algebraic reduction and an action of G on (P, ω) that need not be free or proper.

Theorem 3.1 (Arms [1]). If G and Gμ are connected, and Oμ is an embedded
submanifold of g∗, then the Poisson algebra (C∞(P )/Jμ)

Gμ is naturally isomorphic

to the Poisson algebra (C∞(P̃ )/J̃0)
G.

Taking into account Theorem 3.1, we may restrict our attention to a quantiza-
tion of the algebraic reduction at 0 ∈ g∗, and for μ �= 0, we can interpret our results
in terms of the natural isomorphism between (C∞(P )/Jμ)

Gμ and (C∞(P̃ )/J̃0)
G.

4. Quantization of algebraic reduction at J = 0

Suppose that we have a quantization of (P, ω) given in terms of a G-invariant
polarization F and a prequantization line bundle L over P . This means that for
each ξ ∈ g, the momentum Jξ is quantizable and that the map Jξ �→ 1

i�QJξ
is a

representation of g on the space S∞
F (L) of smooth sections of L that are covariantly

constant along F . We assume that this representation of g integrates to a linear
representation R of G on S∞

F (L). We denote by HF the Hilbert space obtained
by unitarization from S∞

F (L), and by U the unitary representation of G on HF

obtained from the representation R on S∞
F (L).

Our aim is to determine how much information about spaces S∞
F (L)G and

HG
F of invariant vectors of representations R and U , respectively, is encoded in

the reduced Poisson algebra, and how this information can be decoded in terms of
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quantization of (C∞(P )/J0)
G. Since geometric quantization depends on the choice

of polarization and prequantization, we have to quantize (C∞(P )/J0)
G in terms of

the polarization F and the prequantization line bundle L that have been used to
quantize (P, ω).

Functions that are quantizable in terms of the polarization F form a Poisson
algebra C∞

F (P ). Therefore, we can expect that the set of elements of (C∞(P )/J0)
G

that are quantizable in terms of the polarization F is the Poisson subalgebra

(4.1) (C∞
F (P )/J0)

G = (C∞
F (P )/(C∞

F (P ) ∩ J0))
G

of (C∞(P )/J0)
G. For each f ∈ C∞

F (P ), the equivalence class of f in C∞
F (P )/J0

is denoted by [f ]0. Since the group G is connected, the class [f ]0 is G-invariant if
XJξ

f ∈ J0 for every ξ ∈ g.
In order to define the representation space of the geometric quantization of

algebraic reduction at J = 0, consider

J0S
∞(L) = span {fσ | f ∈ J0 and σ ∈ S∞(L)},

where S∞(L) denotes the space of smooth sections of L. For each σ ∈ S∞(L), we
denote by [σ] ∈ S∞(L)/J0S

∞(L) the equivalence class of σ.

Proposition 4.1. For each ξ ∈ g and σ ∈ S∞(L), the class [P Jξ
σ] ∈ S∞(L)/J0S

∞(L)
is independent of the choice of the representative σ of the class [σ] ∈ S∞(L)/J0S

∞(L).

Proof. If [σ] = [σ′] then σ = σ′ +
∑

i fiJξiσi. Since P Jξ
= i�∇XJξ

+ Jξ, it

follows that

P Jξ
Jζ = JζP Jξ

+ i�XJξ
(Jζ) = JζP Jξ

+ i�J[ζ,ξ].

Hence,

P Jξ
σ = P Jξ

σ′ + P Jξ
(
∑
i

fiJξiσi) = P Jξ
σ′ +

∑
i

P Jξ
(Jξifiσi)

= P Jξ
σ′ +

∑
i

JξiP Jξ
(fiσi) + i�

∑
i

XJξ
(Jξi)fiσi

= P Jξ
σ′ +

∑
i

JξiP Jξ
(fiσi) + i�

∑
i

J[ξi,ξ]fiσi.

Therefore, [P Jξ
σ] = [P Jξ

σ′]. �

We have assumed that the action of g on S∞(L), given by (ξ, σ) �→ i
�
P Jξ

σ, inte-
grates to a representation ofG on S∞(L). Hence, the action of g on S∞(L)/J0S

∞(L),
given by (ξ, [σ]) �→ i

�
[P Jξ

σ], integrates to a representation ofG on S∞(L)/J0S
∞(L).

We denote by (S∞(L)/J0S
∞(L))G the space ofG-invariant elements in S∞(L)/J

0
S∞(L).

Since G is connected, it follows that

[σ] ∈ (S∞(L)/J0S
∞(L))G ⇐⇒ P Jξ

σ ∈ J0S
∞(L) for all ξ ∈ g.

Proposition 4.2. The map:

P : (C∞(P )/J0)
G × (S∞(L)/J0S

∞(L))G → (S∞(L)/J0S
∞(L))G

: ([f ], [σ]) �→ P [f ][σ] = [P fσ]

is well defined.
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Proof. For [f ] ∈ (C∞(P )/J0)
G, we have XJξ

(f) ∈ J0. Hence, for each
Jξσ ∈ J S∞(L),

P f (Jξσ) = (i�∇Xf
+ f)(Jξσ) = Jξ(i�∇Xf

+ f)σ + i�(Xf (Jξ))σ

= Jξ(i�∇Xf
+ f)σ + i�(XJξ

(f))σ ∈ J0S
∞(L).

This implies that, for [f ] ∈ (C∞(P )/J)G, the operator P f maps J0S
∞(L) to itself.

Hence, [P fσ] does not depend on the representative σ of [σ].
For kJξ ∈ J0 and [σ] ∈ (S∞(L)/J0S

∞(L))G, we have XkJξ
= kXJξ

+ JξXk.
Hence,

P kJξ
σ = (i�∇XkJξ

+ kJξ)σ

= (i�k∇XkJξ
+ i�Jξ∇Xk

+ kJξ)σ

= i�Jξ∇Xk
σ + i�kP Jξ

σ ∈ J0S
∞(L).

Therefore, [P fσ] does not depend on the representative f of [f ].
Combining these results, we obtain that an equivalence class [P fσ] ∈ S∞(L)/J0S

∞(L)
depends only on [σ] ∈ (S∞(L)/J0S

∞(L))G and [f ] ∈ (C∞(P )/J0)
G. It remains to

show that [P fσ] is G-invariant.
For [f ] ∈ (C∞(P )/J)G, [σ] ∈ (S∞(L)/J0S

∞(L))G and ξ ∈ g,

P Jξ
P fσ = P fP Jξ

σ + [P Jξ
,P f ]σ.

But [σ] ∈ (S∞(L)/J0S
∞(L))G implies P Jξ

σ ∈ J0S
∞(L) so that P fP Jξ

σ ∈
J0S

∞(L) by the first part of the proof. On the other hand,

[P Jξ
,P f ]σ = −i�P {Jξ,f}σ = −i�(i�∇X{Jξ,f} + {Jξ, f})σ.

But, {Jξ, f} = −XJξ
f ∈ J0 because [f ] is G-invariant. Hence, {Jξ, f} =

∑
j fjJζj

for some fj ∈ C∞(P ) and ζj ∈ g. Moreover, Xf1f2 = f1Xf2 + f2Xf1 implies that∑
j

∇XfjJζj
=
∑
j

(fj∇XJζj
+ Jζj∇Xfj

).

Therefore,

(i�∇X{Jξ,f} + {Jξ, f})σ =
∑
j

(
i�(fj∇XJζj

+ Jζj∇Xfj
) + fjJζj

)
σ

=
∑
j

(
(fjP Jζj

+ i�Jζj∇Xfj

)
σ ∈ J0S

∞(P,L)

because [σ] is G-invariant. Therefore, [P fσ] ∈ (S∞(L)/J0S
∞(L))G. �

Definition 4.3. The map associating to each [f ] ∈ (C∞(P )/J)G an operator
P [f ] on the space (S∞(L)/J0S

∞(L))G is a prequantization of the reduced Poisson
algebra.

Next, we take into account the polarization F of (P, ω). We assume that F
is strongly admissible, which implies that it is locally spanned by Hamiltonian
vector fields of functions that are constant along F . Quantization in terms of the
polarization F assigns to each f ∈ C∞

F (P ) an operator Qf on the space S∞
F (L) =

{σ ∈ S∞(L) | ∇uσ = 0 for all u ∈ F}. Moreover,

Qfσ = P fσ

for each f ∈ C∞
F (P ) and σ ∈ S∞

F (L).
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Consider the space

(4.2) (S∞
F (L)/J0S

∞(L))G = (S∞
F (L)/(S∞

F (L) ∩ J0S
∞(L))G

consisting of G-invariant J0S
∞(L)-equivalence classes of sections in S∞

F (L). In
other words,

[σ] ∈ (S∞
F (L)/J0S

∞(L))G ⇐⇒ QJξ
σ ∈ J0S

∞(L) for all ξ ∈ g.

The canonical projection map

(4.3) Π : S∞
F (L)G → (S∞

F (L)/J0S
∞(L))G : σ �→ [σ]

will play an essential role in the discussion of commutation of geometric quantization
with algebraic reduction.

First, we have to define what we mean by geometric quantization of algebraic
reduction. We begin with the following proposition.

Proposition 4.4. The map

Q : (C∞
F (P )/J0)

G × (S∞
F (L)/J0S

∞(L))G → (S∞
F (L)/J0S

∞(L))G

: ([f ], [σ]) �→ Q[f ][σ]

is well defined.

Proof. We know that, if f ∈ C∞
F (P ) and σ ∈ S∞

F (L), then P fσ ∈ S∞
F (L). In

Proposition 4.2, we have shown that [P fσ] ∈ (S∞(L)/J0S
∞(L))G is independent

of the representatives f of [f ] ∈ (C∞(P )/J0)
G and σ of [σ] ∈ (S∞(L)/J0S

∞(L))G.
Therefore, [P fσ] ∈ (S∞

F (L)/J0S
∞(L))G. Moreover, [P fσ] is independent of the

representative f ∈ C∞
F (P ) of [f ] ∈ (C∞

F (P )/J0)
G. Similarly, [P fσ] is independent

of the representative σ ∈ S∞
F (L) of [σ] ∈ (S∞

F (L)/J0S
∞(L))G. Hence the map

Q : ([f ], [σ]) �→ Q[f ][σ] = [P fσ] is well defined. �

Proposition 4.4 implies that we may adopt the following definition.

Definition 4.5. The map

Q : (C∞
F (P )/J0)

G × (S∞
F (L)/J0S

∞(L))G → (S∞
F (L)/J0S

∞(L))G

: ([f ], [σ]) �→ Q[f ][σ]

is the quantization, with respect to the polarization F , of the algebraic reduction
at J = 0.

It follows from the definition above that algebraic reduction at J = 0 followed
by quantization gives rise to the space (S∞

F (L)/J0S
∞(L))G of quantum states of the

theory. On the other hand, quantization followed by quantum reduction at J = 0
gives the space S∞

F (L)G of G-invariant sections in S∞
F (L). We have a canonical

projection map

(4.4) Π : S∞
F (L)G → (S∞

F (L)/J0S
∞(L))G : σ �→ [σ].

Algebraic reduction at J = 0 commutes with quantization if Π is an isomorphism
and

Π ◦Qf = Q[f ] ◦Π.
for every f ∈ C∞

F (P )G.
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5. Kähler polarization

Consider now the case when F is a Kähler polarization of (P, ω).

Lemma 5.1. Let F be a Kähler polarization of (P, ω). If J−1(0) contains a
Lagrangian submanifold of (P, ω), then S∞

F (L) ∩ J0S
∞(L) = 0.

Proof. Let Λ be a Lagrangian submanifold of (P, ω) contained in J−1(0).
Since F is a Kähler polarization and Λ is Lagrangian, it follows that

TC
ΛP = F|Λ ⊕ TCΛ.

Moreover, for every σ ∈ S∞
F ∩ J0S

∞(L), the restriction σ|Λ of σ to Λ vanishes

identically because Λ ⊂ J−1(0). Hence, all derivatives of σ in directions in TCΛ are
zero. On the other hand, all derivatives of σ in directions in F are zero, because σ is
holomorphic. Hence, all derivatives of σ vanish on Λ ⊂ P . Since σ is holomorphic,
it follows that σ = 0. Therefore, S∞

F (L) ∩ J0S
∞(L) = 0. �

Theorem 5.2. Let F be a Kähler polarization of (P, ω). If J−1(0) contains
a Lagrangian submanifold of (P, ω), then the natural projection Π : S∞

F (L)G →
(S∞

F (L)/J0S
∞(L))G : σ �→ [σ] is an isomorphism, and

Π ◦Qf = Q[f ] ◦Π.

for every f ∈ C∞
F (P )G.

Proof. Using identification (4.2) and Lemma 5.1, we get

S∞
F (L)/J0S

∞(L) = (S∞
F (L)/(S∞

F (L) ∩ J0S
∞(L)) = S∞

F (L)/(0) = S∞
F (L).

Hence,
S∞
F (L)G = (S∞

F (L)/J0S
∞(L))G.

In other words, the projection map Π : S∞
F (L)G → (S∞

F (L)/J0S
∞(L))G : σ �→ [σ]

is an isomorphism.
For every G-invariant function f ∈ C∞

F (P ), the class [f ] is in f ∈ C∞
F (P )G.

Moreover, for each σ ∈ S∞
F (L)G,Qfσ ∈ S∞

F (L)G and [σ] = Π(σ) ∈ (S∞
F (L)/J0S

∞(L))G.
Hence,

Q[f ] ◦Πσ = Q[f ][σ] = [Qfσ] = Π ◦Qfσ,

which completes the proof. �

According to Theorem 5.2 geometric quantization in terms of a Kähler polar-
ization commutes with algebraic reduction at J = 0 if J−1(0) contains a Lagrangian
submanifold. If G is compact and its action on J−1(0) is free, we can show that
J−1(0) contains a Lagrangian submanifold. Moreover, in this case, the algebraic
reduction is equivalent to the Marsden-Weinstein reduction. Hence, if G and P are
compact, and the action of G on J−1(0) is free, our results are equivalent to the
results of Guillemin and Sternberg.

In the proof of Theorem 5.2 we have shown not only that the projection map Π :
S∞
F (L)G → (S∞

F (L)/J0S
∞(L))G is an isomorphism, but that the spaces S∞

F (L)G

and (S∞
F (L)/J0S

∞(L))G may be considered equal, provided the assumptions of the
theorem are satisfied. This is a consequence of the identification

S∞
F (L)/J0S

∞(L) = S∞
F (L)/(S∞

F (L) ∩ J0S
∞(L)

made in equation (4.2). This result is not as deep as it might appear. Observe that
assumptions of Theorem 5.2 do not imply vanishing of J0S

∞(L) = 0. It follows
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from Lemma 5.1 that S∞
F (L) ∩ J0S

∞(L) = 0, which implies that the projection
map from S∞(L) to S∞(L)/J0S

∞(L) restricted to S∞
F (L) is an isomorphism.

In reference [12], Sjamaar investigated the case when the action of G on J−1(0)
is not free. In this case, Sjamaar showed that the dimension of S∞

F (L)G is equal
to the dimension of the space of the space of holomorphic sections of L|J−1(0)/G

over J−1(0)/G, and he interpreted this result as quantization of commutation and
reduction. It should be noted that Sjamaar’s results do not require the assumption
that J−1(0) contains a Lagrangian manifold.

If P is compact, then S∞
F (L) is finite dimensional, and it coincides with the

Hilbert space HF = H ∩ S∞
F (L). In this case, the linear representation R of G on

S∞
F (L), generated by the quantization of the momenta Jξ, for ξ ∈ g, is the same as

the unitary representation U of G on H.
If P is not compact, then the linear representation R of G on S∞

F (L), need
not coincide with the unitary representation U on HF . In this case, we have a
decomposition

(5.1) HF =
⊕

α
mαHα ⊕

∫
β

Hβdμβ ,

where α labels the representations corresponding to the discrete part of the spectral
measure and β labels the representations corresponding to the continuous part of
the measure. In this case, the multiplicities mα may be infinite.

The space HG
F = H ∩ S∞

F (L)G consists of G-invariant normalizable sections.
Hence, it corresponds to a trivial representation α0 of G. In other words, HG

F =
mα0

Hα0
in decomposition (5.1). If we could describe Π(HG

F ) in terms of the inclu-
sion J−1(0) ↪→ P , we would have a characterization of the spaceHG

F = Π−1(Π(HG
F ))

in terms of the reduction data.2 In other words, we would be able to determine from
algebraic reduction at J = 0 the multiplicity mα0

of the trivial representation of G
contained in the quantization representation. For a representation α corresponding
to a non-zero quantizable coadjoint orbit, we would get analogous results using the
shifting trick of Guillemin and Sternberg.

If the quotient S∞
F (L)G/HG

F does not vanish, then the continuous part of the
spectral measure contains the trivial representation in its support. The major
challenge of the theory is to determine the continuous part dμβ of the spectral
measure, in terms of reduction at corresponding quantizable orbits.

6. Real polarization

In this section, we discuss an example in which the trivial representation cor-
responds to a point of the continuous spectrum in the decomposition of the quan-
tization representation of G into its irreducible components. We show that under
certain conditions, (S∞

F (L)/J0S
∞(L))G is naturally isomorphic to the space of G-

invariant generalized vectors of the representation.
We assume that the polarization F is real; that is F = D ⊗ C, where D is an

involutive Lagrangian distribution on P . We also assume that the momentum map
J : P → g∗ is constant along D. In this case, for each ξ ∈ g and σ ∈ S∞

F (L), we
have

(6.1) QJξ
σ = Jξσ.

2Partial results in this direction have been obtained by Hall and Kirwan [7], and Li [10].
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Hence, a section σ ∈ S∞
F (L) is G-invariant only if Jσ = 0. Thus, the support of

σ is contained in J−1(0). Further, we assume that J−1(0) is nowhere dense in P .
This implies that the equation Jσ = 0 has only weak solutions. In order to discuss
generalized sections of S∞

F (L), we need to describe the topology on S∞
F (L).

We make a few additional simplifying assumptions. First, we assume that the
space Q of integral manifolds of the distribution D is a quotient manifold of P
and that the leaves of D are complete affine spaces. Let ϑ : P → Q be the map
associating to each p ∈ P the maximal integral manifold ofD through p. We assume
that ϑ is a submersion. Moreover, we assume that the prequantization bundle L is
trivial; that is L = P × C, and that there exists a section σ0 ∈ S∞

F (L) such that
σ0(p) = (p, 1). Under these assumptions,

(6.2) S∞
F (L) = {ϑ∗(ψ)σ0 | ψ ∈ C⊗ C∞(Q)}.

Let
DF = {ϑ∗(ψ)σ0 ∈ S∞

F (L) | ψ ∈ C⊗ C∞
0 (Q)},

where C ⊗ C∞
0 (Q) is the space of compactly supported complex-valued smooth

functions on Q. We endow DF with a topology of uniform convergence of all
derivatives of functions ψ ∈ C⊗ C∞

0 (Q) on compact sets. Let

(6.3) (σ1 | σ2)Q = (ϑ∗(ψ1)σ0 | ϑ∗(ψ2)σ0)Q =

∫
Q

ψ̄1(q)ψ2(q)dμ(q)

be a scalar product on DF . We denote by HF the completion of DF with respect
to norm given by the scalar product (2.10) and by D′

F the topological dual of DF .
Then,

DF ⊂ HF ⊂ D′
F ,

DF is dense in HF , and HF is dense in D′
F .

For each ξ ∈ g, the quantum operator QJξ
on S∞

F (L) preserves DF . Hence, it

extends to a self-adjoint operator on HF and gives rise to a dual operator Q′
Jξ

on

D′
F such that, for every ξ ∈ g, ϕ ∈ D′

F and σ ∈ DF ,

(Q′
Jξ
ϕ | σ)Q = (ϕ | QJξ

σ)Q,

where (· | ·)Q denotes the evaluation map corresponding to the scalar product
(2.10). The space of generalized invariant vectors is

ker Q′
J = {ϕ ∈ D′

F | Q′
Jξ
ϕ = 0 for all ξ ∈ g}.

On the other hand, the range of QJ in DF is

rangeQJ = {QJξ1
σ1 +QJξ2

σ2 + ...+QJξk
σk | σ1, ..., σk ∈ DF },

where (ξ1, ..., ξk) form a basis of g. There is a duality between kerQ′
J andDF /rangeQJ

such that for every ϕ ∈ kerQ′
J and every class [σ] ∈ DF /rangeQJ , we have

〈ϕ | [σ]〉 = 〈ϕ | σ〉.
Since each QJξ

is a multiplication operator, it follows that

rangeQJ = {Jξ1σ1 + Jξ2σ2 + ...+ Jξkσk | σ1, ..., σk ∈ D} = J0DF .

In the following discussion, we look for conditions under which DF /rangeQJ and
(S∞

F (L)/J0S
∞(L))G are isomorphic. We begin with a simple lemma.

Lemma 6.1. The class [σ] ∈ S∞(L)/J0S
∞(L) of σ ∈ S∞(L) is uniquely deter-

mined by the restriction of σ to any open set containing J−1(0).
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Proof. For σ ∈ S∞(L), if (support σ) ∩ J−1(0) = ∅, then [σ] = 0. �

Theorem 6.2. If Q is locally compact and ϑ(J−1(0)) is compact, then DF /J0DF

and (S∞
F (L)/J0S

∞(L))G are isomorphic.

Proof. For every σ ∈ S∞
F (L), there exists an open set Vσ ⊂ Q = P/D such

that Vσ ⊇ ϑ(J−1(0)), [σ] is uniquely determined by ϑ−1(Vσ), and V σ is compact.
Hence, there exists σ′ ∈ D = S∞

F (L) ∩ H such that σ|ϑ−1(Vσ) = σ′
|ϑ−1(Vσ)

and

[σ] = [σ′]. Therefore,

S∞
F (L)/J0S

∞(L) = S∞
F (L)/(J0S

∞(L) ∩ S∞
F (L)) = DF /(J0S

∞(L) ∩ DF ).

For σ′ ∈ DF , the class [σ] ∈ DF /(J0S
∞(L) ∩ DF ) is given by

[σ′] = {σ′ +
∑
i

fiJξiσi | fiJξiσi ∈ DF }.

But, fiJξiσi ∈ DF implies that fiJξiσi = ϑ∗(ψi)σ0, where ψi has a compact support
in Q. There exists a function χi ∈ C ⊗ C∞

0 (Q) such that χi(q) = 1 for every q in
the support of ψi. Then, ψi = ψiχi and

fiJξiσi = ϑ∗(ψi)σ0 = ϑ∗(ψiχi)σ0 = ϑ∗(ψi)ϑ
∗(χi)σ0 = fiJξiϑ

∗(χi)σi ∈ J0DF .

This implies

[σ] = [σ′] ∈ DF /J0DF ,

so that

(6.4) S∞
F (L)/J0S

∞(L) = DF /J0DF .

By definition,

(S∞
F (L)/J0S

∞(L))G = {[σ] ∈ S∞
F (L)/J0S

∞(L) | [QJξ
σ] = 0 for all ξ ∈ g}.

But,QJξ
σ = Jξσ. Hence, [QJξ

σ] = 0 for all σ ∈ S∞
F (L) and for all ξ ∈ g. Therefore,

(6.5) (S∞
F (L)/J0S

∞(L))G = S∞
F (L)/J0S

∞(L).

Equations (6.4) and (6.5) yield

(S∞
F (L)/J0S

∞(L))G = DF /J0DF ,

which completes the proof. �

We have shown that in the case under consideration, the representation space
(S∞

F (L)/J0S
∞(L))G of the quantization of the singular reduction at J = 0 is

naturally isomorphic to the space DF /J0DF of generalized invariant vectors of the
geometric quantization of the original phase space (P, ω). Using the shifting trick of
Guillemin and Sternberg, we can obtain an equivalent result for non-zero coadjoint
orbits O of G. However, we have not been able to obtain the contribution of the
trivial representation to the spectral measure dμβ in the decomposition (5.1).
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