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(Undergraduate students do not have to answer the questions marked with the symbol �.)

1 Normal Modes of Discrete vs. Continuous Systems (38 points)

Referring to the figure below, you are given a uniform string of length L and total mass M that is
stretched to a tension FT . You are also given a set of 5 bodies, each of mass M/5, spaced at equal
intervals on a massless string with tension FT and total length L.

(a) Use boundary conditions to derive a general expression for the frequencies of the normal modes
of oscillation of the string. Give the frequencies in terms of n, FT, L, and M .

(b) Write down the frequencies of the five lowest normal modes of transverses oscillation of the
string.

(c) Compare the numerical values of these normal mode frequencies with the normal mode frequen-
cies of five beads on the massless string.

(d) Sketch the five lowest normal modes you found for the massive string. Sketch also the five
normal modes of the massless-string-with-five-beads.

(e) In a sentence or two, discuss the differences, if any, in the normal modes of the two systems
considered here.

2 Connection with the Theory of Elasticity (30 points)

We can derive the continuous theory of elasticity from the classical theory of the harmonic crystal,
by considering only lattice deformations that are small on the scale of the interaction forces, that
is, on the scale of the primitive cell. Using the one-dimensional monoatomic chain model,
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(a) assuming that only neighbor ions interact, show that normal modes of long wavelengths
ka � 1 are described by an equation of motion that reduces to the continuum elastic wave
equation

∂2u

∂x2
=

1
v2

∂2u

∂t2
.

Find the relation for the speed of sound, v, and explain the connection with the relation
v =

√
FT/µ, where FT is the string tension and µ the mass for unit length.

In metals the effective ion-ion interaction may be of quite long range because mediated by the con-
duction electron sea. Reexamine the theory of the one-dimensional monoatomic chain assuming an
effective ion-ion interaction extending through p nearest ions and a force constant (spring constant)
equal to Cp.

(b) Demonstrate that the dispersion relation must be generalized to

ω2 =
2
m

∑
p>0

Cp(1− cos pka)

(c) How does the relation for the speed of sound, v, found in (a) change?

3 Ion Vibrations in Metals (12 points)

Consider point ions of mass M and charge e immersed in a uniform sea of conduction electrons.
The ions are imagined to be in stable equilibrium when at regular lattice points. If one ion is
displaced of a small distance r from its equilibrium position, the restoring force is largely due to
the electric charge within the sphere of radius r centered at the equilibrium position. Take the
number density of ions (or of conduction electrons) as 3/4πR3, which defines R.

(a) Show that the frequency of a single ion set into oscillation is

ω =

√
e2

MR3

(b) Estimate the value of this frequency for sodium, roughly.

(c) From (a), (b), and some common sense, estimate the order of magnitude of the speed of
sound in the sodium metal. Compare with typical values in solids.

4 Wave Pulse Propagation (20 points)

Consider a wave pulse u(~r, t) = A(~r, t) e−i(~k·~r−ωt) consisting of a three dimensional plane wave
modulated by a slowly varying envelope function, A(~r, t). (Such a wave function may represent
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sound, light, or matter waves as well.) At time t = 0, we assume that the wave pulse is centered at
~r = 0 and has a Gaussian envelope function

A(~r, 0) = e−αr
2
.

(a) � If the dispersion relation ω(~k) can be approximated around ~k = ~k′ by truncating the
expansion to the first order (linear term)

ω(~k′) ∼= ω(~k) +∇~k ω(~k)
∣∣∣
k=k′

· (~k′ − ~k) = ω + ~vg · (~k′ − ~k),

what happens to the wave pulse at t > 0?

(b) � In one-dimensional medium, determine the envelope function A(x, t) when the expansion
includes also the second order. What happens to the width of the wave packet over time?

5 Singularity in Density of States (20 points)

Given the dispersion relation ω(k) of a monoatomic linear lattice of N atoms with nearest-neighbor
interactions,

(a) show that the density of modes, i.e., the number of states per unit frequency range, is

D(ω) =
2N
π

√
1

(ω2
m − ω2)

,

where ωm is the maximum frequency.

(b) Suppose that an optical phonon branch in three dimensions (volume equal to L3) has the
form

ω(k) = ω0 −Ak2

near k = 0. Show that

D(ω) =


(
L
2π

)3 ( 2π
A3/2

)√
ω0 − ω for ω < ω0

0 for ω > ω0

.

3


