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(Undergraduate students do not have to answer the questions marked with the symbol �.)

Intrinsic Carrier Concentration (15 points)

Indium arsenide (InAs) is a semiconductor crystalline compound made from the elements in-
dium (In) and arsenide (As). It is used in a number of modern advanced technologies including
construction of infrared photovoltaic photodiodes and diode lasers. Calculate the intrinsic carrier
concentration in InAs at 300 K and 600 K. (Note that the sum of heavy and light hole has to be
included.)

Shallow Donors in InSb (15 points)

Indium antimonide (InSb) is a semiconductor crystalline compound made from the elements
indium (In) and antimony (Sb). It is a narrow-gap semiconductor material used in infrared detec-
tors, including thermal imaging cameras, infrared homing missile guidance systems, and in infrared
astronomy. InSb has energy gap Eg = 0.23eV ; dielectric constant ε = 18; and electron effective
mass me = 0.015m. Calculate

(a) the shallow donor ionization energy;

(b) the radius of the ground state orbit;

(c) at what minimum donor concentration will an impurity band occur?

Semiconductor Heterostructures (40 points)

Semiconductor heterostructures offer the unique opportunity to manipulate the behavior of
electrons and holes through band engineering. A first approach to construct energy band diagrams
(i.e. band-edge potential profile) of the heterojunction between two semiconductor materials (A
and B) is the Anderson’s rule, Fig 1. This is based on the electron affinity (χ) of the materials,
the energy required to take an electron from the bottom of the conduction band Ec to the vacuum,
that is, to escape from the crystal.

Electron affinity is nearly independent of the position of the Fermi level. Anderson’s rule states
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Figura 1: A/B heterojuction, energy band diagram.

that once the vacuum levels are aligned it is possible to use the electron affinity (χA,B) and band
gap (EA,Bg ) values for each semiconductor to calculate the conduction band (∆Ec) and valence
band (∆Ev) offsets.

1.1) Estimate ∆Ec,v (at the Γ-point and T = 300 K) for the nearly lattice-matched systems,
GaAs/AlAs, In0.53Ga0.47As/InP, and InAs/GaSb. (A possible source of data for semiconductor
is http://www.ioffe.ru/SVA/NSM/.) How well do the results agree with the accepted values in
litterature?

In many important devices, semiconductor are doped to enable a significant additional potential
(e.g. p-n junction in inhomogeneous semiconductors) due to the large number of charge car-
ries. At equilibrium the additional electrostatic potential Vρ(z) arising from the the spatial charge
distribution (ρ) has to satisfies the Poisson’s equation ∇2Vρ = −ρ/εrε0.

1.2) Sketch the band diagram for the heterojuction n-Al0.33Ga0.67As/GaAs (i.e. n-doped Al0.33Ga0.67As
and undoped GaAs) and show that this can trap a two-dimensional electron gas (2DEG) at
the interface. Repeat for p-Al0.33Ga0.67As/n-GaAs and elaborate on the possible formation of
a two-dimensional carrier gas.

1.3) Sketch the band diagram for both p-n and n-p generic heterojuctions of type II (or staggered
alignment). Determine whether electrons or holes can be trapped at the interface.

1.4 �) Consider an undoped InAs/GaSb heterojuction (type III or broken gap alignment). Sketch
the band diagram at equilibrium. Next, suppose that a sequence of narrow InAs/GaSb layers is
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grown. Each layer of InAs now behaves as a quantum well for electrons, and the lowest state is
raised above the bottom of the conduction band. The energy of the lowest state for holes in GaSb
is raised too. For very thin layers the states will be raised so far in energy that they no longer
overlap. Estimate the threshold thickness for alternating layers of equal thickness. (Treat the wells
as infinitely deep.)

Static Magnetoconductivity Tensor (30 points)

Using the Drude model, show that in presence of a static electric (E) and magnetic field (H) the
static current density flowing in a wire can be written in matrix form as jx

jy
jz

 = σ0
1+(ωcτ)2

 1 −ωcτ 0
ωcτ 1 0
0 0 1 + (ωcτ)2

  Ex

Ey

Ez

 .

In the high magnetic field limit ωcτ � 1, show that σyx = nec/H = −σxy. In this limit σxx ' 0, to
order 1/ωcτ . The quantity σyx is called the Hall conductivity.
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