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(Undergraduate students do not have to answer the questions marked with the symbol �.)

1 Classical Theory of Conduction (20 points)

The Drude model of metal is based on a regular three-dimensional, fixed array of ions in presence
of a large number of electrons that as a classical ideal gas are free to move throughout the entire
metal.

1.1) Calculate the root mean square speed, vrms, of free electrons at T = 300 K and in the
absence of external fields.

Solution

The probability distribution function for the speeds of particles in a classical ideal gas is derived by
the Boltzmann distribution and the result is the Maxwell distribution of molecular speed (eq 2.1 ).

The most probable speed vm, the average speed 〈v 〉 the rms speed vrms are:

vm =
√

2KT
m

〈
v

〉
=
√

8KT
Π vrms =

√
3KT
m

The rms speed can be computed from the equipartition theorem considering that the average is
done over all directions.

〈
v2
x

〉
=
〈
v2
y

〉
=
〈
v2
z

〉
= v2rms

3

1
2m
〈
v2
x

〉
=

KβT
2

Thus,
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vrms =

√
3KβT
m =

√
3(1.38×10−23)(300)

(0.91×10−30)

vrms = 1.17× 105 m/s

When a constant electric field is applied, a drift velocity (vd) superimposes in the opposite direction
of the field.

1.2) Compute the magnitude of the drift velocity and conductivity of electrons in a copper wire
of radius 0.815 mm carrying a current of 1 A and with mean free path of 0.38 nm. (Assume
one free electron per atom, Z = 1, and a mass density of 8.92 g/cm3.)

Solution

Using eq.1.1 n = (0.6022× 1024) zρmA

ρm = 8.92 g/cm3 A = 63.5 g/mol z = 1

n = 8.47× 1022 atoms/cm3

= 8.47× 1028 atoms/m3

I = J(Area) = −nevd(πr2)

vd = 1c/s
π(0.000815 m)2(8.47×1028m−3(1.60×10−19c))

vd ∼= 3.54× 10−5 m/s

1.3) Compute the electron conductivity assuming a mean free path of 0.38 nm.

Solution

The conductivity of copper at room temperature is given by
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δ = ne2τ
m where τ = l

vrms
= 0.38×10−9m

1.08×105m/s
= 3.52× 10−15 s

δ = 8.33× 106(Ωm)−1

This value is seven time smaller than the measured value.

2 X-Ray Metal Mirror (20 points)

X-rays which strike a metal surface at an angle of incidence to the normal greater than a critical
angle θc are totally reflected. Consider a metal (see figure) that occupies the region x > 0 and
X-rays that propagate in the x − y plane (the plane of the picture) with their polarization vector
pointing the +z-direction (coming out of the picture). Assume that the metal contains n free
electrons per unit volume and apply the Drude model.

2.1) Calculate θc as a function of the frequency ω of the X-rays.

Solution

The reflectivity of a metal drops significantly at the plasma frequency, and above ωp the ma-
terial becomes transparent (so-called transparent region). The Drude model of metals shows this
behaviour in the dielectric functions [eq.(1.37)].

1
τ � ωp < ω ε(ω) = 1− ω2

p

ω2

ωp = 4πml2

m , for m ' 1022, ωp ' 5.7× 1017 s−1
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Generally such a Drude term describes only part of the behaviour and more refined theories
are needed. Nonetheless, experimentally most of the metals reflect light in the visible and are
transparent to light in the UV. for x-rays holds the condition.

1
τ � ωp < ω

and

Assuming µ = 1 in the metal and µ1 = 1 for x < 1, we have

n2 =

√
1− ω2

p

ω2 < 1

The critical angle θc is

4



sin θc = n2 sinπ/2; θc = sin−1

√
1− ω2

p

ω2

2.2)Experiments on gold show that X-rays with an energy of 1 keV have a critical reflection
angle of 3.72 degrees. Calculate the plasma frequency ωp using the result in 2.1) and comment
on the striking discrepancy between this result and the fact that ωp for gold actually lies in the
visible range.

Solution

The energy associated with ~ω = 103eV is

ω ' 1.5× 1018Hz

From the energy dependence of the critical angle obtained in the Drude model we have.

(sinθc)
2 = ε(ω)

=⇒ωp = ω
√

1− sin2θc

= 1− ω2
p

ω2

ωp ' 1.5× 1018 Hz

Such a ωp is much larger than the real , which lies in the visible. Due to relativistic effects that
effect the orbitals around gold atoms we cannot describe correctly the plasma frequency with the
Drude model and ε(ω) is not given by the above mention formula.

3 Wave Attenuation at Low Frequency (24 points)

A plane electromagnetic wave of frequency ω/2π and electric field amplitude E0 is normally incident
on the flat surface of a semi-infinite metal of conductivity σ. Use the Drude model and assume the
magnetic permeability of the metal µ = 1 and the frequency regime ω τ � 1, i.e., the displacement
current inside the metal can be neglected.

3.1) Using Maxwell’s equations, derive the skin depth, or characteristic penetration depth, of
the field (δ) and evaluate it for copper at ω = 60 Hz and ω = 100 MHz.
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Solution

From Maxwell’s equations we get (using harmonic time dependence, e−iωt)

52E + ω2

c2
ε(ω)E = 0

=⇒ε(ω) = 1 + i4πσ(ω)
ω

The complex wave vector is

k = ω
cm = ω

c

√
ε(ω) µ = 1

At low frequency (ωτ � 1)

n2 = 1 + ik4πσ(ω)
ω

⇒ µ2 � i4πσ0
ω

σ(ω) = σ0
1−iωτ ' σ0

Neglecting the displacement current means writing.

1 + i4πσ(ω)
ω � i4πσ(ω)

ω

Thus we have

µ =
√
i
√

4πσ0
ω =

√
2πσ0
ω (1 + i)

√
i = 1+i√

2

and the complex wave vector is
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k =
√

2πσ0ω
c (1 + i)

Assuming the E-field in the incident wave is polarized in the +x-direction and the H-field in

the +y-direction, we can obtain the fields inside the metal(
−→
Ht,
−→
Et)

−→
Ht = Htŷe

i(kz−ωt) = Htŷe
− z
σ ei(

z
σ
−ωt)

where

σ ≡ c√
2πσ0ω

is the characteristics penetration depth of the field.

H in
t = Hout

t = E0 we have

−→
Ht = E0ŷ = exp[− z

σ ]exp[i( zσ − ωt)]

The electric field inside the metal
−→
Et :

−→
Et = Etx̂ = c

4πσ0
(∇XHt) = − c

4πσ0
∂Ht
∂t x̂

−→
Et =

√
ω

8πσ0
(1− i)E0x̂exp[− z

σ ]exp[i( zσ − ωt)]

=
√

ω
8πσ0

E0x̂exp[− z
σ ]exp[i( zσ − ωt−

π
4 )]

where the phase shift −π
4 comes from the factor (1 + i)/

√
2. Therefore,

−→
H and

−→
E in the

conductor are π
4 out of phase. The fields that propagate into the metal are damped, phase shifted,

and transverse.

3.2 �) Derive expressions for the transversal components of the electric and magnetic fields
inside the metal. What is the ratio of the magnetic field amplitude to the electric field amplitude
inside the metal?
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Solution

The ratio of the amplitudes inside the metal is in this approximation.

|Ht|
|Et| =

√
4πσ0
ω

Therefore the field is mostly the magnetic field.

3.3) For sea water (σ = 4.5 × 1010 s−1 in cgs units) and using radio waves of long wavelength
(ω = 0.5 MHz) calculate the characteristic penetration depth (δ) and the intensity attenuation
at 10 m. Which frequency range would you use to communicate with a deep submerged object
like a submarine?

Solution

σ = c√
2πσ0ω

= 3×1010√
2π(5×105)(4.5×1010)

cm ' 80 cm

At a depth of 10 cm below the surface, the intensity attenuation at this frequency will be

p
p0
∼= exp[−2.10

0.8 ] ' 10−11,

which implies that the transmission of signals to submerged objects will require such lower frequency
is, f < 10− 102 Hz

4 Fermi Energy of Gold (12 points)

Electrons in a piece of gold metal can be assumed to behave like an ideal Fermi gas and follow
the Sommerfeld theory of metals. Gold metal in the solid state has a mass density of 19.30 g/cm3.
Assume that each gold atom donates one electron to the Fermi gas. Assume the system is in the
ground-state (T = 0 K).

4.1) Compute the Fermi speed, Fermi energy (in eV), the Fermi temperature.
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Solution

The number of electrons per cubic centimetre, n = N
V is

n = 0.6022× 1024 zρm
A

Where ρm is the mass density, z the number of electrons contributing to the Fermi gas, A is
the atomic mass of the element ( in this case Au ), and 0.6022× 101024 is the number of atoms per
mole (Avocados’ number) i.e. the inverse of the atomic mass unit (1.66 × 10−27 kg). (formula 1.1
in A.M. book)

For gold

n ∼= 5.90× 1022 cm−3

Using equ. (2.21); (2.24); (2.25); and (2.33)

kf = (3π2m)
1
3 ; vf =

~kf
m ; εf =

~2kf2
2m ; Tf =

εf
kβ

We compute

vf = 1.40× 108 cm/s

εf = 5.53 eV

Tf = 6.42× 104 K

5 Two-Dimensional and One-Dimensional Ideal Fermi Gas (24 points)

Nowadays it is experimentally possible to confine electrons in thin layers forming two-dimensional
(2D) systems or in thin wires forming or one-dimensional (1D) systems. In this problem we want
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to study few properties of non-interacting electrons (i.e. ideal gas of spin 1/2 fermions) in 2D and
1D. Assume the electrons to be confined in 2D within a square of area A = L2 and in 1D within a
line of length L.

5.1) Express the Fermi wave vector (kF), the Fermi energy (εF), and the total energy per unit
of area of the system as a function of the electron density (n2D = N/A or n1D = N/L).

Solution

In 3D we have the equation (2.21)

m3D = 2
(2π)3

∫
K<Kf

d3K = 2
(2π)3

∫ k
f 4πk2 d2K = 1

3π2k
3
f

Similarly, in 2D

m2D
∼= N

A = 2
(2π)2

∫
K<Kf

d2K = 2
(2π)2

∫ kf 2πk dK = 1
2πk

2
f

m2D = 1
2πk

2
f ;

and

εf = ~2k2f
2m ⇒εf =

π~2k2f
m m2D

The total energy per unit of area (density of energy)is

E
A = 2

(2π)2

∫
k<kf

d2k ~2k2
2m = 2

(2π)2

∫ kf
0 2πk dk ~2k2

2m = m
2π~2 ε

2
f ,

which can be written as,

E
A = 1

2m2Dεf
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5.2) Calculate the density of states of the system g 2D(ε) and g 1D(ε).

Solution

m2D = 2
(2π)2

∫
k d

2k = 2
(2π)2

∫∞
0 2π k dk =

∫ +∞
−∞ ρ2D(ε)dε

Given the energy relation ε = ~2k2
2m for free electrons,

we have

2kdk = 2m
~2 dε

m2D =
∫∞

0
1

2π 2kdk =
∫ +∞
−∞

m
π~2 dk.

Thus

ρ2D(ε) = m
π~2 ε > 0

= 0 ε < 0

The 2D free electron density of levels is a constant.
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