Syllabus

Introduction to Condensed Matter Physics

PHY 251 - PHY 420 - ECE 224 - ECE 424 - MSC 420

(26 lectures of 1h 15m)

1	Free-Electron Models	(4 lectures)
1.1	The Drude Theory of Metals	
1.2	The Sommerfeld Theory of Metals	
1.3	Failures of the Free-electron Model	
2	Structure of Solid Matter	(2 lectures)
2.1	Crystal Lattice	
2.2	Reciprocal Lattice	
2.3	Elements of Crystal Diffraction	
•		
3	Harmonic Crystal	(3 lectures)
3.1	Classical Theory of the Harmonic Crystal	
3.2	Quantum Theory of the Harmonic Crystal	
4	Electronic Band Structures	(6 lectures)
4.1	Bloch's Theorem	
4.2	The Nearly Free-Electrons Approximation	
4.3	The Tight Binding Approximation	
4.4	Elements of Electron Dynamics: Wave Packets of Bloch Electrons	
4.5*	Quantum Transport in Nanostructures	
4.6*	Graphene	
-	Ontion! Promotion	(1 + + +)
5	Optical Properties	(4 lectures)
5.1	The Dielectric Function	
5.2	Optical Properties of Metals and Insulators	
5.3*	Novel Optical Materials: Negative Refractive Index and Metamaterials	

6 Semiconductors

(4 lectures)

- 6.1 Homogeneous Semiconductors
- 6.2 Inhomogeneous Semiconductors
- 6.3 Semiconductor Heterostructures
- 6.4* Semiconductor Epitaxy and Nanofabrication
- 7 Magnetism (3 lectures)
- 7.1 Diamagnetism and Paramagnetism
- 7.2 The Exchange Interaction
- 7.3* Magnetism in Thin-Films and Giant Magneto-Resistance
- 7.4* Quantum Hall Effect

Main Book

N. W. Ashcroft and N. D. Mermin, *Solid State Physics*, Brooks Cole, 1st ed. (1976).

Additional References

C. Kittel, Introduction to Solid State Physics, Wiley; 8th ed. (2004).

G. Grosso and G. Pastori Parravicini, *Solid State Physics*, Academic Press, 1st ed. (2000).

H. Ibach and H. Luth, *Solid-State Physics: An Introduction to Principles of Materials Science*, Springer; 4th ed. (2009).