
5: Capacitors July 8, 2008

5.1 Definition

A capacitor is a structure which has a certain capacity to hold an electric
charge. It is essentially the simplest possible battery. The typical example
of a capacitor, and the typical actual design, is two parallel charged plates.
There are variations and clever extensions, but this is the basic idea, and
we’ll see why.

The capacity to store charge is defined in relation to the electrical po-
tential necessary for a given amount of charge. Theoretically, any material
object can store an almost unlimited number of electrons and it doesn’t
matter what the material is made of: you can pack electrons anywhere.
However, when you build up larger and larger charges on things, you create
fields and the charge starts looking for some way to escape. This is what
happens when you build up a charge and get zapped when you reach for the
doorknob. Your body has built up a charge, which gives rise to a potential
difference between you and the door. When you stand far away, you have
the capacitance to hold on to that charge. However, when you reach for the
doorknob, you reduce the barrier for the charge to jump: you no longer have
the capacity to hold on to all of that charge. In the language of capacitors,
the capacitance of the system consisting of your body and the doorknob has
dropped below the charge stored on your body, and the capacitor (yes, you
and the doorknob form a capacitor) discharges.

But this is physics class, lets see some equations! The quantification of
the above is simple. Capacitance is the amount of charge a system can hold
be Volt of potential difference:

C =
Q

V
[C] = C

V = F = farad

(Don’t you just love how all of these things start off with innocuous,
simple definitions, and then turn out to have the potential for unlimited
complexity and headaches? Perhaps you find this annoying, but its that
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Figure 5.1: Parallel Plate Capacitor

tendency of simple physical systems to give rise to ridiculously complex be-
havior that makes the universe an interesting place with the dizzying variety
of objects and life and phenomena. OK, end of pointless aside. Sorry.)

A 1F capacitor can hold an entire Coulomb of charge with only a single
Volt of potential difference. Most of the capacitors in everyday electronics
are measured in microfarad (µF ).

That’s all there is to the definition of a capacitor. They can take any
shape, and in fact any shape is a capacitor, but certain shapes make much
better capacitors than others, which is why the parallel plate capacitor is so
common.

5.2 Examples

Any system with two objects between which you can find the potential dif-
ference can be analytically studied as a capacitor. There are many objects
for which this calculation is impossible or impractical, in which case exper-
iment can discern the capacitance, but we have plenty of examples we can
consider.

5.2.1 Parallel Plate Capacitor

The parallel plate capacitor is that rare example in which case the one of the
most easily solved problems actually looks a lot like the practical physical
manifestation. Enjoy the novelty.
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The definition of capacitance depends only on the charge held and the
corresponding potential. For the parallel plate capacitor this is easily solved.
Construct our system of 2 conducting plates. Each holds charge Q and is a
plate of unspecified shape (within reason. Its not a cheese grater with holes
nor a snowflake cutout with lots of corners) but with area A. This is all we
need to calculate the potential difference. The positive charge is on the plate
at point b.

Vb − Va = −
ˆ b

a

!E · d!" = −E

ˆ 0

d
dx = Ed

Remember from solving for the field near a charged plane with Gauss’s
Law that

E =
Q

ε0

1
A

so
Vba =

Qd

ε0A

C =
Q

Vba
= ε0

A

d
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5.2.2 Cylindrical Capacitor

Figure 5.2:
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Figure 5.3:

C = 2πε0
L

ln(R2/R1)

Compare this to the case for the parallel plates. The length of the cylinder
takes the place of the area (both give a measure of the size of the capacitor.
The cylindrical capacitor is like the line charge to a parallel plate capacitor’s
surface charge) while the natural log of the ratio of the radii takes the place of
the separation d (both give a measure of the separation of the charge carrying
surfaces). Note that because the natural logarithm is a very slowly varying
function, the cylindrical configuration doesn’t gain capacitance nearly as well
as the parallel plates by being brought close together.
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5.2.3 Spherical Capacitor

Figure 5.4:

C = 4πε0
R1R2

R2 −R1
Again we have an area like quantity over a separation of the charge

carriers. Same idea, different realization for a different system.
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5.2.4 Parallel Wires

Figure 5.5:

C = 2πε0
L

ln(d−ρ/ρ)

This looks an awful lot like the cylindrical capacitor case, doesn’t it?

64



They both have a cylindrical symmetry, so this shouldn’t surprise you en-
tirely.

5.3 Putting Capacitors Together: The Beginning of
Circuits

Generally in the context of a purpose-built capacitor (rather than some ran-
dom collection of objects which has a capacitance), the potential difference
between the plates is maintained by wires connected to each and some sort
of power source such as a battery or a generator. Since each capacitor is
then connected to a wire on each end, it can be integrated into a circuit
(which is just a loop which conducts and has a power source to drive it).
We can wire capacitors together in 2 different ways: series and parallel. A
series connection just means sticking one capacitor after the other in a line.
More specifically, the positive lead from one capacitor leads into the negative
lead of the next, and so on. In a parallel connection, the positive leads of a
number of capacitors are all wired together, and the negative leads of all the
same capacitors are also wired together.

These two different arrangements make for very different behaviors. For-
tunately, we can calculate them!

Figure 5.6: Capacitors in Parallel

Imagine first that I connect 3 capacitors C1, C2, C3 in parallel. Because
their positive and negative leads are connected, they all have the same po-
tential difference V−+ across them. The question we want to answer, is what
is the equivalent capacitance of this collection of capacitors? That is, what
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would the capacitance of a single capacitor need to be to function like this
collection of 3. Remember, any system has a capacitance, so there has to be
some capacitance that is equivalent to the 3 in parallel.

We know the voltage (potential difference) for each is the same, so all
that remains is to find the total charge:

Q = Q1 + Q2 + Q3 = C1V−+ + C2V−+ + C3V−+ = V−+ (C1 + C2 + C3)
With the definition of capacitance, this gives:
Cequiv = C1 + C2 + C3

Note that despite its similarity to expressions of the principal of super-
position, this is result does not in fact follow (at least in any reasonably clear
way) from that principal. We can make sense of this result by thinking in
terms of parallel plate capacitors, however. In that case, the capacitance
is proportional to the are of the capacitors. If we just stick a couple of
capacitors in parallel, we are essentially adding their areas, so the capaci-
tance would also add. This is just a plausibility argument, however, since it
neglects the plate separation and other configurations of capacitor.

Figure 5.7: Capacitors in Series

That was easy enough. What about capacitors in a series? Again lets
work with 3 capacitors. Since they are in series, they no longer have the same
potential difference across them (necessarily). However, we know that their
potential differences must add up to the total maintained potential difference,
V−+. Why? Because the circuit is a complete loop and the electric potential
can’t have discontinuities. So, the power supply provides a potential jump
of V−+. The rest of the circuit (in this case the 3 capacitors) must bring us
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all the way back down (but no further) so that the potential matches up.
V−+ = ∆V1 + ∆V2 + ∆V3

The notation ∆Vi refers to the potential difference between the two plates
of capacitor Ci. Writing Vi would be ambiguous given our previous use of
that symbol.

Looking at Fig[5.7], we can see that the charge on each capacitor must
be the same. Why is this? The applied voltage from the wire connected to
the negative lead of C1 will induce some charge −Q on C1. This charge must
induce an equal and opposite charge on the other plate, giving Q. Because
there is a wire connecting C1 and C2, the + side of C1 must have the same
electric potential as the − side of C2. Equal potential means even charge
distribution in a conductor, so C2 must also have charge Q. Likewise, we
see that C3 has charge Q.

We can now use the definition of capacitance to give
C = Q

V −→
1
C = V

Q −→
1

C1
+ 1

C2
+ 1

C3
= ∆V1

Q + ∆V2
Q + ∆V3

Q
1

C1
+ 1

C2
+ 1

C3
= 1

Q (∆V1 + ∆V2 + ∆V3) = V−+

Q = Cequiv
1

Cequiv
= 1

C1
+ 1

C2
+ 1

C3

Quite different from the addition rule for a parallel arrangement! In fact,
the equivalent capacitance in series is smaller than the smallest capacitor
in the series. This is not what you do if you are looking to build up a big
capacitance in your circuit.

5.4 Energy Stored in Capacitors

We learned earlier that we can calculate the work required to construct a
system of charges using the scalar potential. We found that

U =
ˆ

dU =
ˆ Q

0
V dq

Rather than use the explicit expression in terms of charge and separation
for the scalar potential, we can write it in terms of the capacitance,

V = Q
C ⇒

q
C

where q in the integral will be how much charge we’ve already added up,

U =
ˆ Q

0

q

C
dq =

1
C

ˆ Q

0
qdq =

1
C

Q2

2
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U = 1
2

Q2

C

We can write this another way by simply substituting in for Q:
U = 1

2CV 2 = 1
2QV

5.4.1 Electric Field

I made a bit of a point when I introduced the electric field that it has
a physical existence and isn’t just a mathematical trick. This is the first
place we see real evidence for that, and the evidence is that the electric
field itself is the entity which contains the energy stored in a capacitor!
This invisible, intangible “object” is storing energy in the gap between two
conducting plates.

Combining the expression for the potential energy content of a capacitor,
U = 1

2CV 2 and the parallel plate expression for electric potential V = Ed,
we find

U = 1
2

ε0A
d E2d2 = 1

2ε0AdE2

If we note that Ad is the volume between the capacitor’s plates, we can
define an energy density between the plates,

u = U
Ad = 1

2ε0E2

This turns out to be a general expression for the energy density of an
electric field (where it is constant), tho we derived it from this special case.

5.4.2 Examples

Pull capacitor plates apart

Pull plates apart while plugged in

5.5 Dielectrics (and Insulators)

Experimentally, we find that we can dramatically increase the capacitance
of a system by inserting insulating materials between the charged surfaces.
Your book has a section which explains how this works at a microscopic
level, but the basic idea is just that even insulators have a kind of induced
charge which reduces the field in a capacitor. This reduced field, with the
same charge buildup, means that the charges feel less motivation to leap from
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one plate to the other, discharging out capacitor. And because dielectrics
(materials which have this type of induced charge) are also (often) insulators,
they also keep the electrons on their own side even if the field is cranked up
extra high. Since this whole process depends upon complex molecular level
physics of an aggregate material, we don’t even pretend to try and calculate
it (well, we don’t. Professionals with huge computers and such do). Instead,
we just look up measured values from experiment.

This effect can be described with a single constant (for each material)
factor:

C = KC0

where C0 is the capacitance we have been calculating so far and corre-
sponds to a vacuum existing between the plates. Air’s dielectric constant K

is almost exactly the same as that of the vacuum (1.0006 rather than 1), so
everything we’ve done works for most purposes in atmosphere as well.

For reasons we won’t get into, the dielectric constant is often rolled into
another parameter

ε = Kε0

ε0 is the permittivity of free space (vacuum), while ε is the permittivity
of whatever material we are worried about at the moment. The upshot of
this is that if you’ve done a calculation for a capacitor in vacuum and want
to turn it into one with a dielectric, you can just replace ε0 with ε.

Functionally, this constant increases the capacitance of a system.Since
K is always 1 or larger, it increases the charge required to produce a given
voltage.

Q = KQ0

and it increases the energy contained in a conductor,
u = Ku0 = 1

2εE2.
However, the electric field is decreased
E = E0

K

as is the potential difference
V = V0

K

These make sense because the point of the dielectric is to reduce the
forces pulling the electrons from one surface to the other.
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